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Abstract

The monitoring of soil moisture content (SMC) at very high spatial resolution (<10m) using 

unmanned aerial systems (UAS) is of high interest for precision agriculture and the validation 

of large scale SMC products. Data-driven approaches are the most common method to retrieve 

SMC with UAS-borne data at water limited sites over non-disturbed agricultural crops. A major 

disadvantage of data-driven algorithms is the limited transferability in space and time and the need 

of a high number of ground reference samples. Physically-based approaches are less dependent on 

the amount of samples and are transferable in space and time. This study explores the potential of 

(1) a hybrid method targeting the soil brightness factor of the PROSAIL model using a variational 

heteroscedastic Gaussian Processes regression (VHGPR) algorithm, and (2) a data-driven method 

employing VHGPR for the retrieval of SMC over three grassland sites based on UAS-borne 

VIS-NIR (399-1001 nm) hyperspectral data. The sites were managed by mowing (Fendt), grazing 

(Grosses Bruch) and irrigation (Marquardt). With these distinct local pre-conditions we aimed to 

identify factors that favor and limit the retrieval of SMC.

The hybrid approach presented encouraging results in Marquardt (RMSE = 1.5 Vol_%, R2 = 

0.2). At the permanent grassland sites (Fendt, Grosses Bruch) the thatch layer jeopardized the 
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application of the hybrid model. We identified the complex canopy structure of grassland as 

the main factor impacting the hybrid SMC retrieval. The data-driven approach showed high 

accuracy for Fendt (R2 = 0.84, RMSE = 8.66) and Marquardt (R2 = 0.4, RMSE = 10.52). All 

data-driven models build on the LAI-SMC relationship. However, this relationship was hampered 

by mowing (Fendt), leading to a lack of transferability in time. The alteration of plant traits by 

grazing prevents finding a relationship with SMC in Grosses Bruch. In Marquardt, we identified 

the timelag between changes in SMC and plant response as the main reason of decrease in 

model accuracy. Yet, the model performance is accurate in undisturbed and water-limited areas 

(Marquardt). The analysis points to challenges that need to be tackled in future research and 

opens the discussion for the development of robust models to retrieve high resolution SMC from 

UAS-borne remote sensing observations.
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1 Introduction

Soil moisture content (SMC) controls land carbon uptake (Humphrey et al., 2021) and 

ecosystem productivity (Liu et al., 2020a). It is one of the key parameters of land–

atmosphere-interactions (Ravindra Kumar Rekwar et al., 2022). Therefore, monitoring SMC 

at different spatial scales is of interest for a diversity of applications, such as crop yield 

estimation (Holzman et al., 2018), irrigation control (Li et al., 2022) or precision agriculture 

(Bhakta et al., 2019).

In addition to common local ground measurement techniques, a multitude of physically-

based (Ma and Li, 2020; Li et al., 2021), semi-physical (Vergopolan et al., 2021; Sadeghi 

et al., 2017; Li et al., 2021) and data-driven (Döpper et al., 2022; Holtgrave et al., 2018; 

Liu et al., 2020c, 2021; Pasolli et al., 2014) remote sensing approaches have proven their 

ability to monitor SMC at different spatial resolutions over larger areas. However, the spatial 

resolution of space-borne remote sensing observations comprises a significant scale gap 

compared the local (point) ground reference. This unavoidably leads to inaccuracies when 

comparing the ground reference data to the remote sensing based SMC products or SMC 

relevant remote sensing signals (Gruber et al., 2020; Crow et al., 2005).

The high spatial resolution of unmanned aerial systems (UAS) (<1m x 1m) more closely 

corresponds to the soil medium represented by the local point measurements. Hence, UAS 

are a useful tool to bridge the scale gap between point measurements and satellite products 

by retrieving SMC at very high resolution. The application of UAS for SMC retrieval is thus 

not only relevant for precision agriculture, but also for hydrological analysis targeting SMC 

patterns at different spatial scales, as well as for validation and downscaling of space-borne 

remote sensing SMC products.

Reflecting the relevance of UAS-based remote sensing of SMC, an emerging body of 

literature demonstrates the ability of retrieving SMC using light-weight thermal infrared 
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(TIR) (Paruta et al., 2021), RGB, multispectral (MS)(Cheng et al., 2022), hyperspectral 

(HS) or LiDAR (Wang et al., 2018; Ge et al., 2021) sensors mounted on UAS. Within this 

literature, different semi-empirical approaches such as the temperature-vegetation triangle 

(TDVI) (Wigmore et al., 2019; Wang et al., 2018), its modification towards the OPTRAM 

(Optical Trapezoid Model) (Babaeian et al., 2019) as well as thermal inertia (Paruta et al., 

2021) were successfully applied.

Apart from the high variety of semi-physical approaches, the majority of analysis addressed 

the SMC retrieval via data-driven, mostly machine learning approaches (e.g. Babaeian 

et al., 2021; Hassan-Esfahani et al., 2017; Araya et al., 2020; Cheng et al., 2022). Data-

driven approaches learn the complex interactions of the plant-soil-atmosphere continuum 

by building relationships between visible and near-infrared (VIS–NIR) spectral signals and 

plant characteristics. Thereby, a set of measured predictors, for example canopy reflectance, 

is directly linked to SMC as target variable via a regression model. In this regard, the 

SMC at the zone of major water uptake can be mapped (Mahyar Aboutalebi et al., 2019; 

Hassan-Esfahani et al., 2017; Babaeian et al., 2021). Data-driven algorithms are flexible in 

identifying relevant indicators of SMC. They can therefore use changes in soil reflectance as 

SMC-relevant indicators in addition to plant characteristics.

