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Abstract: Background: Alzheimer’s disease (AD) is considered a severe, irreversible and progres-
sive neurodegenerative disorder. Currently, the pharmacological management of AD is based on a 
few clinically approved acethylcholinesterase (AChE) and N-methyl-D-aspartate (NMDA) receptor 
ligands, with unclear molecular mechanisms and severe side effects. 

Methods: Here, we reviewed the most recent bioinformatics, cheminformatics (SAR, drug design, 
molecular docking, friendly databases, ADME-Tox) and experimental data on relevant structure-
biological activity relationships and molecular mechanisms of some natural and synthetic com-
pounds with possible anti-AD effects (inhibitors of AChE, NMDA receptors, beta-secretase, amy-
loid beta (Aβ), redox metals) or acting on multiple AD targets at once. We considered: (i) in silico 
supported by experimental studies regarding the pharmacological potential of natural compounds as 
resveratrol, natural alkaloids, flavonoids isolated from various plants and donepezil, galantamine, 
rivastagmine and memantine derivatives, (ii) the most important pharmacokinetic descriptors of 
natural compounds in comparison with donepezil, memantine and galantamine. 

Results: In silico and experimental methods applied to synthetic compounds led to the identification 
of new AChE inhibitors, NMDA antagonists, multipotent hybrids targeting different AD processes 
and metal-organic compounds acting as Aβ inhibitors. Natural compounds appear as multipotent 
agents, acting on several AD pathways: cholinesterases, NMDA receptors, secretases or Aβ, but 
their efficiency in vivo and their correct dosage should be determined. 

Conclusion: Bioinformatics, cheminformatics and ADME-Tox methods can be very helpful in the 
quest for an effective anti-AD treatment, allowing the identification of novel drugs, enhancing the 
druggability of molecular targets and providing a deeper understanding of AD pathological mechanisms. 
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1. INTRODUCTION 

 Alzheimer’s disease (AD) is a neurodegenerative disor-
der extremely prevalent in the world population, as ~47 mil-
lion people are suffering from the disease and the number is 
expected to increase by 62% in 2030 due to the global aging 
of populations [1]. Also, it was estimated that the number of 
people affected by dementia will reach ~115 million by 2050 
[2]. According to the World Alzheimer Report, 818 billion 
dollars were allocated worldwide in 2015 to support AD 
patients [2]. Concerning AD etiology, some high-impact risk  
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factors were identified as genetics [3-6], age [7-9], cardio-
vascular [10, 11], obesity [12, 13] or lifestyle [12]. 

 In the discussion about neurodegenerative disorders, it is 
necessary to mention the epigenetic point of view that is sig-
nificantly relevant to neuroscience, as it refers to brain de-
velopment and neuronal differentiation, as well as to more 
dynamic processes related to cognition [14-17]. 

 An interesting review was published by Pena-Bautista et 
al. [15] on AD physiopathological mechanisms relevant to 
the improvement of early diagnosis and to the development 
of potent treatments based on omics-based biomarkers. The 
paper reviewed the most recent advances in metabolom-
ics/lipidomics, epigenomics and proteomics applied to early 
AD diagnosis. The main research lines are represented by the 
evaluation of: (i) metabolites resulted from lipids, amino 
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acids and neurotransmitters metabolisms, cholesterol biosyn-
thesis, Krebs and urea cycles; (b) some microRNAs and pro-
teins (microglobulins, interleukins) related to a common 
network with amyloid precursor protein and tau [15]. Stoc-
coro et al. [17] also reported promising results of studies 
performed on peripheral blood DNA that could provide early 
biomarkers in AD. 

 Cerebrospinal fluid biomarkers are broadly investigated 
in AD and are applied in clinical practice. Cerebrospinal 
fluid biomarkers like amyloid beta (Aβ), total tau and phos-
phorylated tau in AD condition reflect the extent of neuronal 
damage, and may be used as quantitative traits for genetic 
analyses [18]. The study of de Matos et al. highlighted five 
genes involved in AD pathogenesis, namely APOE, 
LOC100129500, PVRL2, SNAR-I and TOMM40 [18]. Re-
cent investigations identified some loci, namely INPP5D, 
CD2AP and CASS4 that mediate AD susceptibility and are 
high-incidence risk factors in AD [18-20]. Additionally, 
apolipoprotein E [APOE4 allele] was identified as a high-
incidence risk factor in AD [21, 22]. 

 The molecular mechanisms that lead to the very complex 
symptoms of AD are not fully elucidated, but some “AD 
hypotheses” were postulated: cholinergic, Tau, glutamater-
gic, amyloid cascade or oxidative stress [23, 24]. Many years 
ago, it was postulated that the deficit of cholinergic neurons 
is involved in AD symptoms [25-27]. Today, scientists con-
tinue to pursue this hypothesis, as important research is fo-
cused on acetylcholine (ACh) synthesis and its biological 
functions in the brain during AD [28, 29]. It is widely known 
that acetylcholinesterase (AChE) plays an important role in 
memory and learning [30]. Increasing the level of ACh by 
applying AChE inhibitors represents a suitable way in AD 
therapeutic approach [31, 32]. 

