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Abstract 

Background: The APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) 
family-mediated mutagenesis is widespread in human cancers. However, our knowledge of the biological 
feature and clinical relevance of APOBECs and APOBEC mutagenesis in cancers remains limited. 
Methods: In this study, with a series of bioinformatic and statistical approaches, we performed a 
comprehensive analysis of multiple levels of data, including whole-exome sequencing (WES) and targeted 
next-generation sequencing (NGS), transcriptome (bulk RNA-seq and single-cell RNA-seq), immune signatures 
and immune checkpoint blockade (ICB) potential, patient survival and drug sensitivity, to reveal the distribution 
characteristics and clinical significance of APOBECs and APOBEC mutagenesis in pan-cancer especially bladder 
cancer (BLCA). 
Results: APOBEC mutagenesis dominates in the mutational patterns of BLCA. A higher enrichment score of 
APOBEC mutagenesis correlates with favorable prognosis, immune activation and potential ICB response in 
BLCA patients. APOBEC3A and 3B play a significant role in the malignant progression and cell differentiation 
within the tumor microenvironment. Furthermore, using machine learning approaches, a prognostic APOBEC 
mutagenesis-related model was established and validated in different BLCA cohorts. 
Conclusions: Our study illustrates the characterization of APOBECs and APOBEC mutagenesis in multiple 
cancer types and highlights its potential value as a promising biomarker for prognosis and immunotherapy in 
BLCA. 
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Introduction 
Tumorigenesis is caused by somatic mutations, 

which are mainly attributable to intrinsic and extrinsic 
factors, including DNA replication dysfunction, 
mutagenic exposures, enzymatic modification of 
DNA, and defective DNA repair, etc. [1]. A more 
comprehensive knowledge of somatic mutations and 
mutational processes will deepen our understanding 
of tumor evolution, immune escape, and treatment 
resistance. In recent years, deep sequencing 
techniques have been developed to identify somatic 
mutations in cancer samples, and different algorithms 
have offered the probability of deciphering 
mutational signatures [2, 3]. Notably, among various 
mutational signatures, the APOBEC (apolipoprotein B 
mRNA editing enzyme, catalytic polypeptide-like) 
family contributes a major source of the DNA 
modification in cancer genome, showing a specific 
mutational pattern: APOBEC mutagenesis. 

The APOBEC family in humans consists of 11 
members, namely APOBEC1, AID, APOBEC2, 
APOBEC3A-H (without 3E), and APOBEC4. Except 
APOBEC2 and C4, the other members possess an 
intrinsic ability to convert cytosine to uracil (C to U) in 
both single-stranded DNA (ssDNA) and cellular 
mRNA [4]. APOBEC family members play an 
important role in the innate antiviral immunity, such 
as restriction of HIV-1, HBV and HPV [5-7]. However, 
just as each coin has two sides, these enzymes can also 
deaminate cytosines in the host genome and generate 
C to T transition and C to G transversion in the TCW 
motif (W = A or T), namely APOBEC mutagenesis [8]. 

In recent years, an increasing number of 
researches have been focusing on the roles of 
APOBEC family members and APOBEC mutagenesis 
in cancers. The APOBEC mutagenesis pattern is 
widespread in human cancers and correlates with 
cancer evolution and malignant progression [9-12]. 
Among APOBEC family, APOBEC3B is the most 
widely investigated member in various cancers. For 
example, upregulation of APOBEC3B was reported to 
predict worse survival in ovarian cancer [13] and 
associate with aggressive phenotypes in breast cancer 
[14], but predict better outcomes of immune 
checkpoint blockade (ICB) in non-small cell lung 
cancer (NSCLC) [15]. In short, our knowledge of the 
APOBEC family and APOBEC mutagenesis in cancers 
is increasing, but still limited. 

In this study, we surveyed the expression 
profiles of APOBEC family and distribution features 
of APOBEC mutagenesis in 9,765 tumor samples 
across 28 TCGA solid cancers. Then, we focused on 
bladder cancer for further investigation due to the 
major contribution of APOBECs to the total mutations 
and mutational patterns in bladder cancer. To further 

reveal the relationships and clinical significance of 
APOBECs and APOBEC mutagenesis, we performed 
a comprehensive analysis of multiple levels of data, 
including whole-exome sequencing (WES) and 
targeted NGS (MSK-IMPACT), transcriptome (bulk 
RNA-seq and single-cell RNA-seq), immune 
signatures and ICB potential, patient survival and 
drug sensitivity, using a series of bioinformatic and 
statistical approaches. Overall, our study provided a 
better understanding of the biological feature and 
clinical significance of APOBECs and APOBEC 
mutagenesis in cancers, and implications to ICB 
therapy for advanced bladder cancer. 

Materials and Methods 
Genomic data and clinical information 

Transcriptome profiling data and clinical 
annotations of 28 solid tumors (ACC, BLCA, BRCA, 
CESC, CHOL, COAD, ESCA, GBM, HNSC, KICH, 
KIRC, KIRP, LGG, LIHC, LUAD, LUSC, MESO, OV, 
PAAD, PRAD, READ, SARC, SKCM, STAD, TGCT, 
THCA, THYM, and UCEC) were obtained from The 
Cancer Genome Atlas (TCGA, https://portal.gdc. 
cancer.gov/) using R package “TCGAbiolinks”, and 
transcriptome profiling data of donated normal 
tissues were obtained from the Genotype-Tissue 
Expression (GTEx) project. FPKM was transformed to 
TPM for impartial comparison. Three BLCA 
microarray datasets named GSE13507 [16], GSE32894 
[17] and GSE48075 [18] with cancer-specific survival 
(CSS) information were included for validation, and 
all raw CEL files were downloaded from Gene 
Expression Omnibus (GEO, https://www.ncbi.nlm. 
nih.gov/geo/). Probe IDs were mapped to gene 
symbols according to the annotation file, and the 
maximal measurement was selected as the gene 
expression value if one gene has multiple probes. In 
addition, one RNA-seq dataset named E-MTAB-4321 
[19] which contains transcriptome profiling data and 
progression-free survival information of 460 
non-muscle invasive bladder cancer (NMIBC) was 
included for independent validation. All the 
microarray and RNA-seq data included in this study 
were normalized and log2 transformed as previously 
reported [20-22]. 

Three somatic mutation profiles of BLCA 
samples based on the whole-exome sequencing (WES) 
platform were obtained from TCGA [23], BGI- 
Shenzhen [24], and DFCI/MSKCC [25], respectively. 
A genomic profile of targeted NGS assay (MSK- 
IMPACT, 341/410 panels) and clinical details of 140 
ICB-treated advanced BLCA samples were obtained 
from Samstein’s study [26]. 
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Using R package “IMvigor210CoreBiologies”, 
the transcriptome data and clinical activity of PD-L1 
blockade with atezolizumab of 298 metastatic BLCA 
patients (IMvigor210, a phase 2 trial) were obtained 
from Mariathasan’s study [27]. In addition, 
transcriptome data and therapeutic response of 47 
melanoma patients who received immunotherapies, 
including PD-1 and CTLA-4 blockade were obtained 
from Roh’s study [28]. 

Deciphering driver genes and mutational 
signatures in BLCA 

Somatic mutation profile of TCGA-BLCA, which 
was identified using MuTect2, was sorted in the 
mutation annotation format (MAF) file. Among all 
mutation variants, Frame_Shift_Del, Frame_Shift_Ins, 
In_Frame_Del, In_Frame_Ins, Missense, Nonsense, 
Nonstop, Splice_Site, and Translation_Start_Site were 
considered non-synonymous, and the other mutations 
were considered synonymous. Oncoplot was 
visualized based on the MAF file using R package 
“maftools” [29]. The OncodriveCLUST algorithm [30] 
was used to explore driver genes with a significant 
bias toward mutation clustering within the protein 
sequence, and we defined that the significance of 
identified driver genes should meet false discovery 
rete (FDR) q < 0.05. 