Most of the data-driven approaches have been applied at water-limited sites (e.g. Cheng et 

al., 2022; Babaeian et al., 2021) that are in some cases irrigated (Hassan-Esfahani et al., 

2017; Mahyar Aboutalebi et al., 2019; Cheng et al., 2022). In addition, the algorithms were 

only tested and trained at one site (e.g. Hassan-Esfahani et al., 2017; Ge et al., 2021; Cheng 

et al., 2022) and at the same time (Ge et al., 2021; Seo et al., 2021). Lendzioch et al. (2021) 

targeted UAS-based SMC retrieval at a moist peat area with multitemporal data. They found 

in general lower model fits compared to analysis over agricultural sites (i.e. Cheng et al., 

2022) and lowest model fits during the wettest hydrologic conditions.

The majority of analysis map SMC under agricultural crops (e.g. Cheng et al., 2022; Ge 

et al., 2021; Seo et al., 2021). Agricultural crops are often more susceptible to changes in 

water content than natural land cover types such as grassland (Levia et al., 2020). Grasslands 

occupy 40.5% of the global non-ice covered land area (White et al., 2000) and provide a 

large range of ecosystem services such as fodder production for livestock (Schucknecht et 

al., 2020) or soil formation (Zhao et al., 2020).

Most temperate grasslands of Germany are intensively managed by mowing, grazing and 

fertilization (Gilhaus et al., 2017). This management strongly alters plant physical properties 

(Benot et al., 2014; Opdekamp et al., 2012), productivity (Li et al., 2019) and species 

composition (Gilhaus et al., 2017). The potential of data-driven algorithms on grassland 

areas that are intensively managed is still not addressed.

Even if data-driven-approaches have shown their potential in retrieving SMC and they easily 

include additional SMC relevant predictors, they are not robust enough for a transfer in 

space and time (Rocha et al., 2019). Hassan-Esfahani et al. (2017) stressed the need to cover 

a multiyear phenology of each species in the training data set. This emphasizes the necessity 

of a high amount of training samples.
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Radiative transfer models (RTM), in turn, physically describe the relationship between 

reflectance and soil properties and are therefore applicable at different times and sites (Bayat 

et al., 2020; Berger et al., 2018). They additionally reduce the need for calibration data 

(Bayat et al., 2020). Compared to data-driven modeling, which uses both vegetation and 

soil reflectance, the physically-based approach disentangles canopy and soil reflectance. The 

latter can then be used for SMC retrieval.

Soil reflectance is mainly determined by its chemical properties and physical structure as 

well as observation and illumination geometry. Temporal and spatial variability under a 

given homogeneous soil property are mainly caused by SMC and roughness (Weidong et al., 

2002). Thus changes in soil reflectance are linked to SMC in the very first centimeters of the 

soil surface (Richter et al., 2012).

So far, an UAS application with RTM inversion targeting SMC has only been performed by 

Eon and Bachmann (2021). They applied the MARMIT (multilayer radiative transfer model 

of soil reflectance) (Bablet et al., 2018) at a bare dune site with good model performance. 

However, a coupling of MARMIT to leaf and canopy RTMs is still missing, which restricts 

the use of the model to bare-soil applications.

Richter et al. (2012) successfully derived SMC with an inverse application of the coupled 

leaf-canopy RTM PROSAIL for different agricultural crops using airborne hyperspectral 

VIS–NIR-SWIR (shortwave-infrared) data. The PROSAIL model requires the input of 

measured soil spectra whose brightness can be scaled via a dimensionless soil factor (psoil), 

corresponding to changes caused by different SMC (Atzberger et al., 2003). To the best of 

our knowledge, PROSAIL-based retrieval of SMC was neither performed using UAS-borne 

VIS–NIR hyperspectral data nor exploring grassland areas. Given the high potential of 

physically-based approaches due to their generality and low need of calibration data, its 

potential for different grassland sites should be explored.

Therefore, the main goals of this study were: (1) to explore the potential of data-driven 

and physically-based approaches to derive SMC at different test sites and times, (2) 

to understand how the anthropogenic influence on the site-conditions, namely mowing, 

grazing, and irrigation, affect the precision of the SMC retrieval, and (3) to define suitable 

data and framework conditions to derive SMC over grassland sites. Using VIS–NIR range 

hyperspectral data only, we apply the common data-driven as well as the novel physically-

based approach in a hybrid retrieval strategy, exploring specific potentials and limitations on 

three differently managed grassland sites within Germany.

2 Materials and methods

To understand the potential of both SMC-retrieval approaches over a large range of 

hydrological and land-use conditions of grasslands in central Europe, we selected three sites 

in Germany (see Fig. 1) with different agricultural practises and distinct spatio-temporal 

SMC variability. At all sites one or several UAS-based hyperspectral images were acquired 

along with accompanying SMC and plant trait measurements.
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2.1 Data and sites

2.1.1 Sensor and equipment—The hyperspectral imagery was acquired using a Nano-

Hyperspec sensor (Headwall Photonics, Inc., USA) mounted on a DJI Matrice 600 Pro (DJI, 

China). The Nano-Hyperspec sensor captures 271 bands within the wavelength range from 

399 to 1000nm and a spectral resolution of appox. 6nm. The angular field of view accounts 

for 15.3°. With a given flight altitude of 100 m, the acquisition and lens setting leads to a 

spatial resolution of approximately 4 cm x 4 cm. The imagery was acquired within a two 

hour range around solar noon under clear sky conditions.

Radiance and reflectance conversion was performed using the Headwall SpectralView 

software. We geo-referenced the reflectance data with the Georeferencer tool of ArcGIS 

(Esri Inc., USA). High resolution multi-spectral UAS data served as a basemap. The high 

resolution multi-spectral UAS data was orthomosaiced with Agisoft Metashape (Agisoft 

LLC, Russia). The geo-referencing of the multispectral orthomosaics was performed using 

ground control points. The location of the ground control points was defined using the Leica 

Zeno GG04 (Leica Geosystems AG, Switzerland) DGPS antenna with subpixel accuracy.

The geo-referenced hyperspectral products were spectrally corrected for spikes and drops 

and finally filtered by applying the Savitzky-Golay filter (Savitzky and Golay, 1964) as 

implemented in the Python SciPy module (Virtanen et al., 2020) with a window width of 7 

and a second order polynomial smoothing. The dates of UAS image acquistion in the context 

of hydrological condition of each site are summarized in Fig. 1.

