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Abstract 
While respiratory diseases such as COPD and asthma share many risk factors, most studies 
investigate them in insolation and in predominantly European ancestry populations. Here, we 
conducted the most powerful multi-trait and -ancestry genetic analysis of respiratory diseases 
and auxiliary traits to date. Our approach improves the power of genetic discovery across traits 
and ancestries, identifying 44 novel loci associated with lung function in individuals of East 
Asian ancestry. Using these results, we developed PRSxtra (cross TRait and Ancestry), a multi-
trait and -ancestry polygenic risk score approach that leverages shared components of heritable 
risk via pleiotropic effects. PRSxtra significantly improved the prediction of asthma, COPD, and 
lung cancer compared to trait- and ancestry-matched PRS in a multi-ancestry cohort from the 
All of Us Research Program, especially in diverse populations. PRSxtra identified individuals in 
the top decile with over four-fold odds of asthma and COPD compared to the first decile. Our 
results present a new framework for multi-trait and -ancestry studies of respiratory diseases to 
improve genetic discovery and polygenic prediction.  
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Introduction 
Respiratory diseases are leading causes of morbidity, mortality, and disability-adjusted life-
years globally. Chronic obstructive pulmonary disease (COPD) is the third leading cause of 
death globally, asthma is the most common chronic disease of childhood, and lung cancer is the 
leading cause of cancer deaths worldwide1–3.  
 
Existing models for predicting the risk of respiratory disease are limited and often do not 
consider environmental or genetic risk factors beyond smoking. For example, the Global 
Initiative for Chronic Obstructive Lung Disease (GOLD) classification system uses spirometry 
results to guide treatment and prognosis of COPD4; the asthma predictive index (API) 
determines the likelihood of pediatric asthma mainly based on family history information5; and 
lung cancer risk is primarily assessed by age and smoking history.  
 
While respiratory diseases such as COPD and lung cancer are strongly influenced by smoking, 
they are complex diseases that develop due to the influence of many environmental and genetic 
risk factors. For instance, cumulative non-smoking factors can better predict and stratify COPD 
risk compared to smoking alone6. Genetic factors also play an important role. Family-based 
studies estimate heritability at 40% to 60% for COPD and asthma7–9, respectively, and around 
18% for lung cancer10, indicating a substantial genetic component.  
 
Previous studies have shown that single-trait polygenic risk scores (PRS), which model the 
cumulative genetic risk using genome-wide association study (GWAS) summary statistics, can 
identify and stratify individuals with risk of respiratory diseases 11,12. While respiratory diseases 
share many comorbidities as well as genetic, clinical, and lifestyle risk factors, such as smoking 
exposure, most PRS to date have been constructed in the context of a single trait and ancestry 
group without modeling dense genetic correlations between traits and linkage disequilibrium 
(LD) and allele frequency patterns between ancestries.   

To address these limitations, we expanded genetic studies of spirometry and developed a novel 
multi-trait and multi-ancestry PRS approach that integrates genetic correlations between 
respiratory disease and auxiliary traits and LD patterns across diverse populations. This 
approach improves the power for genetic discovery across traits and the predictive accuracy of 
PRS for respiratory diseases, thereby providing a more comprehensive risk assessment tool 
that can be used in research contexts or potentially integrated into existing clinical models. 

Previous efforts have used multi-trait approaches to improve genetic discovery and prediction13. 
For example, multi-trait analysis of GWAS (MTAG) has demonstrated significant improvements 
in the power of detecting signals for psychiatric disorders, cardiomyopathies, and tobacco and 
alcohol use, among others 14–16. Multi-trait PRS constructed from a weighted sum of multiple 
cardiometabolic trait scores also predicts heart disease better than the single trait PRS17,18. 
Similarly, lung function PRS from two spirometry measurements–Forced Expiratory Volume in 
one second (FEV1) and the ratio of FEV1 to Forced Vital Capacity (FVC)–can improve the 
identification of heterogeneity when predicting asthma and COPD11,19. However, the majority of 
studies still report a single-trait PRS derived in cohorts of primarily European genetic ancestry. 
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This lack of diversity in genomic studies has been shown to greatly reduce the generalizability of 
prediction models and exacerbate healthcare disparities20. 
 
We hypothesize that the joint modeling of multi-trait and -ancestry information at the SNP level 
will enhance genomic discovery and prediction in respiratory diseases with the largest global 
disease burden and disparities. Specifically, we jointly model the genetic information of four 
ancestry groups with population labels and definitions based on training with genetic reference 
panels, including African (AFR), Admixed American (AMR), East Asian (EAS), and European 
(EUR)21,22. We also model eight strongly correlated traits–COPD, asthma, lung cancer, forced 
expiratory volume (FEV1), forced vital capacity (FVC), FEV1/FVC, smoking status, and smoking 
heaviness.  
 