R package “Sigminer” proposed by Wang [31] 
was used to extract mutational signatures from the 
WES data. Bayesian variant of nonnegative matrix 
factorization (NMF) algorithm was used to decipher 
mutational signatures in cancer somatic mutations 
stratified by 96 base substitutions in trinucleotide 
sequence contexts, and the optimal factorization of k 
value is selected when the magnitude of the 
cophenetic correlation coefficient begins to drop 
significantly. The gradient boosting machine learning 
technique yields an individual score for each 
mutational signature, combining likelihood with 
cosine similarity and exposure of signatures using the 
NNLS algorithm. Mutational signatures were 
annotated by computing cosine similarity against 
validated single base substitution (SBS) mutational 
catalogues retrieved from the COSMIC database 
(v3.2) [32]. 

Calculation of the APOBEC mutagenesis 
enrichment score (AMES) 

APOBECs deaminate cytidines predominantly in 
a TCW motif (W = A or T). The APOBEC mutagenesis 
signature is composed of two mutation patterns in 
this motif: TCW to TTW and TCW to TGW. The 
quantitative score of APOBEC mutagenesis 
enrichment (AMES) which reflects the strength of 
such mutagenesis in the TCW motif was defined by 

Roberts et al. [9]: 

𝐴𝑀𝐸𝑆 =  
𝑛(𝑇𝐶𝑊 𝑡𝑜 𝑇𝐺𝑊 +  𝑇𝐶𝑊 𝑡𝑜 𝑇𝑇𝑊) ∗ 𝑛𝐶

𝑛(𝐶 𝑡𝑜 𝐺 + 𝐶 𝑡𝑜 𝑇) ∗ 𝑛𝑇𝐶𝑊
 

where n(TCW to TGW + TCW to TTW) is the 
number of mutated C (and G) falling in a TCW (or 
WGA) motif, n(C to G + C to T) is the total number of 
mutated C (or G), nC and nTCW represent the 
numbers of background cytosines and TCWs that 
occur within 20bp of mutated bases, respectively. In 
this study, tumor samples were categorized into three 
levels with two cut-off values of 1 and 2: 

𝐴𝑀𝐸𝑆 � 
≤ 1: 𝑙𝑜𝑤

(1, 2]: 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒
> 2: ℎ𝑖𝑔ℎ

 

Evaluating variable importance using the 
random forest (RF) algorithm 

The random forest (RF) algorithm was applied to 
evaluate the contributions of all 11 APOBEC family 
members to TCW motif mutation and AMES in 
pan-cancer samples, as well as the importance of 
different cancer hallmarks in malignant epithelial cell 
subclusters. A total of 1,000 decision trees were 
created in the RF algorithm to ensure the model 
stability. 

Single-cell RNA-seq (scRNA-seq) analysis 
Two scRNA-seq datasets (GSE130001 [33] and 

GSE145281 [34]) were included in this study to reveal 
the expression characteristics of APOBECs in BLCA 
and its tumor microenvironment (TME). GSE130001 
includes scRNA-seq data of sorted non-immune cells 
(CD45-negative) from two BLCA specimens, and 
GSE145281 includes scRNA-seq data of baseline 
pretreatment peripheral blood mononuclear cell 
(PBMC) samples from five BLCA patients who are 
responders to atezolizumab (anti-PD-L1 mAb). The 
scRNA-seq expression matrix was processed with R 
package “Seurat”. At first, the “NormalizeData” 
function was used to normalize the gene expression 
data, and “FindVariableFeatures” was used to 
identify 2,000 highly variable genes (HVGs). After 
performing “RunPCA” for dimension reduction and 
“RunHarmony” for batch effect correction, 
“FindNeighbors” was used to determine the k-nearest 
neighbors of each cell, and “FindClusters” was used 
to determine optimal clusters. UMAP reduction was 
used for cluster visualization, and “SingleR” package 
was used for cluster annotation. In addition, 
“FeaturePlot” and “VlnPlot” were used to visualize 
gene expression. 

Using the Monocle2 algorithm with default 
parameters, the pseudotime trajectory analysis was 
performed to arrange cells into a developmental 
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trajectory which was segmented with different 
branches to imitate cell evolution or differentiation. 

To identify malignant epithelial cells, R package 
“infercnv” was used to infer CNVs with scRNA-seq 
data, and the following parameters were used: default 
denoise and Hidden Markov Model (HMM) settings, 
and a “cutoff” of 0.1 for 10× genomics. Stromal cells 
including endothelial cells, fibroblasts, and 
myofibroblasts were considered as putative 
non-malignant cells, and their CNV pattern was used 
as a reference. CNVs of sex and mitochondrial 
chromosomes were excluded from consideration. 

Gene set enrichment analysis (GSEA) and 
single-sample GSEA (ssGSEA) 

Based on the transcriptome profiling data and 
gene sets retrieved from Molecular Signatures 
Database (MSigDB) [35], GSEA [36] was performed to 
analyze the potential signaling pathways between 
two groups. Furthermore, the fast GSEA algorithm 
was implemented to generate an integrative 
enrichment plot which exhibits the 10 most significant 
biological processes of Gene Ontology (GOBP) using 
R package “fgsea” [37]. 

A T cell-inflamed GEP composed of 18 
inflammatory genes were used to evaluate the 
potential response of ICB treatment in different 
groups [38, 39]. Furthermore, the T cell-inflamed score 
was calculated with the transcriptome profiling data 
using the ssGSEA algorithm (R package “GSVA”) 
[40]. 

Analyses of immunogenomic features 
Tumor mutation burden (TMB) was calculated 

with non-synonymous somatic mutations using 38 
Mb as the estimation of whole exome size. 
Neoantigens of TCGA BLCA samples were obtained 
from The Cancer Immunome Atlas (TCIA) [41], and 
the tumor neoantigen burden (TNB) was determined 
as the amount of all putative neoantigens. The 
intra-tumor heterogeneity (ITH) score was inferred 
using the “inferHeterogeneity” function in the R 
package “maftools”. The expression profiles of four 
representative immune checkpoints (PD-1, PD-L1, 
CTLA-4, and TIGIT) were compared in different 
AMES groups. Cytolytic activity (CYT) score was 
defined as the geometric mean of PRF1 and GZMA 
[42]. 

Analysis of the DNA damage response (DDR) 
status 

Samples with any non-silent mutation in any 
DDR pathway, including base excision repair (BER), 
nucleotide excision repair (NER), mismatch repair 
(MMR), homologous recombination repair (HRR), 

non-homologous DNA end joining (NHEJ), Fanconi 
anemia (FA), and translesion synthesis (TLS) were 
considered DDR-mutated (DDR-Mut), while the 
others were considered DDR-wild type (DDR-WT). 
Furthermore, if any gene involved in a specific DDR 
pathway is non-silently mutated, this DDR pathway 
will be regarded as a mutated one. 

Estimation of immune cell infiltration 
With transcriptome profiling data, ESTIMATE 

algorithm [43] was used to estimate the immune 
infiltration, and CIBERSORT algorithm [44] was used 
to quantify the abundance of 22 immune cell types. 
Based on the expression profile of APOBEC family 
members and estimated immune infiltration 
abundance, a landscape diagram depicting the 
correlations between APOBECs and seven major- 
lineage immune cell types (including B cell, T cell, NK 
cell, mast cell, monocyte, M1 and M2 macrophages) 
was generated using R package “ggcor”. 