2.1.2 Fendt (FE)—Fendt is a temperate pre-alpine grassland site in the south of 

Germany. The soil texture comprises mainly silty and loamy sediments with peaty 

compositions towards the draining rivulet (Fersch et al., 2018). Typical clay, silt, and sand 

fractions are 32%, 41%, and 27%, respectively (Kiese et al., 2018).

The site is permanently and intensively used as grassland, leading to different mowing 

patterns (see Fig. 1 a, b). The hydrological condition at both dates of image acquisition 

differs markedly: Before 4 June 2019 heavy precipitation led to extremely high SMC values. 

This data acquisition captures a starting drying of the soils, leading to a high range of SMC. 

The second data acquisition for this site (27 June 2019), in turn, took place after a minor 

precipitation event 4 days before and captures the hydrological situation after significant 

drydown of the soils.

A SoilNet consisting of 55 nodes delivered the SMC ground reference data. Each node 

measures SMC at 5 cm depth every 15 min at two slightly displaced sensors. We took the 

mean of corresponding SoilNet nodes for each day. Due to malfunction of some nodes, only 

79 SMC measurements were used as ground reference for the algorithms in Fendt. Further 

information on the sensors of the SoilNet and their calibration can be found in Fersch et al. 

(2020).

We sampled vegetation traits within 180 1x1 m plots during the days of hyperspectral 

image acquisition. Ten random leaf chlorophyll measurements within each plot where taken 

using a SPAD-502 Leaf Chlorophyll Meter (MINOLTA, Inc.). Those measurements where 
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converted to chlorophyll measurements using the calibration curve of Si et al. (2012). The 

leaf area index (LAI) was assessed using the AccuPAR LP-80 (METER Group, Inc, USA). 

We took 5 above and 5 below measurements within each plot.

2.1.3 Grosses Bruch (GB)—Grosses Bruch is a pasture within a flat wetland area 

(Wollschläger et al., 2016). It is located in the Central German Lowland and susceptible to 

drought due to negative climatic water balance (Hermanns et al., 2021). The soil texture is 

defined as highly clayey silt (BGR, 2007). During the date of acquisition, the entire area was 

used for cattle grazing. We consider the hydrological status at the site as water limited, since 

Hermanns et al. (2021) detected drought stress of the vegetation at the site at even higher 

SMC than those measured in our data acqusition (Hermanns et al., 2021).

After the overflight, we took 51 SMC measurements with an FDR probe (ML3 Theta Probe, 

Delta-T Devices Ltd, Great Britain). For each sample, five measurements were taken in 

a cross-shaped arrangement within a 25 cm radius and then averaged. We recorded the 

GPS location with the Leica Zeno GG04 DGPS of the central measurement (Fig. 1e). The 

measurements were calibrated with a sensor specific calibration curve (Francke, 2020).

2.1.4 Marquardt (MAR)—Different to Fendt and Grosses Bruch, Marquardt is a non-

permanent grassland site. The field is part of the Leibniz Institute for Agricultural 

Engineering and Bioeconomy (ATB) and used as grass ley for the vegetation period of 

2020. The present soil texture ranges from 4–14% in clay, 8–15% in silt and 71–88% in 

sand. The data acquisition was part of an irrigation experiment. Using an automatic irrigator, 

different parts of the field were ’flooded’. Thereby, approximately 40 to 50 1
m2  of water were 

applied within two consecutive days on the 5th and 6th of August 2020 and all at once on 

11 August 2020 on different parts of the field. In order to cover the wettest SMC as well as 

ongoing drying of the soil after the irrigation, we acquired hyperspectral data on four dates 

with distinct time-gaps to the last applied irrigation (see Fig. 1k).

The experiment took place during dry conditions with no rainfall during the whole period. 

The ongoing drying of the soils is also reflected by the decreasing SMC values measured at 

the non-irrigated areas of the field. In total, we took 72 SMC samples. The sampling device 

and strategy as well as the device calibration is the same as in Section 2.1.3.

At Marquardt, we collected LAI samples with a Licor 2200 (LI-COR Biosciences GmbH, 

Germany) during dawn to keep the scattering effects of direct sunlight to a minimum. As in 

Fendt, each sample comprised 5 above and 5 below measurements.

2.2 Methods

A major focus of this analysis is the exploration of a data-driven and a hybrid method 

involving a physically-based approach in retrieving SMC over grassland areas that differ 

in land-use as well as spatio-temporal SMC characteristics (see Fig. 2). We implemented 

the hybrid approach of RTM inversion, which combines the efficiency of machine learning 

regression algorithms with the generality of the physically-based approaches (i.e., RTM) 

(Verrelst et al., 2019).
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Generally, a hybrid retrieval approach is considered to be more transferable, especially in 

time, compared to data-driven approaches assuming that all vegetation - soil - reflectance 

combinations were included in the simulated training data set. Nevertheless, site specific soil 

spectra are crucial for successful parameter retrieval. Since the soil factor of the PROSAIL 

model is dimensionless, SMC samples are necessary to enable a transfer of psoil to Vol_%. 

Yet, the number of required samples is expected to be lower than for the data-driven 

approach, which needs ground reference data for each site and date.

2.2.1 Hybrid SMC and LAI retrieval—A variational heteroscedastic Gaussian 

Processes regression (VHGPR) algorithm (Lázaro-Gredilla and Titsias, 2011) was trained 

to learn the physical connection between the target parameters (psoil and LAI) and the 

simulated spectra, and the final SMC retrieval model was subsequently applied to the 

measured spectra. Since machine learning algorithms are susceptible to collinearity of 

hyperspectral data, a reduction of the predicting features (bands) is necessary to provide 

confident results (Verrelst et al., 2016). In addition, active learning optimizes the samples 

of the simulated training data set and has also shown to increase the estimation accuracy 

through reducing redundancies within the samples (Berger et al., 2021; Verrelst et al., 2021).

