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New brain atlases with high spatial resolution and whole-brain coverage have rapidly

advanced our knowledge of the brain’s neural architecture, including the systematic

variation of excitatory and inhibitory cell densities across the mammalian cortex. But

understanding how the brain’s microscale physiology shapes brain dynamics at the

macroscale has remained a challenge. While physiologically based mathematical models

of brain dynamics are well placed to bridge this explanatory gap, their complexity

can form a barrier to providing clear mechanistic interpretation of the dynamics they

generate. In this work, we develop a neural-mass model of the mouse cortex and show

how bifurcation diagrams, which capture local dynamical responses to inputs and their

variation across brain regions, can be used to understand the resulting whole-brain

dynamics. We show that strong fits to resting-state functional magnetic resonance

imaging (fMRI) data can be found in surprisingly simple dynamical regimes—including

where all brain regions are confined to a stable fixed point—in which regions are

able to respond strongly to variations in their inputs, consistent with direct structural

connections providing a strong constraint on functional connectivity in the anesthetized

mouse. We also use bifurcation diagrams to show how perturbations to local excitatory

and inhibitory coupling strengths across the cortex, constrained by cell-density data,

provide spatially dependent constraints on resulting cortical activity, and support a greater

diversity of coincident dynamical regimes. Our work illustrates methods for visualizing

and interpreting model performance in terms of underlying dynamical mechanisms, an

approach that is crucial for building explanatory and physiologically grounded models of

the dynamical principles that underpin large-scale brain activity.

Keywords: brain dynamics, dynamical systems, neural mass model, mouse cortex, cell densities

1. INTRODUCTION

Recent advances in neuroimaging have produced intricate maps revealing the complexity of the
brain’s microscale circuits, with whole-brain coverage. Analyzing and integrating these data have
uncovered new patterns of brain organization, including the systematic spatial variation of gene
expression (Burt et al., 2018; Fulcher et al., 2019), cytoarchitecture (Goulas et al., 2016), neuron
densities (Erö et al., 2018), cortical thickness (Wagstyl et al., 2015), axonal connectivity (Oh et al.,
2014), cognitive function (Margulies et al., 2016), and local dynamical properties (Shafiei et al.,
2020). Existing evidence suggests that, to a good first approximation, these properties vary together
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along a dominant hierarchical axis in mouse and human (Burt
et al., 2018; Fulcher et al., 2019; Wang, 2020).

To understand the functional role of observed physiological
patterns, like systematic spatial variations in brain architecture,
we need a way of simulating their effect on whole-brain
dynamics. Physiologically based brain models achieve this, using
methods from statistical physics to capture the dynamics of
large populations of neurons and their interactions (Deco et al.,
2008; Breakspear, 2017). Neural population models can capture
the complex spatiotemporal dynamics in modern neuroimaging
datasets, including persistent activity, intermittent oscillations,
and multi-stability (Robinson et al., 2016; Noori et al., 2020;
Froudist-Walsh et al., 2021; Mejías and Wang, 2022), and
have successfully reproduced a wide range of experimental
phenomena, from the alpha rhythm to seizure dynamics (Mejias
et al., 2016; Breakspear, 2017; Schneider et al., 2021; Sip
et al., 2022). The physiological formulation of these models
means that their variables and parameters encode interpretable
and biologically measurable properties of neural circuits, like
the strengths and timescales of interactions between neuronal
populations. This allows them to provide a unique mechanistic
account of whole-brain dynamics that can be validated against
both physiological experiments and the dynamical patterns
observed in neuroimaging experiments.

While most existing brain models involve dynamical rules
that are spatially uniform (e.g., the same model parameters
in all brain areas), recent work has begun to investigate
the effect of non-uniform dynamical rules, constrained by
emerging brain-atlas datasets. An early example is the work
of Chaudhuri et al. (2015), which incorporated a variation
in recurrent excitation corresponding to that of measured
spine count in the macaque. More recent work in human
has incorporated spatial heterogeneity in model parameters
with: the MRI-derived T1w:T2w map (Demirtas et al., 2019);
T1w:T2w, the first principal component of gene transcription,
and an inferred excitation:inhibition ratio (Deco et al., 2021);
a linear combination of T1w:T2w and the principal resting-
state functional connectivity (FC) gradient (Kong et al., 2021);
a fitted parametric variation that recapitulated an interpretable
hierarchical variation (Wang et al., 2019); and a spatial
variation in excitability with a spatial map of epileptogenicity
in modeling seizure dynamics and spread (Jirsa et al., 2017;
Courtiol et al., 2020). These papers have reported improved
out-of-sample model fits to empirical data, evaluated according
to a range of summary statistics of the resulting dynamics
(most typically FC), and provided insights into how spatial
variation in biological mechanisms (like recurrent excitation)
may underpin whole-brain dynamical regimes. While these
studies demonstrate the promise of producing more accurate
predictions of measured brain dynamics by incorporating
regional heterogeneity—constraining to physiological data, or
through large-scale parameter fitting (Wang et al., 2019)—the
resulting models are correspondingly complex and challenging
to interpret in terms of the mechanisms which underpin their
dynamics. The tools of dynamical systems have the potential to
reveal the dynamical features that improve model fits to data,
including the bifurcation structure that defines the accessible

dynamical regimes and the range of such regimes that different
brain areas can access, including their vicinity to critical points
(Deco and Jirsa, 2012; Deco et al., 2013; Cocchi et al., 2017;
Demirtas et al., 2019; Wang et al., 2019). In this work, we show
that analyzing the dynamical response of individual brain regions
to inputs using bifurcation diagrams provides an understanding
of model behavior in terms of accessible dynamical regimes,
an approach that is particularly valuable for understanding the
increased complexity of spatially non-uniform models.

The mouse is an ideal organism to develop comprehensively
constrained physiologically based models of brain dynamics, but
models of the mouse brain have been relative few compared to
the large number of studies of human cortex. Existing models of
mouse-brain dynamics on the macroscale have taken a variety
of approaches, from phenomenological—connectome-coupled
Kuramoto oscillators (Choi and Mihalas, 2019; Allegra Mascaro
et al., 2020) and network diffusion models (Shadi et al., 2020)—
through to neural mass models (Lin et al., 2020) coupled
via a connectome (Melozzi et al., 2017, 2019) and interacting
populations of spiking neural networks (Nunes et al., 2021).
Compared to human, there is an abundance of high-resolution,
whole-brain physiological data in mouse (Fulcher et al., 2019),
including directed tract-tracing axonal connectivity data (Oh
et al., 2014; Harris et al., 2019), high-resolution gene-expression
maps (Lein et al., 2007), and cell-density atlases (Kim et al.,
2017; Erö et al., 2018). High-quality whole-brain neuroimaging
data using fMRI in mouse is also available, allowing us to
evaluate model predictions in the resting state (Zerbi et al.,
2015; Grandjean et al., 2020) and as a result of targeted
manipulations (Zerbi et al., 2019; Markicevic et al., 2020, 2022).
Prior work has shown that FC is strongly constrained by direct
structural pathways (Grandjean et al., 2017), and prior dynamical
models have reported the ability of coupled dynamical models
to reproduce FC structure, especially when modeling using
matching individual structural connectivity (Melozzi et al., 2019).
In this work, we develop a neural-mass model of mouse cortical
dynamics, and aim to understand the dynamical regimes in which
it best captures resting-state fMRI data in mouse. We also aim
to characterize the impact of incorporating spatial variations in
excitatory and inhibitory cell densities as spatial variations in
model parameters from a dynamical systems perspective.