 Tau hypothesis [33-35] postulates that the excessive or 
abnormal phosphorylation of Tau protein and its transforma-
tion into PHF-Tau (paired helical filament) and NFT’-Tau 
(neurofibrillary tangles) precedes AD. A study performed by 
Merlini et al. [36] showed that pathological cerebrovascular 
remodeling is an early-onset Braak-tau related process occur-
ring independently of amyloid-related angiopathy or AD 
condition and having the potential to contribute to down-
stream amyloid-induced vascular effects seen in AD. 

 N-metyl-d-aspartate (NMDA) receptors hypothesis [23] 
postulates that the hyperactivation of NMDA receptors in 
AD condition: (i) enhances the influx of calcium ion, leading 
to the production of free radicals that further contribute to 
neuronal death; (ii) the increase in calcium, sodium and chlo-
ride levels as a result of NMDA glutamate receptors hyper-
activation was associated with excessive depolarization of 
the postsynaptic membrane, the onset of neurodegenerative 
processes and cell death [23]. 

 The amyloid cascade hypothesis of AD suggests that, in 
AD, abnormalities occur during the secretion of the amyloid 
precursor protein (APP), leading to an unbalance between 
production and clearance of Aβ [23, 37]. 

 A different interesting AD hypothesis refers to the Me-
tabolism-Centric pathogenesis of AD. Kang et al. [38] con-
sidered that AD is “as a kind of metabolic disease”, suggest-

ing that insulin, adiponectin and antioxidants may be consid-
ered AD therapeutic targets. They identified that patients 
with AD presented reduced insulin signal transductions in 
the brain and showed that intranasal insulin injections are 
beneficial in AD treatment. In addition, the reduction of adi-
ponectin in patients with obesity induces metabolic dysfunc-
tions both in the body and in the brain, leading to AD patho-
genesis [38]. 

 The oxidative stress hypothesis [23, 38, 39] postulates 
that oxidative stress can represent a risk in AD. In their pa-
per, Prasad et al. [39] described the possible pathways by 
which the oxidative stress and chronic inflammation are 
some of the earliest defects that promote AD. It was men-
tioned that up-regulated microRNAs induced neurodegenera-
tion by: (i) decreasing the levels of a nuclear transcriptional 
factor-2 (Nrf2), (ii) reducing the levels of α-secretase 
ADM10; and (iii) reducing the levels of phosphatases. In-
stead, the down-regulated microRNAs induced neurodegen-
eration by: (i) increasing the levels of β-secretase, (ii) in-
creasing the levels of tau kinase; (iii) elevating the levels of 
tau proteins; or (iv) increasing the levels of nuclear factor-
kappaB (NF-kB) [39]. The exact connection between protein 
damage and neuronal death is still unknown. Recently, auto-
phagy was mentioned as a possible AD mechanism [40, 41]. 

 Rare forms of early-onset familial AD (EO-FAD) are 
induced by gene mutations, especially in APP, presenilin 1 
(PSEN1) and presenilin 2 (PSEN 2) genes [42-44]. Ap-
proximately, 300 mutations occurring in PSEN1 or PSEN2 
have been reported in the Dementia Mutation Database [6, 
45]. The majority of these mutations were observed in 
PSEN1 and over 230 mutations were reported as pathogenic 
in Alzforum database [7, 45]. 

 Presenilin proteins present a critical involvement in EO-
FAD development by intramembrane cleavage of APP and 
the generation of Aβ [44]. Structurally, PSEN1 protein con-
tains nine transmembrane (TM) domains, connected by hy-
drophilic loop regions. Being a member of γ- secretase com-
plex, PSEN1 works as a catalytic subunit of aspartyl prote-
ase, involved in the cleavage of C99 residue in APP protein 
into Aβ peptide. It was shown that PSEN1 mutations lead to 
the reduction of Aβ production [44, 46]. PSEN1 contains 
five native cysteine residues, and all of these can be replaced 
with serine to form a cysteine-less PSEN1 that retains the 
ability to assemble into an active γ-secretase complex [47]. 

 An interesting experimental and in silico mutagenesis 
study on PSEN1 [45] showed that: (i) Trp165Cys mutation is 
located in TM-III region that is conserved between 
PSEN1/PSEN2, (ii) as proved by in vitro studies, PSEN1 
Trp165Cys could result in amyloid metabolism disturbance, 
(iii) PSEN1 p.Trp165Cys may be commonly associated with 
EO-FAD. All these findings support the hypothesis that pre-
senilins may be used to identify the relatives at risk that may 
be potential candidates for clinical trials. 