We considered these enhancements of the hybrid inversion scheme as follows (see Fig. 2):

1. Training data set creation We created a 10.000-sample training data set using 

the PROSPECT-D (Féret et al., 2017) and SAIL (Verhoef, 1984) model and the 

Nano-Hyperspec sensor settings. The model parameters are listed in Appendix 

Table 1. The parameters are based on own field measurements, measurements 

of Schucknecht et al. (2020) and other analyses targeting RTM model inversion 

over grassland (see Appendix Table 1). In order to extract the soil spectra of 

the sites, we used a spectral angle mapper with soil spectra of the European 

wide soil spectral database, LUCAS Topsoil 2015 (Jones et al., 2020), as 

endmembers. Thereby, only spectra within a buffer of 0.25deg around each 

site were considered as endmembers. We calculated the dry and wet spectral 

reflectances as mean of the first and 99th percentile of all extracted soil spectra 

of the site, scaled it in regard to the wettest and driest SMC measured in the 

long-term time-series and used the resulting wettest and driest soil spectral value 

as input for the PROSAIL simulation.

2. Band selection The band selection is based on a sequential backward band 

removal algorithm. It removes the least important band at each iteration based on 

an assessment of the impact of the inputs on the prediction error in the context 

or absence of the other predictors (Verrelst et al., 2016). The band selection 

was employed for the psoil and LAI retrieval separately. Further details on the 

procedure can be found in Verrelst et al. (2016). Due to the large training data set 

we applied the faster Kernel Ridge Regression (KRR) (Cristianini et al., 2000) 

band selection tool (KRR-BAT) with 4% Gaussian noise. The algorithm was set 

Appendix A 
Table 1
Fig. 6–8.

Döpper et al. Page 7

Int J Appl Earth Obs Geoinf. Author manuscript; available in PMC 2023 June 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



to remove the 200 least important bands after the first iteration and three bands at 

each subsequent iteration. The validation at each iteration was performed using 

70% of the training set as test set. The root mean square error (RMSE) served 

as accuracy metric. For psoil, we selected 13 bands, whereas for LAI nine bands 

were necessary. We applied the band selection on Fendt data only, assuming that 

the selected important bands for psoil and LAI are universal.

3. Active learning: To reduce the amount of samples, we applied the Euclidean 

distance-based diversity (EBD) algorithm in combination with the fast KRR. For 

details, see Verrelst et al. (2020, 2021). The initial training data set to start the 

algorithm comprised 150 samples. The remaining 99.5% of the complete training 

data set was used as pool data. Non-used pool data served as validation data set. 

With each iteration, the EBD selected three samples and stopped when there was 

no sample that further improved the model accuracy. Again, the RMSE served as 

accuracy metric.

4. VHGPR model: Using the reduced training data set, we trained a VHGPR 

algorithm which deals with heteroscedastic noise using a marginalized 

variational approximation. This improves its ability to provide realistic 

uncertainty estimates (Lázaro-Gredilla et al., 2014). For details on the kernel 

settings refer to Verrelst et al. (2021). In order to prevent the model from 

overfitting and allow for a better transfer on non-simulated data (Verrelst et 

al., 2012a; Brede et al., 2020), we added 15% Gaussian noise on the simulated 

data. The correlation coefficient (R2) and RMSE of the synthetic VHGPR model 

was accessed via a nested cross validation. The model was then applied on the 

measured spectral data and LAI and psoil values were extracted at locations of 

SMC measurements.

5. LAI threshold and final SMC retrieval: The retrieved psoil parameter can be 

transferred to SMC using a linear regression (Richter et al., 2012). However, 

an inversion of PROSAIL towards the psoil parameter is only meaningful when 

the soil reflectance significantly contributes to the canopy reflectance (Richter et 

al., 2012). By using the retrieved LAI, we iteratively reduced the samples via a 

maximum LAI threshold and applied a linear regression between the psoil and 

measured SMC using the remaining samples. The correlation coefficient (R2) 

and root mean square error (RMSE) of the different regressions were noted. 

Since some of the regressions only included seven samples, we derived the 

regression accuracy using all samples. We selected the optimal threshold and the 

corresponding intercept and slope parameters based on the best R2 and RMSE 

combination.

Steps 1–4 were implemented within the Automated Radiative Transfer Models Operator 

(ARTMO) (Verrelst and Romijn, 2012b). The software provides a collection of tools for leaf 

and canopy RTM applications including forward simulation and hybrid inversion (Verrelst et 

al., 2019).
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2.2.2 Data-driven approach—For the data-driven approach, we applied the selected 

bands by KRR-BAT and used the VHGPR algorithm for training. We extracted the 

respective bands at the location of each SMC measurement. As displayed in Fig. 2, the 

measured spectra were used as a predictor data set for the retrieval of SMC. To achieve 

this, we trained a VHGPR for each site independently. The accuracy (R2 and RMSE) of the 

VHGPR was accessed via a tenfold cross-validation. For the interpretation of the impacting 

factors, we also extracted the LAI obtained by the hybrid approach at the location of the 

SMC samples.

3 Results

We present the results of the hybrid method in Section 3.1 and the corresponding results 

of the data-driven approach in Section 3.2. The results of all models are discussed with 

dependency on LAI. Section 3.3 describes the spatial effects of the applied models.

3.1 Performance of the hybrid approach

Fig. 3 displays the results of the retrieved psoil parameters in relation to measured SMC 

for the different sites and dates of image acquisition. The correlation coefficients between 

psoil and SMC are expected to be negative, corresponding to higher soil reflectances (i.e. 

high psoil) with drier soils (i.e. low SMC). The iterative application of LAI thresholds (see 
Appendix Fig. 6) identified a maximum LAI of 2.5 for Fendt and 0.75 for both, Marquardt 

and Grosses Bruch. For Fendt, the SMC and psoil were significantly negatively correlated 

with R2 = 0.47 (Fig. 3a). In Fendt, the correlation coefficient was driven by the first 

image acquisition (R2 = 0.55). For the second data acquisition (FE 2019–06-27) no clear 

correlation between psoil and the SMC was found (R2 = 0.00). It is striking that SMC 

samples with low LAI values from Fendt 2019–06-27 were underestimated, leading to the 

high RMSE of 16.36Vol_%.