2. METHODS

As illustrated in Figure 1, we developed a neural mass model
of the right hemisphere of the mouse cortex, across 37 cortical
areas, comprising a simple Wilson–Cowan local dynamical
model (Figure 1A) coupled via a directed structural connectome
(Figure 1B). These regions are shown on the mouse brain in
Figure 1C, colored by their relative excitatory cell densities
(which are incorporated into the model in section 3.2). Of the
38 cortical regions reported in Oh et al. (2014), we excluded the
frontal pole (FRP) due to its small size (likely contributing to
noisy, outlying values of excitatory and inhibitory cell densities
Erö et al., 2018). In visualizing our results, we grouped cortical
regions according to six functional labels: Somatomotor, Medial,
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FIGURE 1 | Simulating and evaluating a coupled neural-mass model of mouse cortical dynamics. (A) The dynamics of individual brain regions follow the

Wilson–Cowan equations (Wilson and Cowan, 1972, 1973) which govern interactions between local excitatory (E) and inhibitory (I) neural populations. (B) Regions are

coupled together by connections defined by the AMBCA (Oh et al., 2014), represented as a directed adjacency matrix (connections shown black). A schematic shows

how these long-range structural connections couple local cortical regions via excitatory projections (Breakspear, 2017). (C) Heterogeneity in local model parameters

can be introduced as a perturbation that follows the measured variation in excitatory and inhibitory neural densities. Here the variation in excitatory cell density is

plotted across the 37 mouse cortical areas as deviations relative to the mean level (green), using brainrender (Claudi et al., 2021) and data from Erö et al. (2018).

(D) Model simulation yields activity time series for each brain region, from which pairwise linear correlations (functional connectivity, FC) are computed. (E) Model

simulations are evaluated against empirical FC, averaged across 100 mice, as the Spearman correlation between all unique pairwise FC values, yielding an FC–FC

score, ρFCFC.

Temporal, Visual, Anterolateral, and Prefrontal (Harris et al.,
2019) (see Supplementary Table S1 for full list).

As shown in Figure 1A, a given brain region consists of both
an excitatory (E) and an inhibitory (I) neural population, whose
dynamics are governed by the Wilson–Cowan equations (Wilson
and Cowan, 1972, 1973). Brain regions are coupled via long-
range excitatory projections using a binary, directed connectome
from the Allen Mouse Brain Connectivity Atlas (AMBCA) (Oh
et al., 2014; Fulcher and Fornito, 2016) (Figure 1B). As these
data are the result of right-hemisphere viral tracer injections,
yielding estimates of ipsilateral cortical connectivity in the right
hemisphere, we modeled just the right hemisphere in this work,
but note that model of both hemispheres could be developed
in future under the assumption of lateral symmetry [e.g., as
Melozzi et al. (2017)]. Simulating the model yields dynamics
for the E and I populations; we take the activity time series of
the excitatory population to evaluate the similarity of pairwise
linear correlation structure as functional connectivity (FC),
shown in Figure 1D. To assess the goodness of fit, we compare
this simulated FC to an empirical FC calculated on a mouse
fMRI dataset (Figure 1E). The goodness of fit is assessed as a
Spearman correlation coefficient computed between all pairs of
FC values from the empirical data and the model (Figure 1E).
Spearman’s correlation coefficient was used instead of Pearson’s

correlation coefficient to capture a potentially nonlinear but
monotonic relationship.

As our main aim was to develop tools to understand
the distributed dynamics of neural mass models, we favored
simplicity in focusing on the Wilson–Cowan (W–C) model
relative to alternative models. In addition, its physiological
formulation is crucial for mapping to experimental cell-density
data, as its parameters encode measurable properties with
physical units that can be constrained by such data. The W–
C model also exhibits a wide range of dynamical behaviors,
including bifurcations, hysteresis, stable fixed-points (attractors),
and limit cycles (oscillatory attractors) (Wilson and Cowan, 1972,
1973; Cowan et al., 2016), that are common features of dynamical
systems in general, including more complex biophysical neural
population models. We use a formulation of the Wilson–Cowan
equations based on the mean firing rates of coupled populations
of excitatory and inhibitory neurons, as

τeĖ = −E+ (1− E)S
[

ae
(

weeE− weiI − Be + Je
)]

, (1)

τi İ = −I + (1− I)S
[

ai
(

wieE− wiiI − Bi
)]

, (2)

where E and I are the mean firing rates of the excitatory and
inhibitory populations, respectively (Hz); S(v) = h/[1+exp(−v)]
is the sigmoidal firing-rate function; h (which is set to 1 here) is
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the upper bound for the sigmoid function representing amaximal
population firing rate (Hz); ae, ai control the gradient scaling
for the sigmoid function (V−1); wxy are the coupling weights
from population y to population x, where x and y correspond
to excitatory (e) or inhibitory (i) populations (V s); Be, Bi are
the firing thresholds for excitatory/inhibitory cells (V); Je is the
voltage induced by external current injected into the excitatory
cells, defined below as a weighted sum over external inputs (V);
and τe, τi are the time constants of excitation and inhibition
respectively (s).

Neural masses, corresponding to cortical areas, were coupled
via projections between excitatory populations through the

external current term, Je. For a given region a, J
(a)
e (t) is

computed as

J(a)e (t) = G
∑

b

Aab E
(b)(t) , (3)

where G is a global coupling constant (V s), Aab is the adjacency
matrix corresponding to the structural connectome (unweighted
here), and E(b) is the excitatory activity of region b (Hz). It is
helpful to define the quantity

J
(a)
tot (t) = J(a)e (t)− Be = G

∑

b

Aab E
(b)(t)− Be , (4)

as the total input that includes the constant offset Be. We will use
this to understand the dynamical response of a brain area to its
net input in section 3.1.