To evaluate the utility of this approach for predicting respiratory diseases and interpreting 
genetic variant effects across traits and ancestries, we: 1) conducted the largest meta-analysis 
of lung function in East Asian populations and a comprehensive multi-trait meta-analysis of 
respiratory disease and related traits to significantly improve genetic discovery; 2) compared 
shared and distinct genetic architectures and effects by modeling pleiotropy across these traits; 
3) developed and validated the PRSxtra (cross TRait and Ancestry) method in the All of Us 
Research Program, modeling genetic correlations between traits and ancestry-specific LD and 
allele frequency patterns between populations; and 4) quantified PRSxtra prediction accuracy 
and case stratification of asthma, COPD, and lung cancer risk across multiethnic populations, 
especially those traditionally underrepresented in genetic studies, and compared it to single-trait 
and -ancestry PRS and clinical risk factors.  
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Results 
We aim to improve the power of genetic discovery and prediction of respiratory diseases
through multi-ancestry and multi-trait analyses of eight correlated traits - COPD, asthma, lung
cancer, spirometry (FEV1, FVC, FEV1/FVC), smoking status, and smoking heaviness in African
(AFR), Admixed (AMR), East Asian (EAS), and European (EUR) ancestry populations. We
conducted the largest meta-analysis GWAS of lung function in EAS to date and meta-analyzed
additional GWAS from the Global Biobank Meta-analysis Initiative, GWAS & Sequencing
Consortium of Alcohol and Nicotine (GSCAN), and multi-population genome-wide meta-
analyses of lung function and lung cancer. We then developed the most predictive PRS of
asthma, COPD, and lung cancer across populations using the strategy and datasets outlined in
Figure 1. 

Figure 1. Study design overview. Training PRS models consisted of three phases: Phase 1 =
multi-trait analysis, Phase 2 = multi-ancestry analysis, and Phase 3 = regularization to optimally
predict traits. We validated PRS in All of Us data for asthma, COPD, and lung cancer case
status. GBMI=Global Biobank Meta-analysis Initiative. LC/LF-GWMA=Lung Cancer/Lung
Function multipopulation Genome-Wide Meta-Analysis. KCPS-II=Korean Cancer Prevention
Study-II. TWB=Taiwan Biobank. GSCAN=GWAS & Sequencing Consortium of Alcohol and
Nicotine use. Genetically defined ancestry group labels are based on population reference
panels from the 1000 Genomes Project and Human Genome Diversity Project, as follows:
AFR=African, AMR=Admixed American, EAS=East Asian, EUR=European, and META=meta-
analysis across ancestries. 
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Largest genome-wide association study of lung function in the East Asian population identifies 
novel loci.  
 
Spirometry is a pulmonary function test that evaluates lung function. As continuous measures of 
lung function, they are useful traits for studying the heritable basis of respiratory diseases. 
However, the largest genetic studies of spirometry to date have been Eurocentric. To identify 
novel loci associated with lung function in understudied populations, we performed the largest 
GWAS to date of East Asian (EAS) ancestry individuals of FEV1, FVC, and FEV1/FVC, 
combining GWAS summary statistics from the Korean Cancer Prevention Study-II (KCPS2) and 
Taiwanese Biobank (TWB) (Supplementary Table 1, Methods)23–25. We conducted fixed-
effects inverse-variance weighted meta-analysis for the three continuous spirometry measures 
of lung function across 132,200 total individuals. We applied quality control filters (Methods) that 
resulted in 8 million unique single-nucleotide polymorphisms (SNPs) for meta-analysis.  
 
The meta-analysis identified 44, 73, and 31 independent loci for FEV1, FVC, and FEV1/FVC, 
respectively (Figure 2, Supplementary Figure 1-3). Of these, 44 are novel and have not been 
previously associated with each trait (Supplementary Table 2), including 25 novel loci for FVC, 
17 for FEV1, and 2 for FEV1/FVC. Among these novel loci, several were previously associated 
with height, including rs3782886 in BRAP (P=4.20×10-8, β=0.0219 with FEV1), rs7290267 near 
FLJ27365 (P=1.49×10-9, β=-0.0272 with FEV1), rs724016 in ZBTB38 (P=1.35×10-10, β=-0.0178 
with FVC), rs58744877 near GNAS (P=2.71×10-14, β=-0.033 with FVC), rs3176466 near 
CDKN2C (P=4.59×10-8, β=0.0236 with FVC), rs28839214 near RP11-361D14.2 (P=1.91×10-13, 
β=0.0197 with FVC), rs149580940 in FIBIN (P=7.89×10-10, β=0.0449 with FVC)26–28. rs3782886 
has also shown previous associations with other traits including alcohol use disorder, high-
density lipoprotein, and type 2 diabetes29–31.  rs724016 has also been shown to be associated 
with Crohn's disease32, and rs150971595 near GABBR1 (P=1.49×10-8, β=-0.0307 with FVC) 
associated with total cholesterol level and triglyceride levels33. Previous reported associations 
for each locus can be found in Supplementary Table 3.  
 