Identification of differentially expressed genes 
(DEGs) and functional network analysis 

DEGs were identified with a threshold of a false 
discovery rate (FDR) q < 0.01 based on reads count 
matrix and R package “DESeq2”. Functional 
enrichment analysis of DEGs was performed using R 
package “clusterProfiler”. Protein–protein interaction 
(PPI) network which depicts the interactions among 
representative DEGs was generated using R package 
“STRINGdb” and “ggraph” as previously reported 
[21]. 

Establishment and validation of a prognostic 
APOBEC mutagenesis-related risk score 
(AMrs) 

Using R package “coxph”, hazard ratio and p 
value were calculated for each DEG, and candidate 
genes with p < 0.01 were further submitted to the least 
absolute shrinkage and selection operator (LASSO) 
Cox regression analysis as previously reported [20, 
21]. LASSO regularization adds a penalty parameter 
(λ) to Cox regression model, and this action can lead 
to zero coefficients, i.e. some candidate genes will be 
completely neglected. In our analysis, 21 genes 
retained their Cox coefficients after LASSO 
regularization, and a prognostic APOBEC 
mutagenesis-related risk score (AMrs) was 
established: 

𝐴𝑀𝑟𝑠 = �𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡(𝑚𝑅𝑁𝐴𝑖) × 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑚𝑅𝑁𝐴𝑖)
𝑖

 

Further, two independent BLCA cohorts 
(GSE13507 and GSE32894) with cancer-specific 
follow-up were used to validate the prognostic value 
of AMrs. 
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Drug sensitivity estimation 
Drug sensitivity data of cancer cell lines (CCLs) 

were obtained from three drug response databases, 
namely GDSC [45], CTRP [46], and PRISM [47]. Both 
CTRP and PRISM contain the AUC value as a 
measure of drug sensitivity, and GDSC contains the 
IC50 value. Lower IC50 (or AUC) value indicates a 
higher sensitivity to compound treatment. 
Transcriptome profiling data of CCLs were obtained 
from the CCLE database [48]. The IC50 value for each 
compound from GDSC was estimated using R 
package “oncoPredict” [49]. For CTRP and PRISM, 
compounds with over 20% missing data were 
excluded before KNN imputation, and the 
“calcPhenotype” function of the R package 
“pRRophetic” was used to predict the AUC value for 
each compound following Yang’s methods [50]. 
Spearman correlation coefficient of AMrs and IC50 (or 
AUC) represents the potential response of a BLCA 
sample to a specific compound. 

Statistical analyses 
Heatmaps were generated using R package 

“pheatmap”. Differentially mutated genes and the 
co-occurrence or exclusion of somatic mutations were 
identified by Fisher’s exact test. A ternary diagram 
was plotted to show the mutation frequency among 
three AMES groups. Pearson or Spearman correlation 
analysis was performed to evaluate the correlation 
between two variables. The Kaplan-Meier method 
was used to plot survival curves, and the log-rank test 
was performed to evaluate survival differences. 
Multivariate Cox regression analysis was performed 
to evaluate the risk significance of each variable for 
prognosis. The Subclass Mapping (SubMap) method 
was applied to evaluate the expression similarity 
between independent datasets, and the significance 
was evaluated with the Bonferroni correction. 
Student’s t-test or one-way analysis of variance was 
used to analyze differences between groups with 
variables subject to normal distribution. Two-sided p 
value less than 0.05 was considered statistically 
significant. All analyses were performed in the 
GenePattern and R 4.1.0 software. 

Results 
Landscape of APOBEC family expression and 
APOBEC mutagenesis in pan-cancer 

To investigate the genomic features of the 11 
genes of APOBEC family in pan-cancer, a 
comprehensive heatmap was generated to illustrate 
their expression patterns in a total of 9,765 samples 
(including 9,398 primary tumors and 367 metastatic 
tumors) across 28 solid cancer types from TCGA 

(Figure 1A). Among all the APOBECs, APOBEC3C 
showed the highest expression in pan-cancer. We also 
observed that some APOBECs exhibit a specifically 
high expression in some certain cancer types, e.g. 
APOBEC2 in THYM. The Pearson correlation analysis 
was performed among all 11 APOBEC family 
members, and most pairs exhibited significantly 
positive correlations, especially among APOBEC3s 
(Figure 1B). We further obtained 16 cancer types 
which have at least five specimens of adjacent normal 
tissue (ANT) and assessed the expression profiles of 
11 APOBEC family members by comparing them in 
primary tumors versus ANTs. As shown in Figure 1C, 
APOBECs were widely dysregulated across the 16 
cancer types compared to their corresponding ANTs. 
Most notably, among all the APOBECs, only 
APOBEC3B exhibited dysregulation across all 16 
cancer types. Compared to ANTs, APOBEC3B was 
significantly downregulated in COAD and THCA, 
while upregulated in the other 14 cancer types. Details 
of the expression profile of APOBEC3B in the 16 
cancer types and ANTs were shown in Figure 1D. 

Next, we calculated the tumor mutation burden 
(TMB), TCW mutation (including TCW to TTW and 
TCW to TGW, where W means A or T) count and 
APOBEC mutagenesis enrichment score (AMES) for 
each tumor sample across all 28 cancer types. UCEC, 
SKCM, and COAD occupy the top three positions in 
the TMB ranking (Figure 1E), and SKCM, BLCA, and 
CESC as the top three in the TCW mutation count 
ranking (Figure 1F). After mutation background 
adjustment, AMES was calculated to quantify the 
APOBEC mutagenesis enrichment, and we observed 
that BLCA shows the highest AMES among all 28 
cancer types (Figure 1G). With two cut-off values of 1 
and 2, the total of 9,550 pan-cancer samples were 
divided into three levels: AMES-low (AMES-L, 
42.26%), -moderate (AMES-M, 37.74%), and -high 
(AMES-H, 20.00%) (Figure 1H). Random forest 
algorithm showed that in pan-cancer, APOBEC3B acts 
as the most important contributor to TCW mutation 
(Figure 1I), and both APOBEC3A and APOBEC3B 
make the greatest contributions to AMES (Figure 1J). 
AMES of pan-cancer samples were summarized in 
Supplementary Table 1. 

Distinct mutational characteristics were 
observed in different AMES groups 

Considering TMB serves as an important index 
for mutational analysis and cancer immunotherapy, 
we assessed the correlations among TMB, AMES, and 
APOBECs in pan-cancer. In the comprehensive 
heatmap (Figure 2A), the color degree indicates the 
correlation, and the point size indicates the 
significance. Among all cases, AMES exhibited the 
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highest and most significant correlation with TMB in 
BLCA (r = 0.514, p < 2.2e-16; Figure 2A). Next, we 
compared TMB, TNB, and ITH among different 
AMES levels. As shown in Figure 2B, TMB, TNB, and 
ITH score were stepwisely and significantly elevated 
as AMES increased, which suggested that AMES may 

correlate with higher immunogenicity and 
heterogeneity in BLCA. Furthermore, AMES showed 
highly positive correlations with both non- 
synonymous (r = 0.538, p < 0.001) and synonymous (r 
= 0.564, p < 0.001) mutations in BLCA samples (Figure 
2C).