In addition to this “homogeneous” model, in which the
parameters are identical for all brain regions, we also analyze
a heterogeneous model (in section 3.2), in which the coupling
parameters, wij, vary across regions. We calibrate this variation
to estimated cell-density data (Erö et al., 2018), by making
the assumption that local connectivity from excitatory and
inhibitory cells is uniform, and thus that coupling strengths
from a given population are proportional to the density of cells
of that population. Thus, we adjust the coupling parameters
corresponding to outputs from the excitatory population, wee

and wie, according to measured variations in excitatory cell
density across cortical areas, and adjust wii and wei according to
measured variations in inhibitory cell density. Defining nominal
parameter values as ŵxy (for x and y taking i and e), we can then
define linear parameter perturbations for a given region a as:

w(a)
ee = ŵee(1+ R(a)e ), w

(a)
ie = ŵie(1+ R(a)e ),

w
(a)
ii = ŵii(1+ R

(a)
i ), w

(a)
ei = ŵei(1+ R

(a)
i ),

(5)

where rescaling factors, Re and Ri, represent relative variations
in excitatory and inhibitory cell density, respectively (see
Figure 1C for a visualization of how excitatory cell density varies
across cortical areas). To map cell-density measurements to
corresponding Re and Ri values, we first z-score normalized
raw excitatory and inhibitory cell-density data, as e(a) and i(a),
respectively, across all regions, a. We then defined a simple

proportional mapping to model parameters via a single scaling
parameter, σ ≥ 0, as

R(a)e = σ e(a) , R
(a)
i = σ i(a) . (6)

In this formulation, setting σ = 0 sets all R
(a)
e = R

(a)
i = 0

and reproduces the spatially homogeneous model; increasing σ

increases the level of variation in coupling parameters across
areas. Note that there is much scope for defining more complex
mappings involving more new parameters, but defining the
mapping from cell densities to model parameters in this simple,
single-parameter scheme allows us to more clearly tackle our
main aim to investigate how the model’s dynamical features are
shaped by such variation.

For a given system of coupled ODEs defined above, dynamics
were simulated using The Virtual Brain (Sanz-Leon et al., 2015;
Melozzi et al., 2017), yielding simulated time series for each
region. The system was driven by white noise with a mean µ =

0 and standard deviation s = 1.3 × 10−5 using the Euler–
Maruyama method with a fixed time step, 1t = 0.1ms, for a
total simulation length of 1.2 × 105ms, (or 2min at 1,000Hz).
Initial transients of 1 s (1,000 time steps) were removed from all
simulations to focus on themodel’s steady-state dynamics. As our
aim was to understand the dynamical properties of the model
that enable it to match the statistics of measured fMRI dynamics,
we chose not to adjust the model output, E(a)(t), through a
simulation of the hemodynamic response function to match the
fMRI measurement [but could be done in future using, e.g.,
a convolution of a canonical hemodynamic response (Boynton
et al., 1996) or a biophysical model (Friston et al., 2000; Kim and
Ress, 2016)].

fMRI data for 100 wild-type mice are taken from Zerbi
et al. (2021), and consisted of blood-oxygen-level-dependent
(BOLD) signals recorded from 100 anesthetized mice measured
at rest for a period of 15min using a Biospec 70/16 small
animal MR system operating at 7T, equipped with a cryogenic
quadrature surface coil for signal detection (Bruker BioSpin
AG, Fällanden, Switzerland). The data were processed (see
Supplementary Material for details) and parcellated using the
Allen Common Coordinate Framework (CCF v3). Using time-
series data from each of the 37 cortical regions analyzed here, we
computed a functional connectivity (FC) matrix for each mouse
as pairwise Pearson correlations. These matrices were averaged
across mice to yield a group-average FC that was used as the basis
of comparison for computing FC–FC scores.

Models were assessed on their ability to reproduce the pairwise
linear correlation structure (FC) of empirical mouse fMRI data,
as the Spearman correlation between predicted and measured
FC values: the FC–FC score, ρFCFC. While we focused here on
reproducing pairwise linear correlations using ρFCFC, we note
that a more comprehensive evaluation of model fit, incorporating
aspects of local dynamics and dynamic FC properties, will
be important for future investigations to more fully evaluate
the rich patterns contained in the dynamics (Cabral et al.,
2017; Aquino et al., 2021; Deco et al., 2021). To account for
variability in simulatedmodel dynamics due to a finite simulation
time and different random seeds, we computed ρFCFC for 40
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repeats of each simulation using different random seeds. Code
for reproducing the simulations and analysis presented here
is available at https://github.com/DynamicsAndNeuralSystems/
MouseBrainModelling.

3. RESULTS

Here, we aim to understand the dynamical principles underlying
coupled dynamical models using a neural mass model of the
mouse cortex. First, in section 3.1, we investigate the spatially
uniform case in which all brain regions are governed by identical
dynamical rules. Focusing on model behavior in the vicinity of
saddle-node and Hopf bifurcations, we characterize the model’s
dynamical regimes that best capture empirical FC structure. We
then investigate the spatially heterogeneous case in section 3.2, in
which regional variations in parameters are introduced according
to variations in excitatory and inhibitory cell-density maps (Erö
et al., 2018), which shape the model’s local bifurcation properties
and resulting dynamical regimes.

3.1. What Dynamical Features Drive High
Model Performance?
We first characterize the model’s dynamical regimes that best
capture the pairwise correlation structure of experimental
mouse fMRI, with the aim to understand how the positioning
of individual nodes (brain regions) around specific types of
bifurcations affects the model’s ability to capture empirical FC.
In this section we focus on a homogeneous model, in which all
brain areas are governed by the same dynamical rules, but differ
in their inputs from other regions (via the connectome). We
characterize the model’s behavior in each of three regimes: (i) in
the vicinity of a single stable equilibrium, which we denote as the
“Fixed Point” regime [using parameters adapted from Sanz-Leon
et al. (2015)]; (ii) in the vicinity of a bistable region separated by
saddle-node bifurcations, which we denote as the “Hysteresis”
regime [using parameters from Heitmann et al. (2018)]; and
(iii) in the vicinity of a pair of Hopf bifurcations, denoted as
the “Limit Cycle” regime [using parameters from Borisyuk and
Kirillov (1992)]. Parameter values for each of these three regimes
are given in Supplementary Table S2. Bifurcation diagrams of
excitatory firing, E, as a function of net external input, Jtot = Je −
Be, are plotted for the Fixed Point regime (Figure 2D), Hysteresis
regime (Figure 2E), and Limit Cycle regime (Figure 2F). These
plots show how stable states of E vary with Jtot as solid lines (with
unstable states shown for the bistable regime in Figure 2E and
lower and upper limits of a limit-cycle oscillation in Figure 2F).
They thus capture the rules underlying the dynamical behavior of
individual brain regions in response to their aggregate input from
other brain regions, Jtot, with each parameter setting defining
a qualitatively different set of accessible dynamics, and types
of response to inter-regional inputs. Importantly, these basic
bifurcation structures, and the insights we gain from them, are
not specific to the W–Cmodel but are common features of many
dynamical models (Strogatz, 2018).