We combined the results of our EAS meta-analysis of lung function with the largest multi-
ancestry GWAS of lung function to date34. Incorporating results from KCPS2 and TWB resulted 
in 519, 526, and 476 total loci discovered for FEV1, FVC, and FEV1/FVC, respectively, of which 
131, 163, and 149 were not originally reported to be associated with each trait (Figure 2, 
Supplementary Figure 4-5). Significantly associated loci are reported in Supplementary Table 
4-6. 
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Figure 2. Meta-analysis results of spirometry in East Asian cohorts. Frequency and effect
size of risk alleles of 44, 73, and 31 index variants for FVC (a), FEV1 (b), and FEV1/FVC (c).
Novel associations are highlighted in red. Genes with large effect sizes are highlighted. d)
Results of our combined EAS meta-analysis of FEV1/FVC with the largest multi-ancestry GWAS
to date. The Manhattan plot of the previous multi-ancestry GWAS is shown in red on the bottom,
with yellow dots representing previously identified loci associated with FEV1/FVC. The
Manhattan plot of the meta-analyzed results of the previous study with our new EAS meta-
analysis is shown in blue on the top, with new loci annotated and indicated with black stars.
Gene names indicate the nearest gene to novel loci. 
 

 

Pervasive pleiotropic effects across respiratory traits and diseases inform shared components of
heritable risk 
Measures of lung function are known clinical risk factors for respiratory diseases such as
chronic obstructive pulmonary disease (COPD), asthma, and lung cancer. Using the largest
multi-ancestry GWAS summary statistics to date, we found that lung function (FEV1, FVC,
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FEV1/FVC), smoking behavior (smoking status and cigarettes/day), and respiratory diseases
(asthma, COPD, and lung cancer) were all genetically significantly correlated with each other
(P<0.05) with the exception of FVC and lung cancer (Figure 3a).   
 

 
Figure 3: Shared and distinct heritable components inform the molecular basis of trait
differences. a) Genetic correlations between traits (top) and heritability estimates (bottom)
analyzed in this study based on S-LDSC correlations. Colors indicate magnitude of correlation
and stars indicate degree of significance. Comparison of effect sizes of variants from GWAS on
EUR samples for (b) COPD vs. Cigarettes smoked per day (Cig/day) and (c) Lung cancer vs.
Cig/day. Effect sizes of variants on diseases (COPD and lung cancer) are on the x-axis and
effect sizes of variants on Cig/day are on the y-axis. Three distinct groups of variant effects
were identified by a Bayesian classifier in shared variants analysis, indicated by (colors) as
follows: variants significantly associated with both traits (red), variants significantly associated
with disease only (orange), and variants only significantly associated with Cig/day (navy). Solid
dots are variants confidently assigned to the group indicated by the color of the dots with
posterior probability >95%, while crosses are variants not confidently assigned to any of the
groups. The colored ellipse range indicates the 95% probability regions of the fitted bivariate
effect size distributions with each class. Nearest gene names are labeled on disease-specific
variants with the highest posterior probability for each gene. 
 
To examine the distinct and shared variants among respiratory diseases and auxiliary traits, we
first evaluated the consistency of lead SNPs between the traits. Many variants demonstrated
pleiotropic effects associated with multiple traits. In particular, we explored the shared and
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distinct genetic etiology among the three respiratory disease traits (asthma, COPD, and lung 
cancer), risk factors (smoking status, smoking heaviness), and a measure of lung function 
(FEV1/FVC). For each trait pair, we selected variants significantly associated with either or both 
of the traits. We computed the linear slopes of variant effect sizes within each category using an 
expectation-maximization (EM) algorithm, which typically revealed more than one linear trend 
and divergent slopes (Methods, Figure 3, Supplementary Figure 6-8). For example, genetic 
variants associated with the amount and frequency of smoking have mostly distinct effects from 
asthma. This suggests that there is no uniform explanation of the genetic mechanisms of the 
two traits across those variants.  
 
We then implemented a Bayesian algorithm, linemodels35, to classify the variant effect sizes into 
confident associations with trait 1, trait 2, or both traits. We used ancestry-specific (AFR, EAS, 
EUR) as well as meta-analyzed multi-ancestry GWAS results to identify variants having 
confident associations with a posterior probability above 0.95. We found 31 variants that were 
confidently associated with COPD and 108 with lung cancer, which are distinct from those 
associated with smoking heaviness, as measured by Cigarettes/Day, in EUR. No variants were 
confidently associated primarily with both traits or with smoking heaviness only 
(Supplementary Table 7-8). Two variants on chromosome 8 near the GULOP pseudogene, 
rs113623975 and rs56223946, were predominantly associated with both COPD and lung 
cancer.  
 
