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Small lipophilic hormones represent one of the best understood 

signals for triggering a programmed cell death response, acting 

through members of the nuclear receptor family of ligand-

 regulated transcription factors. In frogs, thyroid hormone  signals 

the destruction of the tadpole tail and the remodeling of the intes-

tine as the animal progresses from a juvenile to adult form (Shi 

et al., 1996). Similarly, steroid hormones regulate mammalian 

cell death pathways, including the glucocorticoid-induced apop-

tosis of immature thymocytes and mature T cells (Winoto and 

Littman, 2002). Only in Drosophila melanogaster, however, 

has a regulatory network been defi ned that links the hormonal 

signal, the steroid ecdysone, to a cell death response—the stage-

specifi c destruction of obsolete larval tissues during metamor-

phosis (Baehrecke, 2005; Yin and Thummel, 2005). A high-titer 

pulse of ecdysone at the end of larval development signals 

 puparium formation and the destruction of the larval midgut, as 

an adult gut forms around the dying cells. A second ecdysone 

pulse, �10 h after puparium formation, triggers adult head 

eversion, marking the prepupal–pupal transition and signaling 

the rapid elimination of the larval salivary glands (Fig. 1). 

 Destruction of the larval tissues is accompanied by classic hall-

marks of cell death, including TUNEL staining and caspase 

activation, although they undergo a distinct form of programmed 

cell death referred to as autophagy, which is characterized by 

the formation of intracellular autophagic vesicles (Jiang et al., 

1997; Lee and Baehrecke, 2001; Baehrecke, 2005). D. melano-
gaster larval tissue cell death is dependent on the coordinate 

transcriptional induction of two key death activator genes, 

reaper (rpr) and head involution defective (hid; Yin and 

 Thummel, 2004). Ecdysone directly induces rpr transcription in 

doomed larval salivary glands (Fig. 1; Jiang et al., 2000). This 

effect is augmented by the ecdysone induction of transcription 

factor–encoding genes, including the Broad-Complex (BR-C), 

E74A, and E93, which, in turn, are required for appropriate rpr 

and hid expression and salivary gland cell death (Jiang et al., 

2000; Lee et al., 2000).

Although the identifi cation of this regulatory cascade has 

provided a framework for understanding how steroids control a 

programmed cell death response, it also raises the critical ques-

tion of how temporal specifi city is achieved. The destruction of 

the larval salivary glands is preceded by repeated systemic 

pulses of ecdysone during the life cycle of D. melanogaster, 

some of which result in BR-C and E74A induction. Yet, rpr and 

hid are only expressed in response to the prepupal pulse of ec-

dysone (Fig. 1). What are the molecular mechanisms that deter-

mine the temporal specifi city of rpr and hid expression, and 

hence, the appropriate timing of steroid-triggered cell death?

In their article, Cao et al. (2007) provide an answer to this 

question. They show that Fork head (Fkh), which is the defi ning 

member of the Forkhead box family of transcription factors 

(Friedman and Kaestner, 2006), plays a critical role in deter-

mining when salivary gland cell death can occur. Fkh is among 

the earliest expressed factors in the larval salivary glands and is 

required for internalization of the secretory cells, as well as later 

salivary gland functions, including Sgs glue gene expression 

(Kuo et al., 1996; Myat and Andrew, 2000; Renault et al., 2001). 

Interestingly, fkh is also required to prevent salivary gland apop-

tosis in embryos, accompanied by rpr and hid induction and is 

dependent on genes encoded within the H99 defi ciency, which 

is an interval that spans the rpr and hid loci (Myat and Andrew, 

2000). However, the observation that >20% of chromosomal 

defi ciencies tested in D. melanogaster result in increased apop-

tosis during embryogenesis makes it diffi cult to interpret the 

signifi cance of this phenotype (White et al., 1994).
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Fkh is normally expressed in the salivary glands through-

out the larval stages, and then down-regulated at puparium for-

mation, in synchrony with the late-larval ecdysone pulse (Fig. 1; 

 Renault et al., 2001). Cao et al. (2007) show that this down-

 regulation of fkh is essential for the proper timing of cell death. 