We can understand the dynamics of an individual brain region
in terms of the variation in its inputs over time, Jtot(t) (recalling

that Jtot is high when a region has many inputs from other high-
activity, or high-E, regions). To understand this in more detail,
we consider two key parameters that control the range of Jtot that
can be explored by a given brain region. As per Equation (4),
these parameters are: (i) the excitatory firing threshold, Be, which
contributes a constant offset to Jtot; and (ii) the global coupling
constant, G, which scales each region’s response to excitatory
inputs from other connected regions. Increasing Be decreases
Jtot for all cortical regions, shifting the range of Jtot explored by
network nodes to the left on the Jtot–E bifurcation diagram. We
can see this from the annotated levels of input, Jtot, corresponding
to selected Be values (when Je = 0) as vertical dashed lines in
Figures 2D–F, which denote the minimum Jtot for selected Be
values. Low G ≈ 0 removes the effect of inter-regional coupling
altogether (Je ≈ 0), resulting in a very narrow range of Jtot around
Be, while increasing G allows individual regions to respond more
strongly to external inputs, and thus span a greater range of Jtot
values. Given fixed values of Be and G, the key factor controlling
how different brain regions differ in Jtot in the homogeneous
model is their connected neighbors, with high in-degree regions
having more inputs and thus the potential to achieve a higher Je
and Jtot than low in-degree regions.

We are now able to analyze how different values of Be
(which adjusts the baseline of Jtot) and G (which scales the
excitatory inputs, Je, relative to this baseline) shape the dynamics
of a given brain region. For example, some combinations of
Be and G confine all nodes in the network to a fixed-point
attractor, whereas others allow some nodes to span one (or
multiple) bifurcations. Different choices of G and Be control
the diversity of dynamical features supported by the model,
but what types of configurations yield high FC–FC scores,
ρFCFC? Our results, comparing across a range of both G and
Be, are shown as heat maps for the Fixed Point (Figure 2A),
Hysteresis (Figure 2B), and Limit Cycle (Figure 2C) regimes. To
visualize the correspondence between points in G–Be space and
the resulting range of Jtot(t) (and hence accessible dynamical
regimes) they correspond to in themodel simulation (range taken
across time and nodes), we annotated this range in Figures 2D–F

for key selected points in each corresponding heat map—labeled
as “i,” “ii,” etc. For example, points toward the left of the G–Be
heat map correspond to low G and thus narrowing the range
of Jtot, while points near the top of the heat map correspond to
high Be and hence low baseline inputs; hence points labeled “i”
correspond to low and narrow ranges of Jtot, as annotated to the
bifurcation diagrams in Figures 2D–F.

We first note a wide range of ρFCFC in all cases, indicating
that model performance depends strongly on the local response
to inputs, G and Be, and thus the types of dynamical regimes
available to the nodes of the coupled network. We also see that
each dynamical regime exhibits characteristic regions of G–Be
space in which there is high FC–FC correspondence (colored red
in Figures 2A–C), which reaches as high as ρFCFC = 0.52 (for
the Fixed-Point regime), ρFCFC = 0.50 (Hysteresis regime), and
ρFCFC = 0.56 (Limit-Cycle regime). All three model regimes can
capture FC better than the direct correlation between SC and FC,
ρSCFC = 0.42, indicating a benefit of accounting for distributed
dynamics via coupled dynamical equations in capturing FC.
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FIGURE 2 | Model performance is highly sensitive to the types of dynamical features available to the coupled dynamical network, with high FC–FC found near

bifurcations and where external inputs have strong dynamical responses. (A–C) FC–FC score between model and data is plotted as a heat map in G–Be space for the

three model regimes considered here (see text): (A) “Fixed-point” regime, (B) “Hysteresis” regime, and (C) “Limit-cycle” regime. Corresponding Jtot–E bifurcation

diagrams [cf. Equation (4)] for each regime are shown in the right-hand panels (D–F), showing stable E fixed points (solid), unstable E fixed points (dotted), and minima

and maxima of limit-cycle oscillations (solid lines with shading). Dashed vertical lines represent the minimum Jtot corresponding to selected Be values. Gray horizontal

lines represent the range of Jtot values across regions and time for a sample simulation from the corresponding point in G–Be space annotated in (A–C). Parameter

values for each regime are in Supplementary Table S2.

Furthermore, model performance is consistent with, or higher
than recently reported results for mouse cortex using a reduced
Wong–Wangmodel (Wong andWang, 2006) in a bistable regime
[and using a Balloon–Windkessel BOLD filter (Friston et al.,
2000) and a linear correlation, ρFCFC]: 0.35 / ρFCFC / 0.50
(Melozzi et al., 2019).

To understand how the model can produce high FC–FC,
ρFCFC = 0.52 ± 0.03, in the Fixed Point regime (Figure 2A), we
start by exploring the qualitatively different types of input–output
responses in Figure 2D. At high excitatory firing threshold,
Be, and low coupling, G (labeled “i” in Figures 2A,D), nodes

can only access the relatively flat, low-E steady-state branch,
weakening inter-regional communication across the brain and
leading to poor FC–FC. A similar suppression of inter-regional
communication, and resulting low ρFCFC, occurs when the model
is confined to the upper branch at low Be and high G (labeled
“iii” in Figures 2A,D). In the intermediate region, labeled “ii” in
Figures 2A,D, we obtain high FC–FC scores, up to a maximum
ρFCFC = 0.52±0.03 (at Be = 3.3mV,G = 0.65mVs). Here, brain
areas can access the sharp gradient of the sigmoid-like stable
branch in E, and are thus highly sensitive in their response to
variations in the activity of neighboring brain regions. This gives
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us the somewhat surprising result that this very simple model,
in a regime in which regions respond to the aggregate activity
of their neighbors (but without any complex local dynamical
features like bifurcations or oscillations) can produce high
ρFCFC = 0.52, consistent with results reported recently using
more complex models (Melozzi et al., 2019). This is qualitatively
consistent with direct structural connections providing a strong
constraint on the resulting FC (Grandjean et al., 2017), with
non-direct interactions providing a more minor perturbation
(Robinson, 2012).

We next investigated a “Saddle Node” model regime [using
parameters from Borisyuk and Kirillov (1992)], that involves a
pair of saddle-node bifurcations with an intermediate bistable
region, shown in Figures 2B,E. We obtained qualitatively similar
results to the Fixed-Point regime analyzed above: ρFCFC is
low when nodes are confined to relatively flat low-E branch
(at low G and high Be, labeled “i” in Figures 2B,E) or
the high-E branch (high G and low Be, labeled “iii” in
Figures 2B,E), where responses to external inputs are weak.
Stronger FC–FC scores (e.g., a maximum ρFCFC = 0.50 ±

0.14 at Be = 3.7mV and G = 0.35mVs) again arise
in the intermediate region, where the local activity response
is most sensitive to driving inputs, Jtot (labeled “ii” in
Figures 2B,E). The difference now is the increased diversity
of supported dynamics: regions coexist between the stable
low-E and high-E states, and can switch between them.
This bistability leads to a greater dynamical repertoire of
regions in the network, including longer-timescale switching
(cf. Supplementary Figure S2), but this is not reflected in an
improved ρFCFC.