When we further investigated variants with predominant effects on lung cancer across EAS, 
EUR, and the multi-ancestry meta-analysis GWAS results, we identified 7 variants from TERT 
appearing in all three groups and 6 variants significant only in the meta-analysis results 
(Supplementary Figure 9-10). These include rs34517439 from DNAJB4, rs11778371 from 
CHRNA2, and 4 other variants within or near TERT.   
 
PRSxtra jointly models multi-ancestry and multi-trait effects to predict diseases and 
exacerbations.  
 
To develop PRSxtra, we combined the results of our new GWAS meta-analysis of lung function 
in EAS with the largest and most diverse GWAS of COPD, asthma, lung cancer, and smoking 
(Figure 1) to conduct ancestry-specific multi-trait GWAS (MTAG)13. We then used PRS-CSx to 
jointly model trait-specific MTAG results across ancestry groups to derive candidate scores36,37 
to include in the final PRSxtra. 
 
First, MTAG resulted in a greater number of significant associations and loci discovered across 
traits (Supplementary Table 9). AMR and EUR ancestry-specific MTAG analysis resulted in the 
largest gains. For example, FVC in AMR and COPD in EUR cohorts had the greatest 
proportional increases in the number of lead SNPs discovered, from 2 to 34 (17-fold) and 27 to 
441 (16-fold), respectively. In total, MTAG identified 609 more lead SNPs across all traits and 
ancestry groups. We assessed the gain in power for each run of MTAG by the increase in mean 
χ2 statistic, where all but five GWAS (all of which were ancestry-specific spirometry GWAS) 
increased in power (Supplementary Table 9).  
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Next, we aggregated the summary statistics from MTAG to derive multi-trait and multi-ancestry 
polygenic risk scores. For each trait, we used PRS-CSx to jointly model trait-specific MTAG 
summary statistics across ancestry groups to derive a total of 39 candidate scores for 
individuals in the All of Us Research Program (AoU), a longitudinal cohort study continuously 
enrolling adults in the US with genotype, self-reported, and linked health record data. The 
program places a strong emphasis on including diverse populations that have traditionally been 
underrepresented in biomedical research. The individuals from AoU are independent from the 
cohorts in which the GWAS was obtained. For each trait, we randomly split participants who 
passed quality control into 70% for training and 30% for validation (Figure 1, Methods, 
Supplementary Table 10-13). We then used ridge regression to calculate linear combinations 
of the scores in the training set (Supplementary Table 14-16, Supplementary Figure 11-13).  
 
We evaluated the performance of PRSxtra in the held-out validation cohort for predicting 
asthma (Ncases=9450, Ncontrols=64070), COPD (Ncases=4560, Ncontrols=66605), and lung cancer 
(Ncases=578, Ncontrols=70600) compared to a single ancestry- and trait-matched PRS (Figure 1, 
Supplementary Table 10). The validation cohort includes individuals of AFR, AMR, EAS, EUR, 
MID, and SAS genetic ancestries. In this multi-ancestry validation cohort, ancestry- and trait-
matched PRS and PRSxtra were significantly correlated with each other (P<0.0001), with 
r=0.444, r=0.185, and r=0.120 for asthma, COPD, and lung cancer, respectively.  
 
PRSxtra alone predicted asthma, COPD, and lung cancer more accurately than the trait- and 
ancestry-matched PRS alone (P<0.0001) in the multi-ancestry validation cohort 
(Supplementary Table 17-19). For asthma, the AUC improved from 0.543 (95% CI=[0.537, 
0.549]) to 0.563 (95% CI=[0.557, 0.569]) using PRSxtra versus PRS. For COPD, AUC improved 
from 0.540 (95% CI=[0.532, 0.549]) to 0.589 (95% CI=[0.581, 0.597]). For lung cancer, AUC 
improved from 0.539 (95% CI=[0.516, 0.561]) to 0.592 (95% CI=[0.569, 0.616]) (Figure 3). 
Among individuals with each disease, the median percentile of PRSxtra was much higher than 
PRS (Supplementary Table 20). We observed the largest difference between scores in lung 
cancer, where cases had a median PRSxtra in the 64th percentile compared to the 57th 
percentile for PRS. Controls had a median PRSxtra and PRS both in the 50th percentile. The 
AMR population had the largest improvement in disease prediction between PRS and PRSxtra. 
For asthma, AUC improved from 0.509 (95% CI=[0.493, 0.524]) to 0.630 (95% CI=[0.616, 
0.645]). For COPD, AUC improved from 0.540 (95% CI=[0.532, 0.549]) to 0.589 (95% 
CI=[0.581, 0.597]). These differences could reflect the increased EAS GWAS power for 
spirometry and the relatively low genetic divergence between EAS and AMR groups. However, 
these new ancestry-specific GWAS do not explain the most phenotypic variation when 
predicting these traits. Specifically, we further assessed the robustness of PRSxtra by 
conducting leave-one-out analyses for predicting COPD and asthma in the AMR cohort, where 
there were the largest improvements in prediction. Removing any single score did not 
significantly change the prediction ability of PRSxtra. For example, removing the EUR lung 
cancer candidate PRS resulted in the largest decrease in AUC of -0.0175 for predicting COPD, 
and removing EUR FVC candidate PRS resulted in the largest decrease in AUC of -0.000421 
for predicting asthma.  
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PRSxtra improved overall stratification in the multi-ancestry validation cohort compared to PRS.
In the bottom and top deciles of PRSxtra, asthma prevalence was 8.4% and 16.8% (+8.4%),
respectively, versus 9.0% and 14.1% (+5.1%) for PRS. For COPD, the prevalence in the bottom
and top deciles of PRSxtra was 2.8% and 9.1% (+6.3%), respectively, compared to 4.6% and
7.6% for PRS (+3.0%). Lung cancer prevalence in the bottom and top deciles of PRSxtra was
0.5% and 1.4% (+0.9%), respectively, compared to 0.46% to 0.90% (+0.44%) for PRS
(Supplementary Figure 14, Supplementary Table 21-23). PRSxtra was also better at
identifying individuals with the highest risk of disease. For example, individuals in the top decile
of PRSxtra had 3.5 times the odds of COPD compared to those in the first decile, while PRS
had 1.7 times the odds. The improvement was most apparent in the AMR population for asthma
and COPD. Individuals in the top decile of PRSxtra had 4-fold odds of asthma and COPD
compared to the first decile, whereas the top decile of PRS had almost the same odds of
asthma and COPD compared to the first decile (Supplementary Figure 14, Supplementary
Table 24-26).  
 