 

 
Figure 1. Landscape of APOBEC family expression and APOBEC mutagenesis in pan-cancer. (A) A comprehensive heatmap illustrates the expression pattern of 
APOBECs across 28 solid cancer types from TCGA. (B) The Pearson correlation analysis was performed among all 11 APOBEC family members in pan-cancer. (C) All 11 
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APOBEC family members were compared in primary tumors versus adjacent normal tissues (ANT). (D) Among all the APOBECs, only APOBEC3B exhibited dysregulation 
across all 16 cancer types. Compared to ANTs, APOBEC3B was significantly downregulated in COAD and THCA, while upregulated in the other 14 cancer types. (E-G) 
Distribution landscape of the TMB, TCW mutation count and APOBEC mutagenesis enrichment score (AMES) in all 28 cancer types. (G) BLCA shows the highest AMES among 
all 28 cancer types. (H) With two cut-off values of 1 and 2, the total of 9,550 pan-cancer samples were divided into three levels: AMES-low (AMES-L, 42.26%), -moderate 
(AMES-M, 37.74%), and -high (AMES-H, 20.00%). (I) The random forest algorithm showed that in pan-cancer, APOBEC3B is the most important contributor to TCW mutation, 
(J) and both APOBEC3A and APOBEC3B make the greatest contributions to AMES. 

 
Figure 2. Higher AMES correlates with higher TMB, intra-tumor heterogeneity and DDR mutation frequency in BLCA. (A) The correlations among TMB, 
AMES, and APOBECs were analyzed in pan-cancer. Among all cases, AMES exhibited the highest and most significant correlation with TMB in BLCA (r = 0.514, p < 2.2e-16). (B) 
TMB, TNB, and ITH score were stepwisely and significantly elevated as AMES increased. (C) AMES showed highly positive correlations with both non-synonymous (r = 0.538, 
p < 0.001) and synonymous (r = 0.564, p < 0.001) mutations in BLCA samples. (D) FGFR3 is a mutual driver gene in both AMES-L and AMES-M groups, while no driver gene was 
detected in the AMES-H group. (E) FGFR3 mutation frequency descends as AMES level increases. (F) Significantly mutated genes were identified in the AMES-H group compared 
to the other two groups, and TTN, MACF1 and PIK3CA are the three most frequently mutated genes in AMES-H samples. ** p < 0.01; *** p < 0.001. (G) A ternary diagram was 
plotted to depict the distribution of all non-silent mutations in the three AMES groups, and the 10 most frequent non-silent mutations (TP53, TTN, KMT2D, MUC16, KDM6A, 
ARID1A, PIK3CA, SYNE1, RB1, and KMT2C) were highlighted in red dots. (H) More co-occurrence and mutually exclusive mutations could be observed as AMES level 
increased. (I) Mutation rates of seven DDR pathways (BER, NER, MMR, HRR, NHEJ, FA, and TLS) were summarized in different AMES groups, and a higher frequency of DDR 
pathway mutation was observed in the AMES-H group. (J) AMES is significantly elevated in DDR-Mut samples compared to DDR-WT. (K) An oncoplot shows the distribution 
of the 10 most frequently mutated DDR genes among different AMES groups. 
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The OncodriveCLUST algorithm indicated that 
FGFR3 acts as a mutual driver gene in both AMES-L 
and AMES-M groups, while no driver gene was 
detected in the AMES-H group (Figure 2D). The 
barplot further demonstrated that FGFR3 mutation 
frequency descends as AMES level increases (Figure 
2E). Significantly mutated genes were identified in the 
AMES-H group compared to the other two groups. As 
shown in a forest plot (Figure 2F), TTN, MACF1 and 
PIK3CA are the three most frequently mutated genes 
in AMES-H samples. A ternary diagram was plotted 
to depict the distribution of all non-silent mutations in 
the three AMES groups, and the 10 most frequent 
non-silent mutations (TP53, TTN, KMT2D, MUC16, 
KDM6A, ARID1A, PIK3CA, SYNE1, RB1, and 
KMT2C; Figure S1) were highlighted in red dots 
(Figure 2G). We observed that the top 10 mutated 
genes have a tendency towards occurrence in the 
AMES-H group (Figure 2G). In addition, more 
co-occurrence and mutually exclusive mutations 
could be observed as AMES level increased, which 
indicated that AMES correlates with higher somatic 
mutation activity in BLCA (Figure 2H). 

DNA damage response (DDR) genes are 
commonly mutated in BLCA, and alterations to DDR 
genes were associated with favorable ICB outcomes in 
BLCA patients [51]. Mutation rates of seven DDR 
pathways (BER, NER, MMR, HRR, NHEJ, FA, and 
TLS) were summarized in different AMES groups 
(Figure 2I). In BLCA, NER is the most frequently 
mutated DDR pathway, and HRR comes second. A 
higher frequency of DDR pathway mutation was 
observed in the AMES-H group (Figure 2I), and 
obviously, AMES is significantly elevated in DDR- 
Mut samples compared to DDR-WT (Figure 2J). An 
oncoplot was built to display the 10 most frequently 
mutated DDR genes among different AMES groups 
(Figure 2K). In detail, EP300, ERCC2, POLE, and 
INO80 are involved in the NER pathway, ATM and 
BRIP1 in HRR, ATR in FA, SETD2 in MMR, PRKDC in 
NHEJ, and REV3L in TLS. 

APOBEC mutagenesis dominates in the 
mutational patterns of BLCA 

To decipher mutational signatures in BLCA, we 
included three WES cohorts in our study. With the 
optimal factorization k value (k = 5; Figure S2) in the 
NMF algorithm, five mutational signatures were 
identified in the TCGA-BLCA cohort. Signature 1 was 
annotated as “activity of APOBEC family of cytidine 
deaminases (C>G)”, and signature 2 “activity of 
APOBEC family of cytidine deaminases (C>T)” 
(Figure 3A). The relative abundance of each 
mutational signature in the TCGA cohort was shown 
in a pie chart (Figure 3B), and we can easily find that 

APOBEC signatures (Sig1 + 2) retain a dominant 
position. In addition, in the TCGA-BLCA cohort, 
APOBEC signature abundance shows a highly 
positive correlation with AMES (Figure 3C), and TCW 
mutations were dramatically elevated as AMES level 
increased (Figure 3D). Interestingly, similar results 
were observed in both BGI-BLCA (Figure 3E-H) and 
DFCI/MSKCC-BLCA (Figure 3I-L) cohorts. In brief, 
APOBEC mutagenesis dominates in BLCA mutational 
patterns, and retains a highly positive correlation with 
AMES. 