Finally, we investigated model dynamics in the neighborhood
of a stable limit cycle, separated by two Hopf bifurcations [model
parameters from Heitmann et al. (2018)], shown as a Jtot–E
bifurcation diagram in Figure 2F. As for the two regimes studied
above, when nodes are confined to a relatively flat stable branch,
labeled “i” and “v” in Figures 2C,F, FC–FC scores are low. For a
similar reason, we also find low FC–FC when nodes are confined
to a limit-cycle oscillation (labeled “iii” in Figures 2C,F), where
nodes have a restricted ability to respond to their inputs in a way
that their neighbors canmeaningfully respond to [since nodes are
coupled via E, cf. Equation (3)]. But the heat map in Figure 2C

reveals two regions of G–Be space with high ρFCFC, labeled “ii”
and “iv.” In the region labeled “ii” (e.g., ρFCFC = 0.38 ± 0.03
at Be = 2.8mV, G = 0.45mVs), nodes sit on a stable branch
which has a small but sufficient curvature to enable local activity
to respond, albeit weakly, to inputs from connected regions.
But the best fits to data, reaching ρFCFC = 0.56 ± 0.04 (at
Be = 1.5mV, G = 0.7mVs), are found in the region labeled
“iv” in Figures 2C,F. In this region of Be–G space, nodes can
access two distinctive types of dynamics: the limit-cycle regime
(at low Jtot) and the high-E fixed-point attractor (at high Jtot).
High FC–FC scores are also obtained when nodes can also access
the low-E stable branch (at high G and high Be). Importantly, the
high-E branch at high Jtot has a relatively sharp dependence on
Jtot, a feature that is common to obtaining high-ρFCFC scores in
all three model regimes. Together, our analyses in this section
demonstrate the importance of a model that allows nodes to

respond sensitively to inputs from their network neighbors for
reproducing FC.

3.1.1. Interpreting Simulated Dynamics in Terms of

Bifurcation Diagrams
Bifurcation diagrams provide an understanding of the dynamical
regimes accessed by individual nodes, and the way in which
they respond to changes in inputs, information that can
guide understanding of the complex distributed dynamics that
result from a full model simulation. For the Limit-Cycle
regime, simulated multivariate time series and corresponding FC
matrices are plotted in Figure 3 for points labeled “ii,” “iii,” and
“iv” in Figures 2C,F. In “ii,” nodes are confined to the low-E
stable branch and, accordingly, the dynamics consist of noisy
deviations from a low-E stable fixed point (Figure 3D). These
perturbations can drive changes in structurally connected nodes,
yielding weak pairwise correlations shown in Figure 3A. In “iii,”
when nodes are mostly confined to the limit cycle and ρFCFC is
low, most nodes exhibit oscillations (with some longer-timescale
deviations, cf. Figure 3E), and a minority of other nodes
(situated near the low-Jtot Hopf bifurcation) move between noisy
deviations from the low-E stable branch and oscillatory limit-
cycle dynamics. This results in very high pairwise correlations
between groups of synchronized oscillatory nodes, r > 0.8,
such that the underlying structural connections play less of
a role in shaping the pairwise correlation structure, resulting
in a low FC–FC score. In “iv,” with the highest ρFCFC, the
Hopf bifurcations facilitate complex spatiotemporal dynamics
shown in Figure 3F. While many nodes spend most of the
simulation near the high-E stable branch (those with high Jtot),
we observe periods of time during which groups of nodes
(near the Hopf bifurcation) display synchronized oscillations,
embedded in globally complex and distributed dynamics on
longer timescales. These analyses demonstrate how analyzing the
response of local nodes to inputs, as ranges of Jtot in a bifurcation
diagram (as in Figures 2D–F), can ground an understanding
of the complex distributed dynamics that result from the full
coupled model, which can be visualized effectively as heat maps
(Figure 3).

3.1.2. Resolving Inter-regional Differences in Inputs
The variation in qualitative dynamics across individual brain
areas in the multivariate time series plotted in Figures 3D–F

indicates that different network elements are accessing different
dynamical regimes permitted by the model, resulting from
substantial variability in the Jtot(t) experienced by different nodes.
Since all nodes are governed by the same dynamical rules, and,
hence, the same bifurcation diagrams, we can annotate Jtot(t)
ranges onto a common bifurcation diagram to understand how
the dynamics of individual regions are governed by different
types of inputs from their connected neighbors. That is, rather
than plotting just the overall range of Jtot (from the minimum
to the maximum across all nodes), as in Figures 2D–F, we
can resolve the individual ranges of Jtot experienced by each
individual node on the Jtot–E bifurcation diagram. An example
is shown for the Limit-Cycle regime at “iv” in Figure 4A [where
we have plotted Je instead of Jtot, equivalently, for a fixed Be =
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FIGURE 3 | Different dynamical features of the limit-cycle regime yield very different dynamics, including noisy deviations about a stable fixed point, synchronous

oscillations, and a complex distributed dynamics featuring intermittent synchronization with high FC–FC. Here, we investigate simulated time series (lower row) and

functional connectivity matrices (upper row) for three regions in Be–G space annotated “ii,” “iii,” and “iv” in Figure 2. (A–C) Simulated functional connectivity matrices

are plotted for “ii,” “iii,” and “iv,” respectively. (D–F) Simulated E time series are plotted as a node × time heat map (or “carpet plot” Aquino et al., 2020) for all brain

regions for “ii,” “iii,” and “iv,” respectively. Colored bars label the six cortical divisions listed in Supplementary Table S1. In all plots, nodes are ordered as per

Supplementary Table S1.

1.5mV, cf. Equation (4)]. We see how, even with fixed dynamical
rules, the range of Je experienced by individual nodes varies
markedly. Some regions have low Je across the simulation, like the
dorsal retrosplenial area, RSPd (annotated in Figure 4A), and,
therefore, only display oscillations, as plotted in Figure 4B. Other
regions with high Je across the simulation, like the posterior
parietal association areas, PTLp (annotated in Figure 4A), are
confined to the stable high-E branch across the full simulation
and display dynamics consistent with noisy deviations from a
fixed point, as shown in Figure 4B. Regions like the ventral
retrosplenial area, RSPv (annotated in Figure 4A), span the
Hopf bifurcation, and thus exhibit more complex patterns that
contain both oscillatory dynamics and noisy excursions about
a stable fixed-point, depending on fluctuations in inputs, Je(t).
The short samples of E(t) for six annotated Medial regions in
Figure 4B reveal some of these dynamics, including dynamic
phase relationships between the oscillatory populations. These
findings demonstrate the usefulness of interpreting the dynamics
of coupled mass models in terms of time-varying inputs to the
constituent populations.