 The presence of redox metals like iron, copper or zinc 
and also of aluminum or manganite is considered another 
hypothesis for AD progression. This hypothesis was exten-
sively studied in the last years by considering the molecular 
level interactions of metal ions like iron [48, 49], copper (I) 
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[50, 51] or zinc [51] with the Aβ peptide leading to reactive 
oxygen species (ROS) production. Telling et al. [48] identi-
fied the presence of iron biomineral deposits in the cortical 
tissue and provided the evidence that Aβ-induced chemical 
reduction of iron could occur in vivo. Using advanced X-ray 
microscopy techniques at sub-micron resolution, the authors 
investigated the specific role of iron in amyloid deposition 
and AD pathology and they established the relationships 
between iron biochemistry and AD pathology in intact cor-
tex. The study results supported a strong correlation of amy-
loid plaque morphology with iron and the formation of an 
iron-amyloid complex [48]. 

 Atrián-Blasco et al. [51] mentioned that copper and zinc 
ions are able to induce amyloid-related diseases, including 
AD, by modifying the aggregation pathways of Aβ peptides. 
Cu(i), Cu(ii) or Zn(ii) coordination by Aβ has been exten-
sively studied in the last years, but resulting hetero-
bimetallic Aβ complexes are still poorly characterized. Lam 
et al. [49] mentioned that ferroxidase activity is altered in 
various biological fluids in neurodegenerative diseases, but 
the sources contributing to the altered activity are uncertain. 

 A hypothesis that gained increasing attention during the 
years is the mitochondrial cascade hypothesis [52-55]. Mito-
chondria in the brain of AD patients present altered functions 
and turnover: decreased membrane potential, ATP levels, 
cytochrome c oxidase and other metabolic enzyme levels and 
increased oxidative stress, production of ROS or mitochon-
drial fission [54, 56]. The mitochondrial cascade hypothesis 
was discussed in conjunction with amyloid hypothesis. In a 
recent extensive review, Swerdlow [54] presented evidence 
on the existence of both an independent AD mitochondrial 
dysfunction (primary cascade) that triggers the amyloid cas-
cade by altering APP expression, processing and accumula-
tion and Aβ-induced mitochondrial dysfunctions (secondary 
cascade). The author assumes the possibility that the two 
cascades co-exist. He argues in favor of the primary mito-
chondrial cascade by taking into account that changes in 
mitochondrial function also occur in other tissues outside the 
brain, temporally preceding changes in Aβ homeostasis and 
the deposition of Aβ plaques under specific bioenergetic 
conditions that can be induced by mitochondria dysfunction 
[54]. The primary mitochondrial cascade hypothesis shifts 
the attention from Aβ and tau as determinants of AD condi-
tion. It considers Aβ as a marker of brain aging not limited to 
AD patients, estimating that AD therapy by Aβ removal 
would be effective to the extent that brain damage is medi-
ated by Aβ [53]. The hypothesis opens a new therapy direc-
tion involving the prevention of age-related mitochondrial 
dysfunctions [54] and pharmacological modulation of cell 
bioenergetic pathways and mitochondrial functions [54, 57]. 

2. BRIEF OVERVIEW OF BIOINFORMATICS AND 
CHEMINFORMATICS TOOLS APPLIED TO 
ALZHEIMER MANAGEMENT 

2.1. Bioinformatics Tools 

 The study of AD molecular mechanisms and the predic-
tion of natural and synthetic compounds anti-AD therapeutic 
effects could benefit from the usage of bioinformatics and 
cheminformatics methods. A brief description of some bioin-

formatics and cheminformatics tools that are widely used in 
various pathologies, including AD, are presented below. 

 Bioinformatics studies are performed by using informa-
tion deposited in databases. Some databases are freely avail-
able, like UniProt [58], Protein Data Bank (PDB) [59], Ex-
pasy [60], NCBI Gene [61] or AlzGene [62]. These comprise 
protein sequences and functional information, many entries 
being derived from genome sequencing projects. The  
experimental data is doubled by a wealth of information  
on protein biological functions derived from the research 
literature. 

 UniProt database [58] contains useful information on 
proteins and their encoding gene names, their functions, en-
zyme-specific information, such as catalytic activity, cofac-
tors and catalytic residues homology, subcellular location, 
protein-protein interactions, etc. The UniProt query on AD 
leads to the identification of almost 620 entries. We accessed 
presenilin-1 (Uniprot code P49768 [63]) and presenilin-2 
(Uniprot code P49810 [64]), two proteins strongly involved 
in the induction of AD. Their homology is presented in  
Fig. 1. 

 Also, we addressed the possible role of natural and mu-
tant presenilin variants in AD. We obtained interesting re-
sults on the mutant variants of presenilin 1 (P49768), in 
which case we identified several mutation positions, some of 
them with unknown pathological significance (e.g. 177F → 
L [65], 35 R → Q [65], 79A → V [65]), but some of them 
with proved connection with AD, like 113 L → P involved 
in frontal dementia [66], 214 H → Y, a probable disease-
associated mutation founded in a patient with dementia [67] 
or 436P → Q that partially abolishes gamma-secretase activ-
ity [68]. In the case of presenilin 2 (P49810), the mutations 
148 V → I were identified to be involved in late-onset of AD 
[69], or 239 M → V, identified just in AD Italian patients 
[70]. 