The correlation between psoil and SMC in Marquardt was significant but only moderate 

together with small RMSE (value range: 5.9Vol_%). When extrapolating the regression line 

for Marquardt towards psoils of 0 it becomes apparent that the relation found will not allow 

a retrieval of SMC higher than approximately 10Vol_%.

At Grosses Bruch the weak negative correlation was not consistent with decreasing LAI 

thresholds.

3.2 Performance of the data-driven approach

Compared to the results presented in Section 3.1, the RMSE and correlation coefficients 

between the predicted and measured SMC reveal superior model fits for the Fendt and 

Marquardt data overall (Fig. 4). For Grosses Bruch the training of an accurate model again 

failed.

A closer inspection of the scatter formation of prediction results for Fendt (Fig. 4a) revealed 

that the LAI as plant trait plays a major role in the SMC retrieval. The predicted SMC 

formed three distinct clusters along the 1:1 line, with significantly different LAI values. 

Thereby, lowest LAI values were associated with highest SMC, intermediate LAI with driest 
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SMC and intermediate SMC with highest LAI values. Within these clusters the performance 

of the algorithm was weak.

The impact of LAI was also evident for the Marquardt site. Here the predicted SMC and 

LAI values were significantly correlated. The R2= 0.72 showed a superior fit of predicted 

SMC and LAI than predicted and measured SMC (R2= 0.4).

In Marquardt we also observed the impact of irrigation on the model fit. The model 

performed best for SMC lower than 10Vol_%. This includes only data of areas where no 

irrigation took place at least one week before the overflight. The model performed worst for 

samples of MAR 2020-08-06 (RMSE = 15.39Vol_%), when the area was irrigated on the 

same day of data acquisition. When the data was acquired at least one day after irrigation 

(MAR 2020-08-07, MAR 2020-08-12, MAR 2020-08-17) the model accuracy improved to 

RMSE less than 8 Vol_% (see Fig. 4).

3.3 Spatial application of the models

Lastly, the final SMC-VHGPR models were applied to the images over the three areas (see 

Fig. 5). By means of these established maps, we can identify the factors impacting the 

models of both approaches. Considering the LAI threshold identified for the psoil-SMC 

relation (Section 3.1), only areas with LAI < 2.5 in Fendt and LAI < 0.75 in Marquardt and 

Grosses Bruch were correctly predicted with the hybrid-approach.

For Fendt 27 June 2019 was correctly predicted to be dryer than 04 June 2019 by both 

algorithms. Also the spatial patterns closely matched the interpolated SMC. But we clearly 

note the impact of overestimation of lower LAI values. This was already indicated in Fig. 3 

for the hybrid approach. Also within the applications of the data-driven approach the freshly 

mown fields in the southern and northern part of the study area were predicted to be more 

than 20Vol_% more moist than the remaining area.

For Grosses Bruch, we found no meaningful models neither for the transfer of psoil to SMC 

nor using a data-driven approach only. As these models are not robust enough to capture the 

SMC variation, the distribution pattern of LAI is again dominant.

In Marquardt, LAI values of the non-irrigated northern-most area decreased markedly due to 

ongoing drought. SMC also decreased. This trend was correctly covered by the data-driven 

and, although less pronounced, by the hybrid approach. The wettest areas were only covered 

by the data-driven approach. In MAR 2020–08-06 the location of the gradient from dry 

to moist SMC matched closely to the interpolated area. For MAR 2020–08-12 instead, the 

same strong gradient within the southern area was less pronounced within the data-driven 

prediction. The high SMC values measured (>35Vol_%) were not covered by the model. 

Only in a small patch at the lower south-western corner of the field did the estimated SMC 

reach approximately 35Vol_%.

4 Discussion

We applied a hybrid and a data-driven approach to retrieve SMC at different sites and 

dates. Overall, for Fendt and Marquardt we found encouraging results using the data-driven 
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approach (see Section 3.2) and moderate correlations by applying the hybrid approach (see 

Section 3.1). However, well-performing models for Grosses Bruch were lacking. In the 

following discussion we want to focus on the factors impacting the performance of these 

models. In Section 4.1 we elaborate on limiting factors of the hybrid approach. In Section 

4.2 we discuss the impacting factors of the data-driven approach. Section 4.3 opens the 

discussion towards future methods to tackle the occurring challenges.

4.1 Impacting factors of the hybrid approach

One of the major benefits of the hybrid approach is the generality of the learned relations. 

Nevertheless, site specific parameters such as soil reflectance and SMC measurements 

are still necessary. The main bottleneck is its applicability only for areas where the soil 

reflectance significantly contributes to the canopy reflectance. We empirically detected an 

LAI threshold of 2.5 for Fendt and 0.75 for Grosses Bruch and Marquardt. Lower LAI 

thresholds for GB and MAR are also suggested by a simulation of a single spectrum with 

varying levels of LAI and psoil (see Appendix Fig. 7). Richter et al. (2012) underlined 

the dependency of the LAI threshold on plant canopy structure. They identified crop-type-

dependent LAI thresholds. For the planophile leaf orientation of maize and potatoes, a LAI 

threshold of 2.8 was suggested, which equals the chosen threshold at Fendt. For Marquardt, 

in turn, the LAI threshold of 0.75 indicates an applicability of the hybrid approach only 

over sparsely vegetated areas. Higher thresholds of LAI apply for longer wavelengths (see 
Appendix Fig. 7), especially for SWIR (Richter et al., 2012), where the most important water 

absorption bands are located (Eon and Bachmann, 2021).