Figure 4. PRSxtra significantly improves prediction for several respiratory diseases
compared to PRS and clinical risk factors. Diseases include: asthma (a), COPD (b), and lung
cancer (c) in the full multi-ancestry held-out validation set and in ancestry-specific subgroups.
Green dots indicate the performance of PRS or PRSxtra alone to predict diseases, blue dots
represent the performance of the combined model with incremental variables added from sex
and age, family history (for asthma) or smoking status (for COPD and lung cancer), and PRS or
PRSxtra in gradually darker shades. The full validation set included individuals of AFR, AMR,
EAS, EUR, MID, and SAS predicted genetic ancestry background.  
 
We compared the performance of PRS and PRSxtra alone to a joint model of the strongest
clinical risk factors for each disease, i.e. family history of asthma, and smoking for COPD and
lung cancer. Clinical risk factors generally provided the largest improvement in performance
from sex and age. In the multivariable model, PRSxtra remained significantly better than PRS
for predicting asthma in the multi-ancestry validation cohort and for predicting asthma and
COPD in the AMR subgroup. For lung cancer, the risk scores do not add additional information
to the multivariable model of sex, age, and smoking status (Figure 4, Supplementary Table
17-19).  
 
To investigate performance in clinical subgroups, we tested the association of PRSxtra with
COPD and lung cancer in subgroups of never and ever smokers, and of asthma in individuals
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with and without family history. We found similar performance between subgroups 
(Supplementary Table 17-19, Supplementary Figure 15-17). PRSxtra was positively 
associated with COPD and asthma exacerbations. PRSxtra predicted COPD exacerbation 
significantly better than PRS in the validation cohort, with AUC increasing from 0.572 (95% 
CI=[0.558-0.586]) to 0.600 (0.587-0.614), However, PRSxtra did not significantly improve 
prediction of asthma exacerbation compared to PRS (Supplementary Table 27). 
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Discussion 
 
In this study, we conducted the most powerful multi-trait and multi-ancestry genetic analysis of 
respiratory diseases and comorbid traits to date. Our novel study framework contrasts with 
traditional genetic studies which typically analyze a single trait within a single population, 
thereby overlooking the genetic correlations between traits and LD patterns across diverse 
populations.  
 
Our innovative approach, which iteratively models genetic correlations across traits and 
ancestry groups, significantly increases the power to detect novel genetic associations and 
enhances disease prediction and risk stratification, especially in non-European ancestry 
populations. Applying MTAG resulted in a greater number of significant associations and loci 
discovered across traits, with the largest gains in AMR and EUR ancestry-specific analyses. We 
also conducted the largest meta-analysis of lung function to date in EAS to identify 44 novel loci 
associated with lung function. Of these, several are associated with lipid levels such as high-
density lipoprotein, total cholesterol level and triglyceride levels33 , as well as with diseases such 
as type 2 diabetes and Crohn's Disease, which supports previously documented relationships 
between lung dysfunction and disease risk and progression 38–40.  
 