3.2. Understanding Heterogeneity in Local
Dynamical Rules
Above, we used bifurcation diagrams to show that complex
distributed dynamics in a neural-mass model can be understood
in terms of the responses of individual regions to inputs

from their connected neighbors. Despite equivalent local
dynamical rules, and hence identical bifurcation diagrams
for all brain regions, we found substantial inter-regional
variability in accessible dynamical regimes and resulting activity
dynamics, due to differences in structural connectivity and
resulting Je(t). In this section, we aim to understand the
effect of varying the local dynamical rules themselves, by
incorporating spatial heterogeneity in the properties of local
cortical circuits (via a corresponding variation in model
parameters). Specifically, we varied excitatory and inhibitory
coupling strengths of individual brain areas according to
excitatory and inhibitory cell-density data (Erö et al., 2018). We
focused on the Limit Cycle regime of the W–C model described
above, which displayed the richest dynamical repertoire and
highest ρFCFC. As described in section 2, we used relative
variations in excitatory and inhibitory cell densities across
cortical areas to define a corresponding variation in Re and
Ri, which proportionally adjust coupling parameters—wii, wie,
wei, wee—across brain areas. Setting Re = Ri = 0 for all
areas recovers the homogeneous model studied above [see
Equation (5) for details]. This simple formulation allows
us to understand how varying the excitatory and inhibitory
coupling parameters across areas, in accordance with underlying
excitatory and inhibitory cell densities, shape the dynamical
responses of individual areas to inputs, and, hence, the resulting
model dynamics.
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FIGURE 4 | Resolving different ranges of inputs, Je, experienced by different network nodes allows us to understand their variable dynamical behavior in a coupled

network model. Here we focus on the point labeled “iv” in the Limit-Cycle regime (Figures 2C,F), Be = 1.5mV, G = 0.7mVs, in which nodes differ substantially in their

inputs, Je, and hence their resulting dynamics. (A) Bifurcation diagram for E and a function of Je (as Figure 2F), with ranges of net excitatory drive, Je, across the

model simulation annotated for each brain region (colored according to the six labeled divisions). All regions are ordered according to Supplementary Table S1, and

are labeled for the six Medial regions, which are plotted in (B). (B) E time series for the six Medial regions—PTLp, VISam, VISpm, RSPd, RSPv, and RSPagl—shown

for the final 1 s of the simulation.

FIGURE 5 | Variations in excitatory and inhibitory cell density modify the dynamical regimes accessible to cortical regions. We model the effect of variations in

excitatory and inhibitory cell density via perturbation parameters Re and Ri , respectively, as defined in Equation (5). Relative to the nominal bifurcation diagram,

Re = Ri = 0 (black), we investigate variations in −0.1 ≤ Re ≤ 0.1 and −0.1 ≤ Ri ≤ 0.1. Four types of variation were investigated: (A) Re only (Ri = 0); (B) Ri only

(Re = 0); (C) Re and Ri , such that Re = Ri ; and (D) Re and Ri , such that Re = −Ri . The legend indicates values of Re.

3.2.1. Levels of Excitation and Inhibition Perturb

Bifurcation Diagrams
To understand how variations in Re and Ri affect model
dynamics, we first analyze how these parameters shape the
Jtot–E bifurcation diagrams for an individual area. The effect
of ±10% variations to coupling parameters (corresponding to
the ranges −0.1 < Re < 0.1 and −0.1 < Ri < 0.1),
are shown as Jtot–E bifurcation diagrams in Figure 5, varying
just Re (Figure 5A), just Ri (Figure 5B), Re and Ri together

with Re = Ri (Figure 5C), and Re and Ri such that Re =

−Ri (Figure 5D). We find that even these relatively small, ≈
10%, perturbations have a substantial effect on the dynamical
responses of individual areas, affecting: (i) the range of Jtot
over which model exhibits stable oscillations; (ii) the oscillation
amplitudes themselves; and (iii) steady-state activity levels. As
shown in Figure 5, cortical areas with a higher excitatory cell
density, Re, have higher-amplitude oscillations, a wider range
of Jtot over which stable oscillations are exhibited, and, for the

Frontiers in Computational Neuroscience | www.frontiersin.org 9 April 2022 | Volume 16 | Article 847336

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Siu et al. Dynamical Understanding From Mouse Models

same Jtot, increased activity, E, in the upper branch. Different
changes result from modifying the inhibitory cell density, shown
in Figure 5B: increasing Ri shifts the same bifurcation and fixed-
point structure to higher Jtot (equivalent to raising the firing
threshold, Be). That is, regions with higher inhibitory cell density,
Ri, require a greater aggregate input, Je, to produce the same
dynamics. Varying both Re and Ri, shown in Figures 5C,D,
yields combinations of the individual perturbations from Re and
Ri individually. These results demonstrate how relatively small
variations in excitatory and inhibitory coupling parameters can
have large effects on the bifurcation structure and dynamical
regimes exhibited by local cortical regions. The effects are more
dramatic for Re and Ri values in the range from−0.5 to 0.5, where
the Hopf bifurcations can be removed altogether from the Limit
Cycle regime (Supplementary Figure S3), or additional stable
states can be added via saddle-node bifurcations in the Hysteresis
regime (Supplementary Figure S4).

3.2.2. Understanding Mouse Cortical Model

Dynamics Constrained by Excitatory and Inhibitory

Cell Densities
In the heterogeneous model, individual different brain areas
differ both in their Jtot values that they receive from their coupled
neighbors (due to differences in their structural connections), but
also have different dynamical rules, due to different individual
combinations of Re and Ri values. As demonstrated above for
the homogeneous model, this understanding of the dynamical
responses of individual brain areas to inputs from across the
network is crucial to guiding understanding of the complex,
distributed dynamics of the full coupled model. In this section,
we explore how the impact of local variations in Re and Ri
can be visualized and used to understand the dynamics of the
full coupled model. Recall that our heterogeneous model is
formulated with a single new parameter, σ , that defines how
strongly relative differences in excitatory and inhibitory cell
densities are mapped to corresponding changes in the model’s
coupling parameters (Equation 6). For the Limit-Cycle regime,
we investigated how FC–FC scores change as we introduce a
greater degree of inter-areal heterogeneity, σ . The variation in
ρFCFC as a function of σ across the range 0 ≤ σ ≤ 1 is
shown in Figure 6E. We did not find a substantial increase in
ρFCFC when incorporating heterogeneity, σ > 0, although there
was a modest improvement relative to the homogeneous model
(σ = 0) for σ = 0.2, yielding ρFCFC = 0.60 ± 0.05. Testing
this result against a null distribution (obtained by repeating the
procedure but with randomly permuted excitatory and inhibitory
cell-density data) using a permutation test yielded p ≈ 0.15,
indicating that ρFCFC = 0.60 does not constitute a significant
improvement relative to the homogeneous model (see section 2
for details). As we discuss later, this result may be contributed to
the small number of regions in the model, the simplicity of the
dynamical equations, or the dominance of SC in constraining FC
in the anesthetized mouse (Grandjean et al., 2017).