The spectral range of our sensor is limited to the VIS–NIR, thus lacking the most important 

water absorption bands in the SWIR. This may explain the weak performance of the hybrid 

approach for the Marquardt data set. There is a water absorption feature at 970 nm, which 

lies within the spectral range of the Nano-Hyperspec sensor. However, this wavelength is 

at the boundary of the wavelengths that can be detected by the sensor and is therefore 

increasingly affected by noise. Supporting this, Eon and Bachmann (2021) found lower 

accuracy for a soil reflectance model inversion (MARMIT) targeting SMC when using 

the VIS–NIR range water absorption features compared to the SWIR range. Using sensors 

covering the SWIR range could thus improve our results. However, the study by Wocher 

et al. (2018) successfully explored the water absorption depth at 970nm for crop water 

content retrieval with a physically-based method. Although the authors targeted vegetation 

water content, their findings are promising in view of sensor availability with spectral range 

limited to VIS–NIR.

Our analysis indicated a superior potential of the hybrid approach to retrieve SMC over 

non-permanent grassland as opposed to areas with permanent grassland use. The spatial 

application of the hybrid approach in Marquardt revealed the existing drying of the soil 

from 6 August 2020 to 12 August 2020. In Fendt, the spatial distribution of SMC followed 

the patterns of LAI. The psoil retrieval thus rather corresponds to retrieval of LAI, which 

dominates the reflectance within the VIS–NIR range (Berger et al., 2018). In contrast to 

the Fendt and Grosses Bruch sites, Marquardt is not permanently used as grassland. Hence, 

neither a thatch nor a litter layer has been developed and, consequently, the bare soil was 
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visible at areas with low LAI. Within Fendt, areas of low LAI were still covered by the 

thatch layer and litter. This limits the applicability of LAI as a threshold to define the 

regression. Additionally, it impedes the hybrid approach for permanent grassland areas when 

using the psoil parameter as target variable.

The moderate but meaningful results for Marquardt, where the sparse plant distribution 

exposes the soil, have shown the potential of the hybrid approach especially for agricultural 

crops. Higher correlations were found by Richter et al. (2012). They stress the strong impact 

of the canopy structure, especially leaf angle distribution, on the correct retrieval of psoil. 

For mixed grassland the complex canopy structure has been shown to hamper biochemical 

plant trait retrieval (Berger et al., 2018; Darvishzadeh et al., 2008). This could also explain 

the general lack of agreement among our models. For crops with a distinct row structure, 

such as maize, a higher share of bare soil contributes to the measured signal, bearing a high 

potential for this retrieval approach. Nevertheless, the site specific soil reflectance shows the 

need for further analysis to apply the approach on sites with heterogeneous soil types.

4.2 Impacting factors of the data-driven approach

Despite the overall high accuracy of the data-driven models for Fendt and Marquardt, we 

again notice a strong dependency on canopy structure, especially LAI. In comparison to 

the hybrid approach, which requires open canopy structure for the bare soil signal, the 

data-driven approach depends on the relationship between canopy characteristics and SMC. 

This relationship is impacted by mowing, grazing, and the timelag of vegetation response to 

irrigation.

For mowing, the LAI decreases sharply, independent of changes in the SMC. During data 

acquisition in Fendt on 04 June 2019, the mown areas corresponded to moist sites, leading 

to an inverse relationship between SMC and LAI distribution (Fig. 4). The reduction of LAI 

can reduce the water demand of the plants, leading to higher SMC in mown areas (Gross et 

al., 2008). However, the relationship of SMC and LAI is not transferable to other dates, as 

shown by the moist-prediction of mown areas in Fendt 2019–06-27. Nevertheless, Nakano et 

al. (2008) found a dependency of grassland regrowth on SMC. To enable a transfer in time 

of this relationship, our results reveal the need for an extension of the dataset to cover all 

possible combinations of mowing-regrowth states at multiple SMC conditions..

Mowing also alters other SMC relevant plant traits. The third cluster of Fendt 2019–06-27 

does not follow the negative correlation between SMC and LAI within Fendt 2019–06-04. 

This leads to the assumption that the model finds different SMC relevant plant traits such 

as photosynthetic rate or chlorophyll content (Nakano et al., 2008; Sarker et al., 1999). 

However, mowing also has an impact on these plant traits: It increases the amount of 

scenescent material (Benot et al., 2014; Opdekamp et al., 2012; Li et al., 2019), the 

photosynthetic rate and chlorophyll content (Li et al., 2019) and decreases plant growth 

(Benot et al., 2014; Opdekamp et al., 2012; Li et al., 2019). The altering effect of mowing 

on plant traits explains the low model accuracy within the three clusters of the data-driven 

model at Fendt.
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For grazing, Dusseux et al. (2014) describe lower but more frequent changes in temporal 

LAI dynamics compared to mowing. Spatially, we observed a high heterogeneity of LAI 

at small spatial scale due to selective grazing. Similar to mowing, studies prove that 

grazing strongly alters biomass, plant traits (James M. et al., 2001) and dominant factors 

controlling plant responses such as light and nutrient availability (Burke et al., 1998). 

Further complicating a SMC retrieval, the range of the SMC values within the site is 

minimal with a standard deviation of 2.73Vol_ %. Therefore, the difficulty in mapping SMC 

in Grosses Bruch using a data-driven approach results from an interplay of uncertainties 

within ground reference data and spectral data and is magnified by the high impact of 

grazing on plant traits.

At irrigated sites, LAI has a strong positive relationship with SMC but the timelag between 

LAI increase and SMC change impacts the model accuracy. The limiting factor of SMC on 

biomass has been reported in many analysis (Deng et al., 2016; Sherry, 2008; Chu et al., 

2019; Nakano et al., 2008). In our case the Marquardt model performs accurately in the 

northern parts of the area, which were not irrigated, indicating a fast response of LAI to 

ongoing drought. However, peaks in the SMC distribution are underestimated.

Several studies found significant species (Peng et al., 2014; Zhao et al., 2021), site (Yue 

et al., 2022; Liu et al., 2016; Zhao et al., 2021) and season (Yue et al., 2022) dependent 

timelags between changes in SMC and plant traits that are detectable in the VIS–NIR range. 