Given that asthma, COPD, lung cancer, lung function, and smoking traits are genetically 
correlated with each other, we further investigated the distinct and shared variants among the 
respiratory diseases and auxiliary traits. We found variants with predominant effects on lung 
cancer across EAS, EUR, and the multi-ancestry meta-analysis GWAS results, with 7 variants 
from TERT appearing in all three groups and 6 variants significant only in the meta-analysis 
results from DNAJB4 and CHRNA2. All three genes have been shown to have a role in 
respiratory function: 1) TERT mitigates oxidative stress and chronic inflammation, which are 
essential factors in the disease progression of COPD. It also prevents premature cellular aging 
and apoptosis in lung epithelial cells to sustain respiratory function. Polymorphisms in TERT 
have previously been associated with pulmonary fibrosis41 as well as COPD risk in an EAS 
population42. There is also evidence of strong gene-environment interaction between smoking 
and telomerase mutations, where carriers who do not smoke predominately develop pulmonary 
fibrosis, while smokers are also at risk for developing emphysema (alone or in combination with 
pulmonary fibrosis)41.  2) CHRNA2, which encodes a subunit of nicotinic acetylcholine 
receptors, plays a role in respiratory behavior and function by influencing nicotine addiction and 
smoking habits43,44., but has a smaller effect than the CHRNA3-CHRNA5 cluster. While 
CHRNA2 affects respiratory function by modulating the neural pathways involved in nicotine 
response, the CHRNA3-CHRNA5 cluster has a stronger and more consistently observed 
association with Cig/day45,46. 3) DNAJB4, a part of the Hsp40 heat shock protein family, plays a 
crucial role in protein folding and cellular stress response. This protein helps prevent misfolded 
protein aggregation and is upregulated under oxidative stress, which is common in respiratory 
failure. DNAJB4 enhances protein quality control and stress response, potentially reducing 
disease severity and progression by maintaining lung function under chronic stress47. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.25.24312558doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.25.24312558
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

In our investigation of pleiotropic effects across pairs of traits, we applied linemodels to dissect 
the pleiotropic effect of variants. Using this method, we identified unique genetic features of lung 
cancer and COPD not mediated by one of their leading risk factors - smoking. The `linemodels` 
algorithm, tailored for pleiotropy dissection, uses a Bayesian framework to probabilistically 
cluster genetic variants based on their linear relationships in effect sizes across two outcomes. 
This method optimizes model parameters using the EM algorithm and Gibbs sampling, 
accommodating correlated estimators due to sample overlaps. In contrast, techniques like Non-
negative Matrix Factorization (NMF) decompose data into non-negative factors to capture latent 
structures without modeling direct linear relationships, highlighting the unique focus of 
linemodels on linear effect size clustering in genetic studies. 
 
We then developed a cross-trait and -ancestry score, PRSxtra, to model the genetic correlations 
between related traits and ancestry-specific LD and allele frequency patterns between 
populations. While PRSxtra and the trait- and ancestry-matched PRS are significantly 
correlated, PRSxtra demonstrates significantly better prediction and stratification for respiratory 
diseases and disease exacerbations. Previous studies have shown the utility of integrating large 
and diverse sources of data to construct PRS. For example, GPSmult was calculated by 
weighting the sum of multiple cardiometabolic trait components, which predicts heart disease 
better than the single trait PRS17. Similarly, PRS derived from two spirometry measurements 
predict asthma and COPD11. Recent developments such as PRSmix and BridgePRS jointly 
model summary information from multiple traits and ancestry groups at the score level but do 
not account for genetic correlations across traits or model differences in LD across ancestries. 
PRSxtra, however, shares information across traits and ancestries at the SNP level, refining 
putatively causal loci and improving PRS accuracy. We demonstrated the robustness of 
PRSxtra in a leave-one-out analysis, which showed minimal changes in predictive ability when 
candidate PRS were excluded. The enhanced predictive capacity of PRSxtra was particularly 
pronounced in the AMR population, which is not primarily explained by the candidate PRS from 
the new EAS spirometry GWAS. One potential explanation could be due to the phenotypic 
heterogeneity of asthma and COPD among Hispanic populations48–50. For example, asthma, 
and COPD are more prevalent in individuals of Puerto Rican heritage than among other 
Hispanics.  
 
Our study does have limitations. We relied on phenotype definitions based on ICD codes and 
self-reported data, which can be imprecise. For example, definitions of COPD using common 
ICD-9 codes have been previously shown to misclassify patients compared to combining them 
with pharmacy data51. While we aimed to mitigate this effect by combining multiple ICD-9 and 
ICD-10 codes to define disease cases, it is unclear how adding spirometry would change 
disease definitions in AoU due to the lack of spirometry measures availability for all participants. 
We were also limited by the study design of existing GWAS. While traditional GWAS of FEV1, 
FVC, and FEV1/FVC are adjusted for smoking status, our meta-analysis of lung function in  
EAS was not due to the limitation of data availability. Our measures were also not explicitly 
post-bronchodilator lung function measures, although previous work demonstrated little impact 
of pre- versus post-bronchodilator definitions when predicting COPD52,53. Additionally, we used 
ridge regression, which assumes a linear association of the candidate PRS. It is unclear how 
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other non-linear methods of combining PRS will compare. Our study sample is shaped by the 
All of Us Research Program’s cohort creation process, which relies on partnerships with 
universities, research centers, volunteers, and community engagement54. While All of Us is 
diverse, there are demographic sampling biases that may not be representative of the general 
population55. Our results demonstrate significant improvements in a held-out cohort of diverse 
AoU participants, but they should be validated in an independent cohort.  
 