While we did not find evidence of a significant improvement
in FC–FC score from a simple incorporation of heterogeneity,
our main aim was to demonstrate how tools from dynamical
systems can help to understand the complex coupled dynamics

of such a spatially heterogenous model. We used the point,
σ = 0.2, inferred above as a suitable example for this purpose.
With σ = 0.2, we plotted Je–E bifurcation diagrams for all
brain regions on the same plot in Figure 6A. The plot shows
how differences in excitatory and inhibitory cell densities results
in different bifurcation diagrams, that correspond to similar
qualitative changes as analyzed in Figure 5 above. Specifically,
brain regions now differ substantially in their: critical values, Je,
that separate limit cycle from fixed-point dynamics; ranges of
Je in which oscillations are stable; oscillation amplitudes; and
fixed-point activity levels, E, in the upper branch (for a given Je).
Compared to the homogeneousmodel, two regions with the same
input, Je, no longer indicates that they will be subject to the same
dynamical rules.

To understand how these changes in local dynamical rules
affect the resulting cortical dynamics, we next plotted the range
of Je that each node experiences across the simulation. As
shown in Figure 6B, this can be represented as a horizontal
line, distinguishing Je values corresponding to what stable
dynamical feature—“limit cycle” or “fixed point”—according to
each region’s individual bifurcation structure. This results in a
richer dynamical landscape for themodel: some brain regions can
access both stable limit cycle and fixed-point dynamics, others
can only access the high-E fixed-point equilibrium, while others
can access just the limit-cycle attractor. It is useful to connect
the range of dynamical regimes each region accesses across the
simulation, shown in Figure 6B, with the E dynamics themselves,
shown in Figure 6C. We can clearly see the high-E regions on
the upper stable branch, as well as the more complex intermittent
oscillations of regions that can access limit-cycle dynamics. The
functional connectivity matrix from this simulation is shown in
Figure 6D. This representation of pairwise correlations in the
model dynamics hides much of the richness of the individual
time series themselves (Figure 6C), and the dynamical rules that
underlie them (Figures 6A,B). The ability to represent qualitative
dynamical regimes of individual regions in a coupled network
model—as Je–E bifurcation diagrams with individual ranges of
Je explored for each region—provides a powerful illustration of
the dynamics supported by the coupled components of a complex
networked dynamical model.

4. DISCUSSION

In this article, we developed a neural-mass model of the
mouse cortex. We showed how bifurcation diagrams can be
used to understand how regional differences in dynamics result
from differences in inputs, Jtot, and delineated the types of
dynamical regimes that yield good fits to experimental functional
connectivity. We first analyzed a homogeneous model in which
all regions are governed by identical dynamical rules to show
how regional variations in dynamics result from differences in
inputs (driven by differences in structural connectivity). We then
extended this treatment to a heterogeneous model in which
the bifurcation structures themselves vary across regions due
to variation in local excitatory and inhibitory cell densities.
Our results provide a useful framework for understanding the
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FIGURE 6 | Modeling spatial variation in local excitatory and inhibitory cell densities produces complex distributed dynamics. (A) Bifurcation diagrams are plotted for

all cortical areas according to their excitatory and inhibitory cell densities. Regions are colored according to their labeled anatomical grouping and the homogeneous

case (Re = Ri = 0) is shown in black for comparison. (B) The type of equilibrium dynamics displayed by a given cortical region, limit cycle (blue) or fixed point (red), is

plotted as a function of Je − Be for all cortical regions for the range of Je − Be they experience across the model simulation. Nodes are ordered as per

Supplementary Table S1 and shading reflects the six anatomical groupings labeled in A. Dashed lines shown at the top correspond to the uniform case

(Re = Ri = 0) for comparison. (C) Simulated time series for all brain areas are plotted as a heat map. Colors annotated to the right label the six anatomical groupings

listed in A. (D) Simulated functional connectivity matrix. (E) FC–FC score as a function of the scaling parameter, σ , Equation (6). Results are shown for the model

constrained by excitatory and inhibitory cell-density data (blue) and the permutation-based null distribution shown as mean ± standard deviation (red).

mechanisms that underlie complex simulated model dynamics,
using a combination of local bifurcation diagrams (annotated
with ranges of inputs for different regions) and visualizations of
the multivariate time-series dynamics [as “carpet plots” (Aquino
et al., 2020)]. These analyses will be particularly important for
understanding how the brain’s microscale circuits give rise to
the complex distributed dynamics observed in brain-imaging
experiments. A common scientific goal of modeling a system
is to accurately reproduce important properties of it, while also
gaining an understanding of how it does so. While successful
approaches have been demonstrated for maximizing goodness of
fit [sometimes optimizing large numbers of parameters (Wang
et al., 2019; Kong et al., 2021; Wischnewski et al., 2021)],
obtaining understanding is a key challenge for complex nonlinear
models of brain dynamics. The analyses and visualizations
demonstrated in this work aim to provide an understanding
of the model dynamics in terms of the dynamical regimes
that individual regions can access, shaped by their inputs from
coupled neighbors. Key analyses include: (i) assessing the role

of input parameters Be and G in shaping empirical FC fits in
terms of corresponding ranges spanned across Je–E bifurcation
diagrams (Figure 2); (ii) annotating of Je for all cortical regions
onto a common bifurcation diagram (Figure 4A); (iii) analyzing
perturbations to bifurcation diagrams due to variations in local
circuit properties (Figure 5); and (iv) annotating region-specific
qualitative equilibrium dynamics across ranges of Je for all
regions in a single plot (Figure 6B). As whole-brain models
develop to incorporate whole-brain datasets—including whole-
brain maps of gene-expression and cell types (Fulcher et al.,
2019; Yao et al., 2021)—these types of analyses will be crucial
to understanding how this complexity shapes the underlying
dynamical mechanisms, both at the level of individual brain
regions, and their distributed interactions.

While many studies focus on determining an optimal working
point, i.e., structural connectome scalingG, we find that the offset
(Be in the present model) is also critical in determining how local
regions respond to inputs, and hence the resulting ρFCFC. We also
found strong fits to empirical FC whenever brain regions were
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able to respond to inputs with sufficient gain, likely reflecting the
strong role of direct structural connections in shaping FC in the
anesthetized mouse (Grandjean et al., 2017). In particular, even
in the Fixed-Point regime, in which the model exhibits the most
constrained dynamical repertoire, we report ρ ≈ 0.52, consistent
with other published results in the literature [FC–FC scores up to
≈ 0.5 (Melozzi et al., 2019) using a Wong–Wang model (Wong
and Wang, 2006)]. Only a small improvement was found when
the model operated near a Hopf bifurcation, ρFCFC = 0.56.
This highlights the ability of simple dynamical features to capture
aspects ofmeasured dynamics, consistent with prior comparisons
demonstrating high performance of simple models (Messé et al.,
2014, 2015; Nozari et al., 2021). The results also demonstrate
the importance of comparingmodel performance against simpler
benchmarks, and justifying increased model complexity only if it
accompanies enhanced explanatory power.