These timelags range from 0 to 48 days (Sur et al., 2020; Chu et al., 2019; Liu et al., 2016; 

Zhao et al., 2021; Peng et al., 2014). Moreover, the response of plants is a reaction to an 

accumulative effect of climate and SMC conditions (Liu et al., 2020b). Such short-term 

applications of excessive water as performed in the irrigation experiment in Marquardt are 

thus not reflected by the plants response and more time is necessary between SMC sampling 

and image acquisition. This also explains the improved model fit for MAR 2020–08-17 

when the system stabilized one week after the irrigation. By then, the SMC distribution 

reached intermediate values and the LAI distribution adapted to the present SMC at the site.

Apart from mowing, grazing and irrigation, the water limitation of the study site within the 

gradient of temperature or precipitation driven plant growth also impactss the accuracy of 

a model. We found only weak model performance of predicted SMC within the clusters at 

the Fendt site. Fendt is a moist site. Within the week before both data acquisitions in Fendt, 

rainfalls occurred. Plant traits indicating changes in water availability are expected to be 

less pronounced within the site. Burke et al. (1998) noted a lower response of temperate 

grasslands to SMC with decreasing importance of water supply to the plants. This is further 

supported by higher correlations of plant greenness (Tian et al., 2019) or gross primary 

production (He et al., 2017) with SMC in water-limited regions. Similar to Lendzioch et al. 

(2021), we found better model performance when retrieving SMC during the dry season. In 

Marquardt, the ongoing drought causes a strong response of plants to changes in SMC. Here, 

the model performance is high within the non-irrigated sites.

4.3 Outlook

UAS-based SMC retrieval is considered a potential tool for the validation of large-scale 

SMC products. Some studies even state UAS data as alternative to field sampling, although 
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merely for classification tasks (Kattenborn et al., 2019b). However, major challenges exist. 

Besides the difficulty of creating dense time series due to cloud coverage and the high 

practical and administrative challenges, the accuracy of the products differs with site and 

hydrological condition. We found additional challenges when targeting differently managed 

grassland sites.

In this analysis we applied a data-driven and a hybrid SMC retrieval at different sites using 

hyperspectral data in the VIS–NIR range. Despite the overall good results, we found a 

strong dependency of the VHGPR models on LAI. In order to disentangle the relationship 

between SMC and LAI for capturing short-term SMC changes, additional predictor data 

sets can improve the data-driven models. The reaction of plants is mainly driven by the 

water available at the root zone. Several studies have shown higher correlations of bands 

of the VIS–NIR range with SMC at deeper soil layers (Babaeian et al., 2018; Babaeian et 

al., 2021). Additionally, soil texture is the major control of plant available water content. 

Information on field capacity (Hassan-Esfahani et al., 2017), wilting point (Liu et al., 2012) 

or other soil physical and hydrological parameters (Babaeian et al., 2021) are part of the 

predictor data set in other successful retrieval studies. However, both of these data sources 

require high effort and invasive sampling, when using standard point data.

Predictors that are easier to assemble are TIR, LiDAR and meteorological data. Cheng et al. 

(2022) found strong improvements when adding TIR data to the models. TIR data is suitable 

to represent the fast changing thermodynamic characteristics of the soil and the plant canopy 

associated to different SMC (Wang et al., 2018; Paruta et al., 2021). LiDAR data provide 

information about small-scale surface topography as well as plant canopy structure. Both 

predictors are relevant parameters of SMC transport and distribution (Rosenbaum et al., 

2012; Korres et al., 2010; Luo et al., 2019). Multiple studies also demonstrated improved 

modeling using metereological information (Araya et al., 2020; Hassan-Esfahani et al., 

2015; Li et al., 2022).

Despite the potential to improve the data-driven approaches and despite its good 

performance at Fendt and Marquardt, a major concern remains: the generality of established 

models. Our results in Fendt point to the missing generality of SMC estimation for mown 

areas outside of the SoilNet area. Especially for agricultural sites with changing crops this 

implies the need for the creation of a training data set for each site and each crop during 

the whole vegetation period. Hassan-Esfahani et al. (2017) showed high accuracy for such 

an approach for one test site. Alternatively, a joint effort on fusing the gathered SMC and 

UAS data collected by different research groups to one super-data-set might lead to a more 

robust data-driven model that is applicable on different sites and times. Such an approach 

can lead to a significant decrease of sampling effort and thus enable an applicability for the 

real world.

Another way to reduce the sampling effort but maintaining generality is the hybrid approach. 

In this analysis we only assessed the psoil factor describing brightness, thus surface SMC 

within the RTM PROSAIL. Our analysis reveals the dependency of the hybrid approach 

on site-specific LAI thresholds. Additionally, the retrieved psoil factor is not per se SMC. 

When targeting SMC, empirical soil specific conversion functions are necessary. This again 
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hampers the stated generality of the hybrid approach. However, the latter can be improved 

by enhanced soil reflectance models such as MARMIT (Bablet et al., 2018) or the BSM 

(Verhoef et al., 2017) model implemented within SCOPE. These models allow a direct 

retrieval of SMC.

So far, only areas below a certain maximum LAI can be mapped using leaf-canopy RTMs 

such as PROSAIL. The highly site specific LAI thresholds question the generality of the 

hybrid approach. At Fendt, we found a strong correlation between the retrieved psoil and 

LAI, which indicates the dominance of plant traits on measured reflectance in vegetated 

areas. Instead of using the less dominant soil reflectance, a coupling of existing RTMs with 

plant hydrological models makes the hybrid approach applicable also for densely vegetated 

areas by using the physically-described interaction of the dominant plant traits with root 

zone SMC. SMC relevant plant traits such as plant water or chlorophyll content have been 

successfully derived using RTM inversion and VIS–NIR and SWIR hyperspectral data for a 

variety of crops (Lei et al., 2022; Xie et al., 2019; Zhao and Qin, 2019; Zhang et al., 2018). 

Within SCOPE (Yang et al., 2021), a first coupling of RTM and SVAT (soil–vegetation–

atmosphere) models has been implemented. However, the link between RTM-relevant plant 

traits and the SMC at the root zone is still missing.