 Protein Data Bank [59] is a freely accessible crystallo-
graphic database for the three-dimensional structural data of 
large biological molecules, such as proteins and nucleic ac-
ids. The deposited data is typically obtained by X-ray crys-
tallography, NMR spectroscopy, or, increasingly, cryo-
electron microscopy. In PDB we found almost 187 structural 
entries of proteins involved in AD. At this moment, the new-
est entries present the structure of a mutant amyloid protein 
precursor inhibitor (T11V/M17R/I18F/F34V) in an interac-
tion with a human serine protease (mesotrypsin) (PDB code 
6GFI) [71] or the structure of C-terminal modified Tau pep-
tide-hybrid 4.2e-I with 14-3-3sigma (PDB code 6FAU) [72]. 
Also, a wealth of structural information is available on beta-
secretase 1 (BACE 1) inhibitors, that are very attractive for 
AD treatment (more than 300 entries, e.g. structures 6EJ3 
(Fig. 2), 6EJ2 [73]). 

 Another important database for AD studies is AlzGene 
database [62]. It contains extensive information on AD 
genes, meta-analyses and AD treatments. It provides VCPA, 
SNP/Indel Variant Calling Pipeline and data management 
tools that are useful for the analysis of whole genome and 
exome sequencing (WGS/WES) for Alzheimer's Disease 
Sequencing Project [74]. 
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 Fang et al. [75], by simultaneously using real-time PCR 
and bioinformatics tools, identified genes associated with the 
cellular processes closely related to AD progression. Rao et 
al. [76] used bioinformatics tools to identify almost 74 genes 
strongly involved in AD. The authors retrieved the encoded 
functional protein sequences in FASTA format from NCBI 
(National Center for Biotechnology Information) [61] and 
determined their role based on ClustalW multiple sequence 
alignments. In addition, they constructed a phylogenetic tree 
using the functional protein sequences. This study reported 

once more that the genetic components of AD are more im-
portant in comparison to environmental, metabolic and age 
related factors [76]. 

 In 2012, Sun et al. [77] performed a bioinformatics 
analysis of anti-AD herb ingredients. Results showed that the 
herbs might treat AD symptomatically or might modify the 
disease progression through inflammation-associated path-
ways, cancer-associated pathways, diabetes-associated path-
ways, etc., that are closely related to AD. In their research, 

 

Fig. (1). Sequence alignment between human presenilin-1 (PSN1 - Uniprot code P49768 [63]) and presenilin-2 (PSN2 – Uniprot code 
P49810 [64]). The conservation of residues is marked with grey (high) to white (no conservation). (A higher resolution / colour version of 
this figure is available in the electronic copy of the article). 
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authors accessed two complex databases, namely the Thera-
peutic Targets Database (TTD) and Online Mendelian In-
heritance in Man (OMIM) database. They reported that [77]: 
(i) five successful therapeutic targets were collected from 
TTD: AChE, 5-hydroxytryptamine receptor 2A (5-HT2A), 
cholinesterase (BChE), 5-hydroxytryptamine receptor 1A (5-
HT1A) and Glutamate [NMDA] receptor and (ii) four AD 
disease genes were identified in OMIM: amyloid precursor 
protein (APP), presenilin 1 (PSEN1), presenilin 2 (PSEN2) 
and Apolipoprotein E (APOE). Their corresponding proteins 
were obtained according to Uniprot database. 

 When addressing the pharmacokinetic and pharmacody-
namic features of anti AD drugs, relevant information can be 
found in databases like DrugBank [78] or FooDB 
(http://foodb.ca/). Regarding ADME-TOX bioinformatics 
tools, some useful databases are Tox-DATABASE [79], 
pkCSM platform [80, 81] or ProTox-II [82]. 

 DrugBank [78] contains entries on drug properties, func-
tional and bioeconomic information on large sets of small 
compounds. Both bioinformatics and cheminformatics tools 
collect the detailed information regarding features of drugs 
(i.e. chemical, pharmacological, pharmaceutical, economical, 
etc) with comprehensive drug target information (i.e. se-
quence, structure, and molecular pathway). 