Ectopic fkh expression in mid-prepupae results in a complete 

block in salivary gland cell death 6 h after the wild-type glands 

are destroyed. Consistent with this result, rpr mRNA levels are 

reduced, and hid transcripts are not detectable in salivary glands 

isolated from these animals. Moreover, microarray analysis 

 revealed that other key cell death genes are down-regulated by 

ectopic fkh, including Jafrac2, dark, and dronc, demonstrating 

widespread effects on the death pathway. Interestingly, how-

ever, ectopic fkh expression in prepupal salivary glands results 

in elevated levels of BR-C, E74A, and E93, key transcriptional 

inducers of rpr and hid. It will be interesting to determine the 

mechanisms by which Fkh exerts its effects on rpr and hid ex-

pression independently of these ecdysone-induced transcription 

factors. Moreover, some salivary glands that fail to undergo cell 

death in the presence of ectopic fkh display large, vacuole-like 

structures, indicating that some aspects of cell death are under-

way in these tissues. A possibility to be explored is whether this 

represents the progression of autophagic cell death (Lee and 

Baehrecke, 2001; Baehrecke, 2005).

To confi rm and extend these observations, Cao et al. 

(2007) prematurely removed fkh function from third instar lar-

vae using RNAi. Although E74A is expressed normally under 

these conditions, both rpr and hid are prematurely induced at 

puparium formation in larval salivary glands. As might be ex-

pected, the expression of these key death activators has cata-

strophic consequences for the salivary glands, directing their 

early entry into cell death. Interestingly, the fi nal stages of 

 tissue destruction are not properly executed under these condi-

tions. Further studies are required to determine whether other 

key death effectors fail to be prematurely expressed, resulting in 

an incomplete death response in these animals.

Finally, Cao et al. (2007) provide evidence that fkh might be 

responsible for the defects in salivary gland cell death  observed 

in BR-C mutant salivary glands. They show that fkh expression is 

maintained in these mutant tissues after puparium formation, 

similar to the effects of ectopic fkh expression in prepupae. 

It will be interesting to determine if removal of fkh function by 

RNAi in BR-C mutant salivary glands is suffi cient to restore the 

normal death response in these tissues.

This paper by Cao et al. (2007) addresses a central ques-

tion of ecdysone-triggered salivary gland cell death, showing 

that fkh contributes to the proper timing of rpr and hid transcrip-

tional induction. The expression of fkh in this tissue throughout 

larval stages effectively blocks the death response, maintaining 

normal salivary gland function. At the onset of metamorphosis, 

however, fkh down-regulation provides competence for salivary 

gland cell death, allowing the death cascade to be triggered by 

the subsequent prepupal pulse of hormone (Fig. 1). It is inter-

esting to note that the same tissue-specifi c factor that plays a 

critical role in early salivary gland development and maintains 

salivary gland function during larval stages also blocks its de-

struction. In this way, Fkh links tissue specifi cation and identity 

to the prevention of tissue destruction, defi ning Fkh as a sur-

vival factor and ensuring that the salivary glands can provide 

their normal functions for the larva. Moreover, the observation 

that Fkh orthologues can directly facilitate steroid-regulated 

transcription in vertebrates suggests that their role in regulating 

steroid-triggered cell death may be conserved through evolution 

(Friedman and Kaestner, 2006). Finally, this study casts a new 

light on work by Myat and Andrew (2000), which showed that 

fkh is required to suppress rpr and hid expression and salivary 

gland apoptosis during D. melanogaster embryogenesis. Inter-

estingly, the timing of premature rpr and hid expression in fkh 

mutant embryos is coincident with the leading edge of the em-

bryonic ecdysone pulse and activation of the ecdysone recep-

tor (Kozlova and Thummel, 2003). This raises the possibility 

that fkh silences ecdysone-triggered salivary gland cell death 

throughout the life cycle, and that fkh down-regulation is a key 

step that allows the larval gland to meet its ultimate fate, cell 

death, in response to the next pulse of ecdysone.
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