Incorporating spatial variations in local dynamical rules
according to whole-brain maps has immense potential in
allowing us to connect new physiological understanding of
neural circuits to the whole-brain dynamics that they enable.
In this work, we incorporated spatial variations in excitatory
and inhibitory cell densities as a corresponding perturbation to
coupling parameters between E and I populations, with a single
scaling parameter, σ . However, there are alternative ways in
which this heterogeneity could be implemented and constrained
in future, for example, by allowing σ to differ for excitatory
(σe) and inhibitory (σi) populations. Incorporating more
detailed physiological data into correspondingly more complex
biophysical models (e.g., incorporating multiple inhibitory cell
types), brings further parametric freedom that needs to be
properly constrained from a combination of physiological and
neuroimaging data. Our approach for assessing the improvement
in ρFCFC after incorporating cell-density data involved a
permutation approach against randomized assignment of the
data to regions (preserving the match between e and i, but
permuting their assignment to brain regions), and did not reveal
a significant improvement relative to null gradients (p ≈ 0.15).
This may be due to the relatively small number of brain regions
included, and the focus on FC–FC as an evaluation metric rather
than a more comprehensive set of evaluations. Other ways of
assessing the improvement of the spatially heterogeneous model
could also be explored, such as testing the e : i ratio against
alternative spatial gradients [as Deco et al. (2021)], or taking an
optimization approach to estimate the optimal e and i gradients,
and then assess their similarity to the measured excitatory and
inhibitory cell-density data [as Wang et al. (2019)].

As our aim here was to demonstrate methods for
understanding the dynamics of coupled neural models with
heterogeneity using a simple modeling approach, many aspects
of the model could be improved in future work. First, we have
focused here on a specific simple biophysical model, the Wilson–
Cowan model (Wilson and Cowan, 1972, 1973; Cowan et al.,
2016), that allowed us to incorporate variations in excitatory and
inhibitory cell-density data. We have focused on the behavior
of the model in three specific dynamical regimes (a fixed point
with gain, hysteresis, and limit cycle), but the results should
be qualitatively applicable to those same dynamical regimes

of other models. However, we note that other models with
different dynamical features may display different behavior,
such as the Wong–Wang model (Wong and Wang, 2006; Deco
et al., 2013, 2021; Murray et al., 2017; Demirtas et al., 2019;
Wang et al., 2019), or models that incorporate cortico–thalamic
interactions (Wilson and Cowan, 1973; Robinson et al., 2015;
Lin et al., 2020; Müller et al., 2020). We also note that while
our aim here was to understand the model dynamics directly,
it is common practice to simulate a hemodynamic response,
such as the Balloon–Windkessel model (Friston et al., 2000) or
a more sophisticated hemodynamic response function (Aquino
et al., 2014). Simulating a slower hemodynamic response
would introduce challenges in mapping bifurcation diagrams
in E to the corresponding BOLD dynamics, and could lead
to substantial qualitative differences between the dynamics of
the neural model and the HRF-filtered dynamics. As a result,
our specific conclusions about model performance in different
dynamical regimes may not generalize to different choices of
hemodynamic responses, but this could be achieved in future
work by attempting to construct an effective bifurcation diagram
of the dynamics of the BOLD forward solution as a function of
the model parameters. We note, however, the body of evidence
showing improved performance of linear models over nonlinear,
biophysically informed models, in capturing the dynamical
properties of fMRI data (Messé et al., 2014, 2015), and a recent
finding that the performance of nonlinear neural mass models
can drop when including HRF (Nozari et al., 2021). This suggests
that, in the absence of thoroughly validated neural-mass models
at the level of population neural activity (Lin et al., 2020),
and a clearly demonstrated improvement of a BOLD forward
model, neural mass models may be more conservatively viewed
as a phenomenological means of capturing different types of
dynamics and dynamical interactions, for which our simple
approach, here, is valid and useful.

We also highlight our relatively simple treatment of structural
connectivity, as a binary adjacency matrix, even though estimates
of axonal connectivity strengths vary over at least four orders
of magnitude (Oh et al., 2014). It remains an open question
what greater structural connection “strengths” (approximated by
the number of axons connecting two brain areas), corresponds
to dynamically, e.g., faster connection speeds, a stronger effect
on local population mean dynamics, or some alternative type
of response. While the model here does not include time
delays (assuming fast inter-regional interactions on the timescale
of neural dynamics), they are likely to be crucial in shaping
the brain’s distributed dynamics (Petkoski and Jirsa, 2019)
and should be explored in future work. We next note a
major simplifying assumption in using a neural-mass model,
which involves representing the spatially continuous cortical
sheet as a set of 37 discrete cortical areas, abstracted away
from their physical embedding (Robinson, 2019). Given the
spatial resolution of modern mouse-brain maps, and the often
continuous spatial variation they reveal, it will be important to
develop models that accurately capture this physical continuity,
e.g., using a neural field approach (Robinson et al., 2003).

Finally, we highlight the limitation of evaluating our model
with respect to its ability to match only the linear correlation
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structure, FC, of the empirical dataset. fMRI data have a much
richer dynamical structure than is captured by the static FC,
including the dynamics of FC across a recording (Cabral et al.,
2017; Demirtas et al., 2019; Aquino et al., 2021; Deco et al., 2021)
and the organization of regional timescales (Sethi et al., 2017;
Shafiei et al., 2020). For example, despite producing very different
patterns in simulated time series, we found similar fits, ρFCFC,
across the Fixed-Point, Hysteresis, and Limit-Cycle regimes of
our homogeneous model, and when incorporating heterogeneity.
The more complex distributed dynamics, including intermittent
synchronization seen in carpet plots from the Limit Cycle regime
(Figure 3F) and when incorporating regional heterogeneity
(Figure 6C), qualitatively match the types of patterns seen in
empirical fMRI dynamics better than in the fixed-point regime.
This highlights the simplicity of the FC–FC score, ρFCFC, in
capturing only the pairwise linear correlation structure in the
data, and indicates the need for future work to perform a
more comprehensive evaluation. This should include similar
visualizations of model performance across Be–G space (as
Figures 2A–C), where the most distinctive models features for
reproducing a greater range of characteristics of fMRI dynamics
may be more clearly distinguished.

With the increasing availability of high-resolution
neuroscience data, in space and time, the need for tools to
provide interpretable accounts of their dynamics is pressing.
Our work demonstrates a range of useful tools to analyze the
behavior of coupled dynamical models of brain dynamics,
helping them to provide understanding of the dynamical
mechanisms that underpin their predictions. Our results
emphasize the importance of benchmark comparison (e.g., a
simple fixed-point model yields high FC–FC), visualization (e.g.,
very different dynamical patterns exhibited in carpet plots can
yield similar correlation structures in FC), and proper statistical
testing (e.g., while the heterogeneous model yields improved

FC–FC, it is not significantly better than repeating the process
on randomized data), practices that may help guide progress
in the field.
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