5 Conclusion

In this study we tested a data-driven (VHGPR) and a hybrid (PROSAIL & VHGPR) 

approach for SMC retrieval at three different sites and dates. The selected grassland sites 

differed in hydrologic conditions and management. By examining these data sets, we 

aimed to identify factors that impede or favor successful SMC retrieval using these two 

conceptually distinct modeling approaches.

All data-driven models are dependent on LAI, with a negative correlation between SMC 

and LAI in Fendt and a positive correlation in Marquardt. Thereby, the found relationships 

are not generalizable due to several reasons: In Fendt and Grosses Bruch, mowing and 

grazing alters the plant traits relevant to SMC and drives LAI distribution. In Marquardt, the 

long timelag of plant response to irrigation is hampers an accurate retrieval within a short 

time scale. We found good model performance at non-irrigated areas and for periods when 

SMC stabilized. SMC retrieval using data-driven approaches shows best performance during 

water-limited periods without impeding factors such as excessive irrigation.

In contrast to the data-driven approach, the hybrid SMC retrieval was only applicable to 

areas with LAI < 2.5 (Fendt) and < 0.75 (Marquardt, Grosses Bruch). We identified the 

thatch layer as major impeding factor of the hybrid approach in permanent grassland. For 

non-permanent grassland the approach shows potential for further enhancement. For both 

the data-driven and hybrid approach, using the SWIR range and its water absorption features 

can lead to improved results.

Our findings add to the rapidly growing field of SMC remote sensing with UAS systems 

an understanding of the relevant factors that favor and limit successful SMC retrieval. We 

identify the time lag between changes in SMC and crop response, as well as the difficulty 
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of robust model generation at moist and intensively managed sites, as challenges to be 

addressed in future model development. In this regard we point to the need for a joint effort 

in UAS and SMC data collection covering a multitude of land-cover types, management 

practices and hydrological conditions. Such over-arching data sets have the potential to 

unravel the complex interactions between SMC and plant characteristics and thus ensure 

data-driven models that are transferable in time and space.

We also made one first step towards a physically-based SMC retrieval. Future enhancements 

of the RTM can open new possibilities in retrieving SMC over densely vegetated areas 

and additionally improve the understanding of plant-soil-atmosphere interactions. The 

combination of data-driven, hybrid and semi-physical approaches within an ensemble 

learning can finally join their specific advantages and improve general model accuracy. 

This analysis calls out for the challenging development of spatially and temporally robust 

SMC retrieval models in order to provide essential information for global and local SMC 

monitoring, irrigation management, and environmental protection.
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Fig. 1. 
False color images (957nm, 620nm, 421nm) and SMC timeseries at 5 or 10cm depth for 

Fendt (a,b,c), Grosses Bruch (e,f) and Marquardt(g,h,i,j,k). SMC timeseries are provided by 

Fersch et al. (2020), Till Francke and Maik Heistermann (UP) and Corrina Rebmann (UFZ).
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Fig. 2. Workflow of hybrid and data-driven SMC retrieval strategies.

Döpper et al. Page 25

Int J Appl Earth Obs Geoinf. Author manuscript; available in PMC 2023 June 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 3. 
Psoil - SMC relationship for a) Fendt,b) Grosses Bruch and c) Marquardt.
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Fig. 4. 
Predicted and observed SMC for a) Fendt (FE), b) Grosses Bruch (GB) and c) Marquardt 

(MAR).
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Fig. 5. 
Spatial application of LAI, psoil, SMC hybrid, SMC data-driven and an interpolated SMC 

for Fendt (a-j), Grosses Bruch (k-o) and Marquardt (p-z). An inverse distance-based 

weighted interpolation with an RMSE - optimized power was applied within gstat of 

Pebesma (2004).
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Fig. 6. 
RMSE and correlation coefficient R of linear regressions for Psoil and smc applying 

different LAI thresholds for (a) FE, (b) FE 2019–06-04 (c) FE 2019–06-27, (d) GB, (e) 

MAR 2020–08-06, (f) MAR 2020–08-07, (g) MAR 2020–08-12, (h) MAR 2020–08-17.
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Fig. 7. 
Interactions between LAI and Psoil in Prosail and related thresholds for soil spectra based 

on (a) Fendt (FE), (b) Grosses Bruch (GB), (c) Marquardt (MAR).
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Fig. 8. 
Correlation coefficients for the selected Bands with a) the interpolated LAI and b) the 

interpolated SMC at Fendt and Marquardt.
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Table 1
Parameter ranges of the corresponding models, their unit and data or literature source.

Par Parameter Min Max Source

LAI Total Leaf Area Index [m2 mminus2] 0 7 Own measurement

angle Leaf angle distribution [deg] 20 75 Darvishzadeh 2008

skyl Diffuse/Direct light 23 23 Berger et al. 2018

hspot Hot spot 0 1 0.5/LAI (max = 1)

vCover Vegetation Cover 0 1 site experience

psoil Soil Coefficient 0 1

tts Solar Zenith Angle [deg] 25 50 Aphalo (2015)

tto View zenith Angle [deg] 0 0 Nadir view angle

psi Relative Azimuth Angle [deg] 0.29 57.38 Aphalo (2015)

N Leaf Structural Parameter 1.55 1.55 Darvishzadeh et al. 2008

Cab Chlorophyll AB content (ug.cm-2) 0 60 Own measurement, conversion after Si et al. (2012)

Car Carotenoids (ug. cmminus2) 0 15 Cab/4

Cbrown Brown pigments (g. cmminus2) 0.1125 0.1125 Katterborn et al. 2018

Cs Scenescent material 0 0.8

Anth Anthocyanin content (ug.cmminus2) 0 5 Hallik et al. 2017

Cw Equivalent water thickness (g. cmminus2) 0.0 0.08 Schucknecht et al. 2020

Cm Dry matter content (g.cmminus2) 0.0029 0.0173 Cw/e with e in [3.2,4]; Kattenborn et al. (2019a)
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