 FooDB (http://foodb.ca/) is a freely available, open-
access database containing chemical structures represented by 
micro and macronutrients found in common unprocessed foods. 
Users are able to browse information from FooDB based on 
the food source, name, descriptors or function. From our 

experience, FooDB is the largest comprehensive resource on 
the chemistry and biology of food constituents. Each chemi-
cal entry from FooDB represented by natural compounds 
contains more than 100 data fields covering detailed compo-
sitional, biochemical and physiological information. 
 The traditional Chinese medicine systems pharmacology 
database and analysis platform (TCMSP) [83], operating 
under a Open Database License, comprises information on 
499 Chinese herbs in terms of their active ingredients, mo-
lecular targets and associated diseases. TCMSP can be used 
to identify drug-target and drug-disease networks involving 
compounds from Chinese plants. Additionally, each com-
pound is characterized by twelve ADME properties, includ-
ing human oral bioavailability, half-life, drug-likeness, 
Caco-2 permeability, blood-brain-barrier (BBB) permeabil-
ity and Lipinski's rule of five, all of which can help the 
screening of compounds promising for drug discovery and 
development. 
 ADME-Tox database generally comprises ADME-Tox 
information (adsorption, distribution, metabolism, excretion 
and toxicity), critical for drugs, but more importantly for de 
novo chemicals and herbal compounds. pkCSM database 
[80, 81] uses the SMILES structure file of molecules to pre-
dict descriptors like: Absorption - intestinal absorption, 
Caco-2 permeability, water solubility, P-glycoprotein sub-
strate, skin permeability, Distribution – state volume of dis-
tribution, BBB permeability, CNS permeability, Fraction 
unbound, Metabolism –cytochrome substrates; Excretion- 
renal OCT2 substrate and total clearance and Toxicity- Rat 
LD50, AMES toxicity and echo-toxicity. 

 

Fig. (2). Crystal structure of BACE1 (silver backbone) in complex with compound 23 (black licorice) according to 6EJ3 structure [73]. Com-
pound 23 is a molecule from a series of 47 compounds that were cocrystalized and analyzed in their BACE1 inhibitory activity [73]. (A 
higher resolution / colour version of this figure is available in the electronic copy of the article). 
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2.2. Cheminformatics Tools 

 Quantitative structure-activity relationship (QSAR) is a 
very useful tool in medical chemistry when investigating the 
interactions between synthetic/natural compounds and their 
targets, such as enzymes or membrane receptors. This 
method is especially useful when the fast prediction of “un-
characterized” natural compounds biological activities is 
required. 

 In the background, all QSAR methods consider that the 
chemical structures of compounds determine their biological 
activities and each modification of their chemical structure 
changes their biological activity. QSAR models are created 
depending on each program. For instance, in 2D QSAR, the 
biological activity of compounds is calculated as follows: 

 Biological Activity (log1/experimental features of com-
pounds) = const + (c1 • d1) + (c2 • d2) + (c3 • d3) + ..., 

 where the parameters d1-dn represent molecular features 
(e.g. atom and bound counts, molecular weight, sum of 
atomic properties topological descriptors) of each chemical 
compound and the coefficients c1 through cn are evaluated as 
fitting the variation in the parameters and the biological ac-
tivity [84]. 

 Basically, QSAR methods consider different types of 
probe atoms, manners of calculating the electronic interac-
tions and force fields [85]. Alignment based 3D-QSAR-
CoMFA (Comparative Molecular Field Analyses) considers 
steric (Lennard-Jones) and electrostatic (Coulombic) force 
fields to predict the interactions between compounds and 
macromolecular targets [86], while 3D-QSAR-CoMSIA 
(Comparative Molecular Similarity Indices Analysis) re-
quires steric, electrostatic, hydrophobic and atom hydrogen 
donor/acceptors electronic fields [86]. Non-alignment 3D-
QSAR ALMOND considers many atom probes such as, hy-
drogen bond acceptor (carboxyl-O::)/donor (nitrogen in cati-
onic state as atom probe), electrostatic (water as atoms 
probe), hydrophobicity, ions (natrium, potassium, calcium, 
etc), individually or in different combinations [87]. 

 Other important cheminformatics tools are represented 
by the evaluation “drug-likeness” features, given by Lipin-
ski’s “rule of five” and Veber rules. Lipinski’s “rule of five” 
is an important criterion for the identification of chemical 
compounds likely to preset pharmaceutical activity into bio-
logical systems. According to this rule, the drug-likeness of a 
chemical compound is given by the following features: (i) its 
chemical structure presents no more than 5 hydrogen bond 
donors and no more than 10 hydrogen bond acceptors, (ii) its 
molecular mass is less than 500 Daltons, (iii) octanol-water 
partition coefficient log P is not greater than 5 [88]. Starting 
from Lipinski rules, Benet et al. [89] mentioned the Bio-
pharmaceutics Drug Disposition Classification System 
(BDDCS) of drug ability. In this respect, cheminformatics 
software as Molecular Operating Environment-MOE (Chemical 
Computing Group) or VolSurf+ (Molecular Discovery), 
Biovia Discovery Studio (Dassault Systems, Biovia) are 
helpful. 

 A “me-too” compound or “follow-on” drug is a chemical 
compound that usually has a very similar structure with a 

known active pharmaceutical compound (namely parent 
drug), but comprises a very active chemical part, leading to 
higher biological activity versus parent drug. In some re-
spects, the “me-too” compound may present a different 
pharmacokinetics profile relative to the parent drug, but uses 
the same molecular mechanism as the parent drug and is 
used for the same therapeutic purpose as the parent drug 
[90]. Besides “me-too” compounds, the “me-better” com-
pounds (also called best-in-class) [91] represent leader com-
pounds, with improved activity, selectivity and potency over 
original compounds [90]. 