APOBEC3B correlates with malignant 
evolution of epithelial cells in BLCA 

Next, we included two scRNA-seq datasets 
(GSE130001 and GSE145281) to further reveal the 
expression profiles of APOBECs in BLCA and its 
TME. GSE130001 contains scRNA-seq data of sorted 
non-immune cells from two BLCA specimens, and cell 
numbers of four cell types (epithelial, fibroblast, 
endothelial, and myofibroblast) were summarized in 
Figure 4A. UMAP dimensionality reduction was used 
to show the distribution and dissimilarity of the four 
cell types (Figure 4B). Subsequently, we assessed the 
expression profiles of all 11 APOBEC family members 
in the four cell types (Figure S3). As the two most 
important APOBECs in BLCA, APOBEC3A is hardly 
expressed in any cell type (Figure 4C), while 
APOBEC3B is specifically expressed in epithelial cells 
(Figure 4D). Violin plots visualized the normalized 
expression levels of APOBEC3A and APOBEC3B in 
the four cell types (Figure 4E-F). Malignant cells were 
distinguished from the total epithelial cells by 
inferring large-scale CNVs with stromal cells as 
references, and 88.3% epithelial cells were identified 
as malignant due to their high chromosome instability 
(Figure 4G). Using UMAP dimensionality reduction, 
malignant epithelial cells were further divided into 
three subclusters (M-C1, M-C2, M-C3; Figure 4H), and 
the expression of APOBEC3B was visualized with 
different color degrees (Figure 4I). Violin plot showed 
that APOBEC3B is hardly expressed in normal 
epithelial cells and M-C1, but highly expressed in 
M-C2 and M-C3 (Figure 4J). Next, we performed 
pseudotime trajectory analysis to describe the 
evolution of epithelial cells, and the arrows indicated 
the putative developmental directions (Figure 4K). 
The progression trajectory originated from normal 
epithelial cells and developed into two main branches 
where M-C3 cells located at the top-left corner and 
M-C1 & C2 located at the lower-left corner (Figure 
4L). To elucidate the underlying biological diversities 
in different malignant subclusters, we combined 
ssGSEA and random forest algorithms to determine 
which hallmark of cancer plays a distinctive role 
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among the three malignant subclusters. Among 
various cancer hallmarks, cell cycle progression (CCP) 
acts as the most important one (Figure 4M; “OP” is 
short for “oxidative phosphorylation”). In all 
malignant epithelial cells, APOBEC3B exhibited a 
significantly positive correlation with CCP score (r = 
0.437, p < 0.001; Figure 4N). Moreover, APOBEC3B 
was stepwisely and significantly elevated as 
specimens from normal bladder tissues to ANT, and 
to BLCA samples (p < 0.001; Figure 4O). Cumulative 
proportion curves showed that the higher-APOBEC3B 
group (red curve) was continuously distributed at the 
right side of the lower-APOBEC3B group (blue 
curve), indicating APOBEC3B contributes 
substantially to TCW mutations in BLCA (Figure 4P). 

APOBEC3A correlates with the differentiation 
fate of monocytes in BLCA 

GSE145281 contains scRNA-seq data of baseline 

pretreatment PBMC samples from BLCA patients, 
and cell numbers of six cell types (T, monocyte, NK, B, 
Platelet, and DC) were summarized in Figure 5A. 
UMAP dimensionality reduction was performed to 
show the distribution and dissimilarity of these cell 
types (Figure 5B). Subsequently, the expressions of 
APOBEC family members were detected in these cell 
types (Figure S4). Expressions of APOBEC3A and 
APOBEC3B were visualized in UMAP plots, and we 
observed that APOBEC3A is generally expressed in 
monocytes (Figure 5C), while APOBEC3B is hardly 
expressed in PBMC (Figure 5D). Violin plots showed 
the normalized expression levels of APOBEC3A and 
APOBEC3B in all identified cell types (Figure 5E-F), 
and we found that APOBEC3A is specifically 
expressed in FCGR3A+ monocytes (Figure 5E), rather 
than classical monocytes (cMonocytes). Subsequently, 
all monocytes were included to perform the 
pseudotime trajectory analysis, and the arrows 

 

 
Figure 3. APOBEC mutagenesis dominates in the mutational patterns of BLCA. To decipher mutational signatures in BLCA, three WES cohorts (TCGA-BLCA, 
BGI-BLCA, and DFCI/MSKCC-BLCA) were included in our study. (A) With the optimal factorization k value (k = 5) in the NMF algorithm, five mutational signatures were 
identified in the TCGA-BLCA cohort. Signature 1 was annotated as “activity of APOBEC family of cytidine deaminases (C>G)”, and signature 2 “activity of APOBEC family of 
cytidine deaminases (C>T)”. (B) The relative abundance of each mutational signature in the TCGA cohort was shown in a pie chart, and APOBEC signatures (Sig1 + 2) occupy 
a dominant position. (C) APOBEC signature abundance shows a highly positive correlation with AMES, (D) and TCW mutations were dramatically elevated as AMES level 
increased. Similar results were observed in both (E-H) BGI-BLCA and (I-L) DFCI/MSKCC-BLCA cohorts, which further confirmed that APOBEC mutagenesis dominates in 
BLCA mutational patterns and retains a highly positive correlation with AMES. 
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indicated the developmental directions (Figure 5G). 
Monocytes were clustered into six subclusters after 
UMAP dimensionality reduction, and two main 
branches ended with subcluster 3 (cyan) and 6 
(lightblue) (Figure 5H). As a canonical gene marker 
for identification of monocyte subsets, FCGR3A was 
compared among all six subclusters. Interestingly, 

subcluster 3 expressed intermediate FCGR3A, 
subcluster 6 expressed the highest FCGR3A, and little 
FCGR3A was detected in the remaining four 
subclusters (Figure 5I). In the dynamic expression 
profile of sd easily find that APOBEC3A became 
highly expressed at the final stage which is labelled 
with FCGR3A positive (Figure 5J). 

 

 
Figure 4. APOBEC3B is specifically expressed in malignant epithelial cells and correlates with cell cycle progression in BLCA. (A) GSE130001 contains 
scRNA-seq data of sorted non-immune cells from two BLCA specimens, and cell numbers of four cell types (epithelial, fibroblast, endothelial, and myofibroblast) were 
summarized. (B) UMAP dimensionality reduction was used to show the distribution and dissimilarity of the four cell types. (C) APOBEC3A is hardly expressed in any cell type, 
(D) while APOBEC3B is specifically expressed in epithelial cells. (E & F) Violin plots visualized the normalized expression levels of APOBEC3A and APOBEC3B in the four cell 
types. (G) Malignant cells were distinguished from the total epithelial cells by inferring large-scale CNVs with stromal cells as references, and 88.3% epithelial cells were identified 
as malignant due to their high chromosome instability. (H) Using UMAP dimensionality reduction, malignant epithelial cells were further divided into three subclusters (M-C1, 
M-C2, M-C3), (I) and the expression of APOBEC3B was visualized with different color degrees. (J) Violin plot showed that APOBEC3B is hardly expressed in normal epithelial 
cells and M-C1, but highly expressed in M-C2 and M-C3. (K) A pseudotime trajectory was plotted to describe the evolution of epithelial cells, and the arrows indicated the 
putative developmental directions. (L) The progression trajectory originated from normal epithelial cells and developed into two main branches where M-C3 cells located at the 
top-left corner and M-C1 & C2 located at the lower-left corner. (M) The ssGSEA and random forest algorithms jointly demonstrated that cell cycle progression (CCP) acts as 
the most important hallmark of cancer among the three subclusters. OP: oxidative phosphorylation. (N) In all malignant epithelial cells, APOBEC3B exhibited a significantly 
positive correlation with CCP score (r = 0.437, p < 0.001). (O) APOBEC3B was stepwisely and significantly elevated as specimens from normal bladder tissues to ANT, and to 
BLCA (p < 0.001). (P) Cumulative proportion curves showed that the higher-APOBEC3B group (red curve) was continuously distributed at the right side of the 
lower-APOBEC3B group (blue curve), indicating APOBEC3B contributes substantially to TCW mutations in BLCA. 
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Figure 5. APOBEC3A correlates with the differentiation fate of monocytes in BLCA. (A) GSE145281 contains scRNA-seq data of baseline pretreatment PBMC 
samples from BLCA patients, and cell numbers of six cell types (T, monocyte, NK, B, Platelet, and DC) were summarized. (B) UMAP dimensionality reduction was performed 
to show the distribution and dissimilarity of these cell types. (C) APOBEC3A is generally expressed in monocytes, (D) while APOBEC3B is hardly expressed in PBMC. (E & F) 
Violin plots showed the normalized expression levels of APOBEC3A and APOBEC3B in all identified cell types, and APOBEC3A is specifically expressed in FCGR3A+ monocytes. 
(G) All monocytes were included to perform the pseudotime trajectory analysis, and the arrows indicated the developmental directions. (H) Monocytes were clustered into six 
subclusters after UMAP dimensionality reduction, and two main branches ended with subcluster 3 (cyan) and 6 (lightblue). (I) As a canonical gene marker for identification of 
monocyte subsets, FCGR3A was compared among all six subclusters. Subcluster 3 expressed intermediate FCGR3A, subcluster 6 expressed the highest FCGR3A, and little 
FCGR3A was detected in the remaining four subclusters. (J) In the dynamic expression profile of APOBEC3A in monocyte pseudotime trajectory, APOBEC3A became highly 
expressed at the final stage which is labelled with FCGR3A positive. (K) A correlation heatmap illustrates the relationships among APOBECs and different immune cell infiltration 
(absolute abundance, CIBERSORT algorithm) in bulk BLCA samples. Among all cases, the pair of APOBEC3A-M1 exhibited the highest correlation (r = 0.334, p = 5.09e-12). (L) 
The cumulative proportion curves and (M) violin plot jointly demonstrated that a significantly higher abundance of M1 infiltration was observed in BLCA samples with higher 
APOBEC3A expression.  