In summary, we conducted the largest multi-trait and multi-ancestry genetic analysis of 
respiratory diseases and auxiliary traits to discover numerous novel genetic signals. We 
propose PRSxtra as a method to model genetic correlation across traits and LD differences 
between ancestry groups, significantly improving disease prediction and stratification for 
asthma, COPD, and lung cancer. PRSxtra has the potential to reduce the disparities in risk 
stratification between populations for survival and outcome, as well as to advance more 
equitable and generalizable prediction models for respiratory diseases. 
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Methods 
 
Meta-analysis of lung function across East Asian populations 
We performed a fixed-effects meta-analysis with inverse variance weighting, as implemented in 
METAL v2001-03-25 software, for FEV1, FVC, and FEV1/FVC across two East Asian cohorts 
using published summary statistics from Korean Cancer Prevention Study-II (KCPS2)24,25, 
Taiwanese Biobank (TWB)23,33. The details of their study design have been described 
previously. In summary, the Korean Cancer Prevention Study-II Biobank (KCPS2) is a 
prospective cohort study based in Korea of 153,950 subjects with genotype data and phenotype 
measurements between 2004 and 2013. The Taiwanese Biobank is a prospective cohort study 
of the Taiwanese population with 149,894 participants between the ages of 30-70 years old at 
recruitment (as of April 2021). FEV1 was defined as the total air blown between zero and 1 
second (measured in Liters). FVC was defined as the vital capacity during forced expiration 
(measured in Liters).  In KCPS2, FEV1 and FVC were measured using pulmonary/metabolic 
systems Vmax 20, Carefusion, USA. For each trait, samples with measurements that were more 
than 6 standard deviations away from the sample average were excluded.  
 
Altogether, these cohorts had a total sample size of 132,200. In conducting our metanalysis, we 
excluded genetic variants with minor allele frequency < 0.01. We used FUMA v. 1.5.2 to 
annotate and functionally map variants in the meta-analysis. Genome-wide significance was 
defined using a threshold of P<5×10-8. Genomic risk loci included variants correlated with the 
most significant variant at R2>0.6 using the 1000G Phase 3 EAS reference panel. Genome 
positions are reported in build hg37 for index variants. To designate a locus as previously 
known or potentially novel, the index variants, or the most significant variants in each locus, 
were at least 1 Mb in distance from a previously discovered genome-wide significant variant 
associated with the trait. Previously discovered variants were compiled from Shrine et al34.  
 
Comparison of pleiotropic effect analysis 
We used S-LDSC to estimate heritability and genetic correlation of and between phenotypes 
using summary statistics of EUR populations. We then applied the linemodels package 
(https://github.com/mjpirinen/linemodels) to the GWAS summary statistics of three respiratory 
diseases (asthma, COPD, and lung cancer) and the three featured environmental and genetic 
risk factors (smoking status, smoking heaviness (Cigday), and FEV1/FVC) across three 
ancestry groups (AFR, EAS, and EUR) plus the corresponding meta-analysis results. We 
focused on comparisons for 12 pairs of traits selected from above. Three of these were between 
diseases phenotypes: asthma and COPD, asthma and lung cancer, COPD and lung cancer, 
and nine pairs were between disease phenotype and smoking or lung function. We considered 
variants significantly associated with either one of the traits being compared (Supplementary 
Table 28). We classified the variants into three classes (two when there is no variant associated 
with both traits) based on their association patterns: associated with trait 1 only, trait 2 only, and 
both. The classes were represented by linear trends whose slopes were estimated using an EM 
algorithm. Conditioning on these classes, we ran the linemodels package on the GWAS effect 
sizes and standard errors of overlapped variants of the two traits, where we set the scale 
parameters determining the magnitude of effect sizes to 0.2, the correlation parameters 
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determining the allowed deviation from the lines to 0.99 as default, and the slope parameter to 
the estimates from the previous EM step. The membership probabilities in the three classes 
were computed separately for each variant by assuming that the classes were equally probable 
a priori. We assumed no overlapping samples between the two GWASs being compared and 
set the correlation of their effect estimators to 0. Confident associations are defined as having a 
posterior probability above 0.95. 
 