 “Follow-on” drugs benefit patients and the health care 
system in several ways [92]: (i) reduction of health care costs 
by providing price competition, (ii) providing therapeutic 
improvements for some patients, especially in the pharmaco-
genomics context; (iii) providing superior or more flexible 
dosage and administration; (iv) “perhaps most important,  
a follow-on drug, which typically has a longer remaining 
patent life than pioneers, motivate and support research  
that applies to an entire therapeutic class” [92]. Becker et al. 
[93] mentioned the importance of “follow-on” compounds  
in psychiatric disorders, with a special mention in AD. 

 Another important method in drug design is represented 
by Fragment-Based Lead Discovery. It is used for finding 
lead compounds during the drug discovery process [94]. Ba-
sically, the method identifies the small chemical fragments 
that may bind only weakly to the biological target, and then 
growing them or combining them to produce a lead with a 
higher affinity. This method was applied with real success in 
AD treatment development, in designing BACE-1, Aβ or tau 
protein inhibitors [95, 96]. Also, another structure-based 
drug design method, namely de novo design of new ligands, 
was used for the design of anti-AD drugs [97]. 

 The understanding of binding interactions between any 
proteins or membrane receptors and their small ligands plays 
a key role in the rationalization of affinity and selectivity of 
the ligands [98]. In this respect, the fragment molecular or-
bital method (FMO) can compute very large molecular sys-
tems with thousands of atoms using ab initio quantum-
chemical wave functions. The critical advantage of FMO is 
that it can reveal atomistic details about the individual con-
tributions and chemical nature of each residue and water 
molecule toward ligand binding, which would otherwise be 
difficult to detect without the usage of quantum mechanics 
approaches [98]. 

 Shinzato et al. [99] reported ab initio molecular simula-
tions applied to curcumin derivatives used in AD therapy. 
The authors proposed novel curcumin derivatives as potent 
inhibitors against Aβ aggregation and investigated their 
binding properties to these peptides, using protein-ligand 
docking and ab initio fragment molecular orbital methods. 
They showed that a curcumin derivative in which COH3 
group of the aromatic ring is replaced by OH strongly binds 
to Aβ and can be a potent inhibitor against Aβ aggregation. 

 Also, semi-empirical complex optimization can be con-
sidered a useful tool in AD drug design and analyses [100]. 
Moreover, this method was implemented in several computa-
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tional chemistry softwares, such as MOPAC, GAMESS, 
Amber, Spartan, HyperChem, and AMPAC [100]. 

 Molecular docking methods can be used for predicting 
the binding sites of compounds, ranking docking poses based 
on ligand-receptor binding affinities, quantitative predictions 
of binding energetics or investigation of ligand-receptor  
interactions that stabilize the complex [101]. The develop-
ment of docking methods started with the rigid-body treat-
ment of both ligand and receptor and aimed at identifying 
geometric fits between the shapes, following the assumption 
that a ligand should fit in the receptor binding pocket as a 
key in a lock [102]. As the understanding of protein-ligand 
interactions shifted to the induced fit theory, molecular dock-
ing methods evolved to the flexible treatment of only the 
ligand while the receptor was rigid and the flexible treatment 
of both ligand and target [103]. Rigid body docking proto-
cols identify conformations of the docked ligand based on 
surface complementarity. The space of the docked conforma-
tions is systematically explored using different approaches 
like fast Fourier transform (FFT) correlation approach, com-
puter vision concepts, Boolean operations or genetic algo-
rithms [104]. The FFT based algorithms can be accelerated 
by performing: (i) 3D grid-based searches, using spherical 
harmonic decompositions (FRODOCK algorithm [105]), 
atomic contact energies that account for the desolvation en-
ergy (RDOCK algorithm [106]) or electrostatic corrections 
(ZDOCK algorithm [107]); (ii) sampling of rotational and 
translational space using spherical polar corrections (Hex 
program [108]). In the flexible docking approaches, flexible 
ligands are freely docked to a rigid binding site (the ap-
proach used in most flexible docking programs) or the recep-
tor can change its binding site conformation to accommodate 
ligands (GOLD program [109]) [104]. Different methods are 
used in flexible docking programs, some of them being 
Monte Carlo (AutoDock Tools [110]), swarm-based docking 
methods like ant colony optimization method (implemented 
in PLANTS [111]), genetic algorithms (GOLD program 
[109]), incremental construction approaches (FLEXX pro-
gram [112]) or systematic search techniques (Glide program 
[113]). 

 Analysis of the interactions between the docked molecule 
and the receptor (hydrogen bonds, hydrophobic contacts, salt 
bridges, water bridges, halogen bonds, etc) is useful in char-
acterizing the binding process and in the design of novel 
ligands with desirable binding properties. Such interactions 
can be visualized and characterized using 2D interaction 
diagram tools such as LIGPLOT [114], PoseView [115], 
MOE, LeView [116], PLIP [117]. 