 
We also generated a correlation heatmap to 

illustrate the relationships among APOBECs and 
different immune cell infiltration (absolute 
abundance, CIBERSORT outputs of TCGA) in bulk 
BLCA samples (Figure 5K). Among all cases, we 

observed that the pair of APOBEC3A-M1 exhibited 
the highest correlation (r = 0.334, p = 5.09e-12). The 
cumulative proportion curves (Figure 5L) and violin 
plot (Figure 5M) jointly demonstrated that a 
significantly higher abundance of M1 infiltration was 
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observed in BLCA samples with higher APOBEC3A 
expression. These evidences from scRNA-seq and 
bulk RNA-seq data demonstrated that APOBEC3A 
may play a role in the differentiation of monocytes in 
BLCA patients. 

AMES correlates with immune infiltration and 
potential ICB response in BLCA 

To investigate the biological properties 
correlated with AMES in BLCA, we performed a fgsea 
algorithm with all GOBP gene sets in different AMES 
groups (Figure 6A). Samples with higher AMES 
exhibited significantly higher activity of various 
immune responses, and the most significantly altered 
pathway was annotated as “adaptive immune 
response” (NES = 2.16, p = 1.8e-28; Figure 6A). A 
correlation network was generated to depict the 
relationships among AMES and various immune cell 
types in bulk samples, in which pink lines represent 
positive correlation and lightblue lines represent 
negative correlation. In particular, we found that 
AMES held significantly positive correlations with 
activated CD4+ memory T cell, CD8+ T cell, and M1 
abundance, while negatively correlated with CD4+ 
naïve and activated MDC populations (Figure 6B). In 
addition, as AMES level increased, the immune 
infiltration score was stepwisely and significantly 
elevated (Figure 6C), as well as the CD8+ T cell 
abundance (Figure 6D). Then we focused on AMES < 
1 (lowest) and > 4 (highest) groups to investigate the 
intrinsic differences of immune features. A T cell- 
inflamed GEP (18 genes) which is correlated with ICB 
response was introduced to evaluate the predictive 
potential of AMES for cancer immunotherapy. As 
shown in the heatmap (Figure 6E), the T cell-inflamed 
GEP holds extensively high expressions in samples 
with the highest AMES compared to those with the 
lowest AMES, and ssGSEA algorithm validated that 
the T cell-inflamed score was significantly elevated in 
the AMES > 4 group (Figure 6F). Considering IFN-γ is 
a cytokine that plays a critical role in immune 
regulation and anti-cancer immunity, we performed 
GSEA with three relevant but independent gene sets 
and found that IFN-γ response was significantly 
enhanced in the AMES > 4 group (Figure 6G). As 
expected, IFNG mRNA expression (log2-normalized) 
is also significantly elevated in the AMES > 4 group 
(Figure 6H). 

Considering cancer immunotherapy with ICB is 
based on the inhibition of critical immune 
checkpoints, we evaluated some representative 
molecules and found that PD-1, PD-L1, CTLA-4, and 
TIGIT were extensively elevated in the AMES > 4 
group (Figure 6I), as well as the CYT score which is 
used to reflect the cytotoxic effects (Figure 6J). 

Furthermore, the SubMap analysis revealed that the 
AMES > 4 group exhibited a high likelihood of 
response to ICB, including anti-PD-L1, PD-1, and 
CTLA-4 in two immunotherapy cohorts (IMvigor210 
and Roh’s cohort; Figure 6K). 

With a threshold of FDR q < 0.01, a total of 401 
DEGs (296 upregulated and 105 downregulated 
genes; see details in supplementary table 2) were 
identified in the AMES > 4 group (Figure 6L). Most 
DEGs were enriched in immune-related pathways, 
and the three most significant biological processes 
were annotated as “cellular defense response”, 
“regulation of immune system process”, and “T cell 
activation” (Figure 6M). Based on the STRING 
database, a PPI network was generated to reveal 
interactions among representative DEGs (Figure 6N). 
Overall, these findings demonstrated that AMES 
correlates with immune activation and indicates 
potential ICB benefits in BLCA. 

Higher AMES predicts better prognosis in 
BLCA 

Next, we evaluated the prognostic value of 
AMES in BLCA. Kaplan-Meier analysis showed that 
patients with higher AMES exhibited more favorable 
overall survival (OS) in the TCGA-BLCA cohort (HR 
= 0.5954, 95% CI = 0.4436 – 0.7992, p = 0.0005; left 
panel of Figure 7A). Furthermore, multivariate Cox 
regression analysis indicated that among various 
clinicopathological features, AMES acts as the only 
independent protective factor (p = 0.003). Meanwhile, 
advanced pathological stage and elder act as 
independent risk factors for OS (right panel of Figure 
7A). For CSS, AMES still retains a positive correlation 
with a better prognosis (HR = 0.5643, 95% CI = 0.3956–
0.8049, p = 0.0015; left panel of Figure 7B). In the 
multivariate Cox regression analysis, AMES still 
serves as a protective factor (p = 0.002), and advanced 
pathological stage as the only risk factor for CSS (right 
panel of Figure 7B). 