Multi-trait analysis  
We conducted multi-trait genome-wide association studies as implemented in MTAG v. 1.0.7 for 
each ancestry group (AFR, AMR, EAS, EUR) by combining the ancestry-specific GWAS 
summary statistics for GBMI asthma, GBMI COPD, GWMA lung cancer, spirometry meta-
analysis, and GSCAN smoking behaviors. MTAG performs a joint analysis of GWAS results 
from related traits to improve the number of genetic loci identified and the predictive power of 
polygenic scores. For each population, we used the ancestry-specific LD reference panel from 
the gnomAD reference panels v2.1.1. For each ancestry-specific MTAG, we included traits with 
χ2 > 1.02. 
 
Study population 
The All of Us Research Program is a longitudinal cohort study that has continuously enrolled US 
adults 18 years or older since May 2017. The program aims to engage in one million or more 
US participants and places a strong emphasis on including diverse populations that have 
traditionally been underrepresented in biomedical research. Details of the All of Us cohort have 
been previously described54. In summary, participants of the program opt to provide self-
reported data, linked health record data, and biospecimen data to be made available for 
research uses. The program’s primary objective is to build a resource to help researchers 
understand individual differences in biological, clinical, social, and environmental determinants 
of health and disease to advance precision health care.  
 
Informed consent for all the participants in the All of Us Research Program are conducted in 
person or through an eConsent platform. The protocol was reviewed by the Institutional Review 
Board (IRB) of the All of Us Research Program. Data can be accessed through the All of US 
Research Workbench, a secure cloud-based analytic platform. Whole genome sequencing, 
genotyping array variant data, variant annotations, computed ancestry, and quality reports are 
accessible through the Controlled Tier of the AoU. This project is registered in the All of Us 
program under the workspace name “PRSxtra AoU”. In our analysis, we included individuals 
with whole genome data in the v7 Data Release, self-reported sex, and date of birth along with 
additional disease-dependent filtering criteria: For COPD and lung cancer, we excluded 
individuals who did not self-report report smoking status. For COPD, we additionally excluded 
individuals with homozygous polymorphism of SERPINA1, which encodes for a serine protease 
inhibitor alpha 1 antitrypsin, as this is a known risk allele associated with COPD56. Participants 
were randomly split 70% for training and 30% for validation. 
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Phenotype ascertainment 
We curated clinical phenotypes from All of Us using a combination of electronic health record 
data, and/or self-reported personal history data from the All of Us v7 Data Release. ICD codes 
for each phenotype and exacerbation are detailed in Supplementary Table 29-33.  
 
We define smoking status and family history based on self-reported data. Previous smokers are 
individuals who smoked more than 100 pack years but do not currently smoke. Individuals who 
have never smoked more than 100 cigarettes are considered never smokers. Family history 
included mother, father, and siblings with the same record of disease as the participants. No 
family history included those who did not explicitly self-report a family history.  
 
PRSxtra construction 
We constructed PRSxtra in a three-layer process. Layer 1 consisted of performing multi-trait 
meta-analysis across related traits for each ancestry population as previously described. In 
layer 2, we used PRS-CSx, which leverages linkage disequilibrium across discovery samples to 
jointly model the genetic effects across populations via a shared continuous shrinkage prior. We 
used the default parameters on PRS-CSx on AFR, AMR, EAS, and EUR ancestry-specific 
meta-analysis results. Only HapMap3 variants—a set of 3 million variants compiled by the 
International HapMap Project which capture common patterns of variation in a variety of human 
populations—were included in calculating scores. In layer 3, we use ridge regression, as 
implemented by the “glmnet” R package57, to jointly model the 39 standardized PRS (with mean 
0 and variant 1) generated in layer 2 to construct an ancestry-specific PRSxtra for the three 
disease phenotypes: COPD, asthma, and lung cancer. In ridge regression, we used 10-fold 
cross-validation and minimum lambda value to estimate the weights of each PRS. PRSxtra was 
validated in the held-out multi-ancestry cohort from AoU. 
 
PRS construction 
As a baseline comparison to PRSxtra, we derived trait- and ancestry-matched PRS using PRS-
CS, which uses a Bayesian regression framework to infer posterior effect sizes of SNPS. We 
ran PRS-CS with default parameters on the trait- and ancestry-specific GWAS summary statistic 
(Supplementary Table). 
 
Statistical analysis  
For COPD, asthma, and lung cancer, we placed individuals into bins by their PRS and PRSxtra 
deciles. In each decile, we calculated the prevalence of disease and disease exacerbation. We 
calculated the risk of disease and exacerbation for each decile compared to the lowest decile of 
PRS and PRSxtra using logistic regression models. We evaluated the performance of predicting 
diseases based on PRS and PRSxtra alone, as well as in a joint multi-variable model with 
covariates. The baseline model included age and sex. We then subsequently added clinical risk 
factors (smoking, family history), and PRS or PRSxtra. We evaluated the predictive 
performance of each model using the area under the receiving operating curve. In the full 
population, we used the trait- and EUR-specific PRS as the baseline for comparison. All 
statistical analyses were two-sided and performed with the use of R software, version 3.5 (R 
Project for Statistical Computing). 
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