 In order to exemplify the results that can be obtained by 
molecular docking and the analysis of non-covalent contacts, 
in Fig. 3A we present a pose of compound 3 isolated from C. 
obtusifolia docked at AChE binding site in a mixed inhibi-
tion mode (interaction energy = −9.06 Kcal/mol) [118]. The 
interaction involved AChE residues from both peripheral 
anionic site (PAS) like Tyr70 and catalytic anionic site 
(CAS): Asn85, Ser122, Glu199, and His440. Residues that 
interact with the compound are labeled on the figure. In Fig. 
3B, we present the 2D interaction diagram of compound 3 
bound in mixed inhibition mode to AChE. Hydrogen bonds 
are labeled on the Figure, as well as the interatomic dis-

tances. Also, the hydrophobic interactions are highlighted 
and involved residues Val71, Asp72, Gln74, Trp84, Gly117, 
Gly118, Tyr121, Ser200, Phe290, Phe330, Phe331, Tyr334, 
and Gly441 [118]. 

 Even if docking methods have evolved over time, there 
are still challenges like accurate description of binding ener-
getics, treatment of water molecules from the binding pocket 
or modeling the flexibility of the receptor and of the binding 
pockets [119]. These issues can be tackled by molecular dy-
namics (MD) simulations. In this context, MD simulations 
can be used to: (i) explore the flexibility of protein targets 
over time and to identify cryptic binding sites, (ii) investigate 
the free energy and binding kinetics, (iii) guide ligand opti-
mization by describing the main interactions that contribute 
to ligand binding, (iv) assessment of water stability in bind-
ing pockets [119, 120]. MD simulations can be of great as-
sistance in investigating the pathological mechanisms of AD 
and other amyloid-related pathologies [120]. Since it is diffi-
cult to characterize the structure and dynamics of amyloid-
like deposits only by experimental techniques, MD simula-
tions could be used for investigating protein misfolding and 
aggregation mechanisms and to predict the effect of different 
conditions (pH, temperature, mutations) on these processes 
[120]. 

 Investigating the interactions between ligands and protein 
targets by molecular docking or by MD require the three-
dimensional structures of targets and ligands, as well as 
knowledge on the putative binding sites of ligands. If the 
structure of a protein target is not available in PDB [59], it 
can be modeled using homology modeling methods. These 
methods are based on the fact that the spatial arrangement of 
a protein is more conserved than its amino acids sequence 
and small and medium changes in the amino acids sequence 
result in small conformational changes [121]. Thus, a struc-
tural model of the target protein is built using as template a 
similar (homologous) protein with a known crystal structure. 
The quality of the resulting model depends on the degree of 
homology with the structure used as template [122]. Differ-
ent methods can be used for model building [123], like rigid-
body assembly (implemented in SwissModel web server 
[124]), segment matching [125], spatial restraint (imple-
mented in Modeller software [126]) or artificial evolution 
(implemented in Nest program [127]). In addition, databases 
of homology models were developed, such as ModBase 
[128] that currently comprises over 6 million unique se-
quences modeled and over 37 million models. Homology 
models can be further used for identifying binding sites, 
searching for ligands active at a binding site, modeling sub-
strate specificity, novel ligands design or performing other 
computational experiments. Extensive reviews on these ap-
plications are given in [123, 129]. 

 Putative ligand binding sites can be identified using 
software that search for the cavities on the surface of a pro-
tein that are likely to accommodate ligands. There is a multi-
tude of cavity detection software based on different algo-
rithms, some of them being: Fpocket (based on Voronoi tes-
selation) [130], DogSiteScorer (based on support vector ma-
chine) [131], GHECOM (uses mathematical morphology) 
[132], LIGSITEcsc (uses the Connolly surface and the de-
gree of conservation) [133], Q-SiteFinder (an energy-based 
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method) [134], POCKET (grid-based detection algorithm) 
[135]. 

3. STRUCTURAL-BIOLOGICAL FUNCTION OF 
COMPOUNDS PROMISING TO AD MANAGEMENT 

 The usage of bioinformatics and cheminformatics meth-
ods is one of the first steps to be undertaken in the modern 
drug discovery and development pipeline process that usu-
ally involves: identification of disease targets, lead identifi-
cation and optimization, pre-clinical, followed by clinical 
trial testing, approval and circulation on the market [136]. 
The first step in drug discovery involves the identification of 
proteins or genes that can be targeted by drugs in order to 
modulate their activity in the context of a certain disease. A 
target is valid if its modulation can result in a desired clinical 
effect [136]. Lead identification and optimization is a drug 
discovery/development phase involving in silico methods 
like high throughput screening, SAR, QSAR, molecular 
docking, ADMET properties calculation that results in the 
identification of compounds with promising biological ef-
fects on the selected targets. Nevertheless, these selected 
compounds must go a long way to becoming approved 
drugs. They go next through pre-clinical testing (in vitro on 
cell cultures and in animal models) in order to validate their 
biological effects predicted computationally. Best perform-
ing compounds go into the development process represented 
by clinical trials and approval procedures [136]. This review 
is focused mainly on the in silico identification and optimi-
zation of drugs acting on different AD molecular targets. 
When available, we also present pre-clinical experimental 
evidence supporting the computational predictions. 