Subsequently, we evaluated whether AMES 
could serve as a promising biomarker for ICB. In 
Samstein’s cohort of 140 advanced BLCA patients 
who received ICB therapy [26], Kaplan-Meier analysis 
showed that higher AMES correlated with better OS 
(HR = 0.4863, 95% CI = 0.2931–0.8068, p = 0.0124; left 
panel of Figure 7C), and multivariate Cox regression 
analysis further demonstrated that higher AMES acts 
as the only protective factor for OS (p = 0.022), better 
than some conventional predictors such as TMB, DDR 
status, and combination ICB therapy (right panel of 
Figure 7C). These findings suggested that AMES 
challenges some conventional biomarkers for survival 
prediction of BLCA patients, especially for those who 
received ICB treatment. 
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Figure 6. Higher AMES confers higher immune infiltration and potential ICB response in BLCA. (A) A fgsea algorithm was performed with all GOBP gene sets in 
different AMES groups, and the most significantly altered pathway was annotated as “adaptive immune response” in the AMES-high group (NES = 2.16, p = 1.8e-28). (B) A 
correlation network depicts the relationships among AMES and various immune cell types in bulk samples. AMES held significantly positive correlations with activated CD4+ 
memory T cell, CD8+ T cell and M1 abundance, while negatively correlated with CD4+ naïve and activated MDC populations. (C) As AMES level increased, the immune 
infiltration score was stepwisely and significantly elevated, (D) as well as the CD8+ T cell abundance. (E) A T cell-inflamed GEP (18 genes) which is correlated with ICB response 
was introduced to evaluate the predictive potential of AMES for cancer immunotherapy. As shown in the heatmap, the T cell-inflamed GEP holds extensively high expressions in 
samples with the highest AMES compared to those with the lowest AMES, (F) and ssGSEA algorithm validated that the T cell-inflamed score was significantly elevated in the AMES 
> 4 group. (G) GSEA was performed with three relevant but independent gene sets, and IFN-γ response was significantly enhanced in the AMES > 4 group. (H) IFNG mRNA 
expression (log2-normalized) is significantly elevated in the AMES > 4 group. (I) Representative immune checkpoints including PD-1, PD-L1, CTLA-4, and TIGIT were extensively 
elevated in the AMES > 4 group, (J) as well as the CYT score. (K) SubMap analysis revealed that the AMES > 4 group exhibited a high likelihood of response to ICB when 
compared to two immunotherapy cohorts (IMvigor210 and Roh’s cohort). (L) With a threshold of FDR q < 0.01, a total of 401 DEGs (296 upregulated and 105 downregulated 
genes) were identified in the AMES > 4 group. (M) Most DEGs were enriched in immune-related pathways. (N) A PPI network reveals interactions among representative DEGs 
based on the STRING database. 
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Figure 7. Higher AMES predicts better prognosis in BLCA. (A) Kaplan-Meier analysis showed that patients with higher AMES exhibited better overall survival (OS) in 
the TCGA-BLCA cohort (HR = 0.5954, 95% CI = 0.4436–0.7992, p = 0.0005; left panel). Multivariate Cox regression analysis indicated that among various clinicopathological 
features, AMES acts as the only independent protective factor (p = 0.003). Meanwhile, advanced pathological stage and elder act as independent risk factors for OS (right panel). 
(B) For cancer-specific survival (CSS), AMES still retains a positive correlation with a better prognosis (HR = 0.5643, 95% CI = 0.3956 – 0.8049, p = 0.0015; left panel). In the 
multivariate Cox regression analysis, AMES still serves as a protective factor (p = 0.002; right panel). (C) In Samstein’s cohort of 140 advanced BLCA patients who received ICB 
therapy, Kaplan-Meier analysis showed that higher AMES correlated with better OS (HR = 0.4863, 95% CI = 0.2931–0.8068, p = 0.0124; left panel), and multivariate Cox 
regression analysis further demonstrated that higher AMES acts as the only protective factor for OS (p = 0.022), even outperforms some conventional predictors such as TMB, 
DDR status, and combination ICB therapy (right panel). 

 

A prognostic APOBEC mutagenesis-related 
model was established for BLCA patients 

Considering AMES could predict survival well, 
we attempted to construct an AMES-based gene 
signature for individual risk assessment of CSS. 
Firstly, the 401 aforementioned DEGs were submitted 
for univariate Cox regression analysis, and 45 
candidates were filtered with a threshold p value less 
than 0.01. After LASSO regularization (10-fold 
cross-validation, optimal λ = 0.022; Figure S5 & Figure 
8A), 21 genes retained their Cox coefficients (Figure 
8B; Supplementary Table 3), and a prognostic 

APOBEC mutagenesis-related risk score (AMrs) was 
calculated for each BLCA patient as described in the 
methods section. The ridgeline plots showed that 
significant differences in the performances of various 
cancer hallmarks were observed between AMrs-low 
and AMrs-high samples (Figure 8C). In the training 
set (TCGA-BLCA), patients with higher AMrs 
exhibited worse CSS (HR = 3.570, 95% CI = 2.511–
5.076, p < 0.0001; Figure 8D). The prognostic value of 
AMrs was validated for CSS in three independent 
BLCA cohorts (GSE13507: HR = 3.916, 95% CI = 1.946–
7.879, p = 0.0003; GSE32894: HR = 8.242, 95% CI = 
3.689–18.42, p < 0.0001; GSE48075: HR = 3.751, 95% CI 
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= 1.487–9.466, p < 0.0001) (Figure 8E-G). In addition, 
in a cohort of 460 NMIBC patients, AMrs still retained 
its prognostic capacity for progression-free survival, 
with a HR = 5.509 (95% CI = 2.624–11.56, p < 0.0001; 
Figure S6). Details of AMrs and follow-up 
information of TCGA and four validation cohorts 
could be found in Supplementary Table 4. These 
results demonstrated that AMrs could function as an 
ideal prognostic tool for BLCA patients. 

Drug sensitivity analysis for BLCA patients 
with different AMrs 

Potential druggable targets and corresponding 
compounds that are highly correlated with AMrs may 
have useful therapeutic implications for high-risk 
BLCA patients. To identify potential therapeutic 
targets and compounds for patients with high AMrs, 
we screened a total of 1,837 compounds from three 
drug response databases (GDSC, CTRP, and PRISM; 
Figure 8H). Firstly, IC50 values of 198 compounds 
from GDSC were estimated for each TCGA sample, 
and Spearman correlation analysis was performed on 
AMrs and estimated IC50 values. With a filtering 
threshold of negative r value and p value less than 
0.05, 12 candidate compounds were identified, and 
two compounds with the most negative correlation 
coefficients were annotated as cell cycle inhibitors, 
namely BI-2536 and RO-3306 (Figure 8I). In detail, the 
signaling pathways and therapeutic targets of the 12 
candidate compounds were summarized in Figure 8J. 
AUC values of compounds from CTRP and PRISM 
were estimated for each TCGA sample, and Spearman 
correlation analysis was performed on AMrs and 
estimated AUC values. For both CTRP and PRISM, 
five compounds with the most negative correlation 
coefficients were displayed in dot-line plots (CTRP: 
PI-103, PYR-41, niclosamide, PIK-93, NSC 74859; 
PRISM: temocapril, AC-264613, pirenperone, 
oxymatrine, ruxolitinib) (Figure 8K & M), and their 
estimated AUC values were compared in different 
AMrs groups (Figure 8L & N). Overall, all these 
identified compounds have a significantly negative 
correlation with AMrs and lower estimated AUC 
values in the high-AMrs group. 

Discussion 
The APOBEC family acts as a double-edged 

sword towards humans due to their intrinsic ability of 
cytosine deamination in genome. On the one hand, 
APOBECs act as antiviral factors via mutation of viral 
genomes thereby restricting viruses and reducing 
infectivity; on the other hand, they also act as DNA 
mutators which play an important role in 
tumorigenesis and cancer evolution [52]. However, 
the role of APOBECs in cancers remains ambiguous. 

For example, it is reported that APOBEC mutagenesis 
could drive tumor evolution in metastatic thoracic 
tumor and HPV-driven tumor but inhibit breast 
cancer growth through immune activation [12, 53, 54]. 
When it comes to APOBEC3B, it is the most widely 
investigated member of APOBEC family and causes a 
variety of mutagenic outcomes [55], but its biological 
impact on cancers still remains unclear, even contrary. 
For example, Xia and colleagues reported that 
APOBEC3B upregulation predicts immune 
inactivation and worse survival in gastric cancer [56], 
while Serebrenik and colleagues reported that 
APOBEC3B is overexpressed in a subset of clear cell 
ovarian cancer and correlates with improved clinical 
outcomes [57]. As regards to cancer therapy, 
APOBEC3B promotes tamoxifen resistance in ER- 
positive breast cancer but predicts favorable response 
of ICB in NSCLC [14, 15]. Taken together, to gain a 
more comprehensive knowledge of APOBEC family 
in pan-cancer and to reveal inherent characteristics in 
some specific cancer types is challenging but 
warranted. 

The TCW mutation is predominantly caused by 
APOBEC enzymatic activities [9]. In this study, we 
calculated the APOBEC mutagenesis enrichment 
score (AMES) to quantify this mutational pattern by 
adjusting TCW mutations in the mutation 
background. We believe AMES is more reasonable to 
evaluate the APOBEC mutagenesis than direct 
counting of TCW mutations because some certain 
cancer type with high total mutation burden, such as 
SKCM, definitely has more TCW mutations, but the 
relative abundance of APOBEC-mediated muta-
genesis is not really high (compared to other cancer 
types). McGrail and colleagues claimed that TMB fails 
to predict ICB response across all cancer types and 
suggested more attention should be focused on cancer 
type-specific assessment of TMB [58]. A cancer 
type-specific TMB threshold will certainly improve 
the prediction of ICB response, but we hold an 
opinion that the distribution of cancer type-specific or 
ICB sensitivity-specific mutational pattern is a more 
ideal and individualized predictor for ICB response. 
TMB calculation contains a wide range of non-silent 
mutation variants, but these mutations contribute 
differently to immune activation and ICB response. 
Using TMB as a predictor for ICB still remains in the 
concept of “quantity of mutation”, which is 
undoubtedly a rough index and far from personalized 
treatment. By contrast, we think the abundance of ICB 
sensitivity-specific mutational patterns is a step 
towards “quality of mutation”, which could 
individually reflect the potential response of ICB 
therapy. 
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Figure 8. A prognostic APOBEC mutagenesis-related model was established and validated, and potentially applicable drugs were screened for the 
high-risk subset. (A & B) After LASSO regularization (10-fold cross-validation, optimal λ = 0.022), 21 genes retained their Cox coefficients, and a prognostic APOBEC 
mutagenesis-related risk score (AMrs) was calculated for each BLCA patient. (C) The ridgeline plots showed that significant differences in the performances of various cancer 
hallmarks were observed between AMrs-low and AMrs-high samples. (D) In the training set (TCGA-BLCA), patients with higher AMrs exhibited worse CSS (HR = 3.570, 95% 
CI = 2.511–5.076, p < 0.0001). (E-G) The prognostic value of AMrs was validated for CSS in three independent BLCA cohorts (GSE13507: HR = 3.916, 95% CI = 1.946–7.879, 
p = 0.0003; GSE32894: HR = 8.242, 95% CI = 3.689–18.42, p < 0.0001; GSE48075: HR = 3.751, 95% CI = 1.487–9.466, p < 0.0001). (H) A total of 1,837 compounds from three 
drug response databases (GDSC, CTRP, and PRISM) were screened to identify potential therapeutic targets and compounds for patients with high AMrs. (I) For the GDSC 
database, Spearman correlation analysis was performed on AMrs and estimated IC50 values. With a filtering threshold of negative r value and p value less than 0.05, 12 candidate 
compounds were identified, and two compounds with most negative correlation coefficients were annotated as cell cycle inhibitors, namely BI-2536 and RO-3306. (J) The 
signaling pathways and therapeutic targets of the 12 candidate compounds from GDSC. (K & M) AUC values of compounds from CTRP and PRISM were estimated for each 
TCGA sample, and Spearman correlation analysis was performed on AMrs and estimated AUC values. For both CTRP and PRISM, five compounds with most negative correlation 
coefficients were displayed in dot-line plots (CTRP: PI-103, PYR-41, niclosamide, PIK-93, NSC 74859; PRISM: temocapril, AC-264613, pirenperone, oxymatrine, ruxolitinib), (L 
& N) and all estimated AUC values of these compounds were significantly lower in the AMrs-high group. *** p < 0.001. 
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Plenty of evidence was presented to support this 
viewpoint in our study. Firstly, the APOBEC 
mutagenesis was identified as a dominant mutational 
pattern in BLCA, and it is mostly correlated with TMB 
among all solid cancer types. Using the quantitative 
method mentioned above, we calculated the AMES 
for each BLCA sample, and we observed that higher 
AMES correlates with higher immune infiltration, 
CD8+ T cell activation, and IFN-γ response. In 
addition, the expression levels of immune checkpoints 
(PD-1, PD-L1, CTLA-4, and TIGIT) and potential 
cytolytic activity were significantly elevated in the 
AMES-high group. Further, AMES-high samples 
exhibited a high similarity of the transcriptional 
profile with samples that were responsive to ICB, 
indicating the potential response of AMES-high BLCA 
samples to ICB therapy. In addition to bioinformatic 
evidence, AMES serves as a promising biomarker for 
prognosis in the clinical setting. In the TCGA-BLCA 
cohort, higher AMES predicts better overall survival 
and cancer-specific survival and is the only protective 
factor for survival in the multivariate Cox regression 
analysis. Notably, in a cohort of advanced BLCA 
patients who received ICB therapy, AMES is the only 
significant parameter (protective factor) which 
correlates with overall survival, even outperforms 
some traditional features such as TMB and DDR 
status (Figure 7C). According to the clinical 
consensus, DDR status is a binary variable defined as 
mutation or wild-type, and its alteration is associated 
with favorable survival in advanced BLCA patients 
[51, 59]. Intriguingly, in this study, AMES offers 
advantages over DDR in the prediction of ICB 
response, and a potential explanation is that 
APOBECs contributed a lot not only to the mutations 
of DDR genes (Figure 2I & J), but also other mutations 
which contribute substantially to cancer 
immunogenicity and trigger immune activation in 
BLCA. In short, we speculated that APOBEC 
mutagenesis could induce more neoantigens and 
enable BLCA to become more sensitive to ICB than 
DDR mutation alone. Of course, more clinical trials 
are needed to further confirm the predictive value of 
AMES in prognosis and ICB response. 

Considering AMES could predict clinical 
outcomes well, we attempted to construct a 
prognostic APOBEC mutagenesis-related model 
using machine learning approaches, and this model 
functions well in different BLCA cohorts. In addition, 
potential druggable targets and corresponding 
compounds were screened for BLCA patients who are 
defined as high-risk with the established prognostic 
model, and the two most promising compounds, 
namely BI-2536 and RO-3306, were identified from 
the GDSC drug response database. Interestingly, both 

of them are cell cycle inhibitors. 
Single-cell RNA-sequencing datasets were used 

to delineate the expression landscape and biological 
functions of APOBECs in BLCA. We observed that 
APOBEC3B is not only upregulated in malignant 
epithelial cells compared to normal, but also 
correlates with the malignant progression in BLCA. 
As regards to APOBEC3A, it is specifically expressed 
in monocytes, and may have a crucial role in the 
differentiation from classical monocytes to FCGR3A+ 
monocytes and to M1 macrophages. These findings 
demonstrated that APOBEC3A and 3B play a 
significant role within the tumor microenvironment of 
BLCA, especially in the malignant evolution and cell 
differentiation. 

Conclusions 
Altogether, our systematic analysis revealed 

expression profiles of APOBECs and distribution 
characteristics of APOBEC mutagenesis in 
pan-cancer, and further reported that APOBEC 
mutagenesis could be a potential biomarker for 
survival prediction and immunotherapy response for 
BLCA patients. Nevertheless, more clinical and 
experimental studies are expected to validate these 
findings. 
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