 The identification of valid drug targets is especially diffi-
cult in the case of AD due to its complex pathophysiology 
pathways. As presented in Section 1, several hypotheses ex-
ist in AD development and progression, each of them open-
ing a therapeutic strategy for AD management. AD treatment 
approaches can be divided into two directions: (i) treatment 
preventing or delaying the disease onset and progression, 
leading to limitation of or even repairing neuronal damage 
and (ii) the symptomatic treatment aiming to conserve cogni-
tive functions, behavior and the ability of individuals to per-
form daily tasks [137]. Currently approved AD medication 
falls in the symptomatic treatment direction and involves 
cholinergic inhibitors (donepezil, galantamine, rivastigmine) 
or NMDA antagonists (memantine). Other therapeutic agents 
and strategies could be modulation of secretases, inhibition 
of Aβ aggregation, removal/degradation of amyloid plaques, 
inhibition of tau hyperphosphorylation and aggregation, sta-
bilization of microtubules, antiamyloid/anti-Tau immuno-
therapy [138], usage of miRNAs [139], antioxidant therapies 
[137], hypothalamic-pituitary-adrenal axis (stress axis) 
modulation by targeting the glucocorticoid receptors [140], 
increase anti-AD agents BBB permeability by using nan-
otherapeutic strategies [141], etc. 

 In the following subsections, we present some com-
pounds (synthetic parent compounds, their derivatives and 
natural compounds) that were analyzed by bioinformatics 
and cheminformatics methods aiming to predict their bio-
logical effects in relationship to particular molecular targets 
(colinesterases, NMDA receptor, secretases, amyloid) and 
predictive ADME-Tox methods predicting their pharma-
cokinetic features. In the case of synthetic compounds, we 

 

Fig. (3). A. Docking pose of compound 3 docked to AChE. The ligand is represented with bonds and the standard ligands tacrine (close to 
His440) and donepezil (close to Tyr334) are represented with lines. B. The 2D interaction diagram of compound 3 bound to AChE in mixed 
inhibition mode. Residues that interact through hydrogen bonds are represented explicitly. Hydrogen bonds are pictured as dashed lines and 
their length is labeled on the figure. Hydrophobic interactions are highlighted and residues participating are only labeled in the figure [118]. 
(A higher resolution / colour version of this figure is available in the electronic copy of the article). 



704    Current Neuropharmacology, 2020, Vol. 18, No. 8 Avram et al. 

identified in silico studies presenting not only new com-
pounds acting as potent cholinesterase inhibitors or NMDA 
antagonists, but also new multitarget compounds with cho-
linesterase (ChE) and Aβ inhibitory activities, antioxidant 
and neuroprotective effects. In the section discussing natural 
compounds, we present the molecules that were proposed to 
have beneficial effects on AD by in silico methods. In spite 
of the neuroprotective effects of natural compounds, their 
analysis by in silico methods is limited by the lack of ex-
perimental studies pointing out to their exact molecular tar-
gets. Thus, we discuss their predicted effectiveness in rela-
tion to known targets: cholinesterases, NMDA receptors, 
secretases or amyloid. In Fig. 4, we provide a schematic rep-
resentation of the therapeutic directions discussed in the cur-

rent section, proving examples of synthetic and natural com-
pounds acting on the targets involved in each direction. 

3.1. Synthetic Compounds 

3.1.1. ChEs Inhibitors 

 Currently, three cholinesterase inhibitors: rivastigmine, 
donepezil and galantamine are available on the market and 
are used as a first symptomatic treatment for the neurocogni-
tive decline caused by AD. The long-term efficiency of this 
treatment is under debate, as it does not guarantee clinical 
effects over time and it has side effects (nausea, anorexia, 
vomiting and diarrhea) that put at risk the frail patients 
[142]. 

 

Fig. (4). The therapeutic directions discussed in the current section with examples of synthetic and natural compounds acting on the targets 
involved in each direction. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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 A very interesting paper was published by Ali et al. [143] 
on the adverse effects of cholinergic inhibitors in AD, in 
agreement with two pharmacovigilance databases, namely 
Food and Drug Administration Adverse Event Reporting 
System (FAERS) and Canada Vigilance Adverse Reaction 
Database (CVARD). In this paper, the important items 
evaluated with respect to each adverse event were the fre-
quency of the event and the reporting odds ratios (ROR) 
[143]. A total of 9877 reports were extracted from the 
FAERS and 2247 reports were extracted from CVARD data-
bases. Briefly, FAERS database reports death, sudden death, 
sudden cardiac death, cardiac death, brain death, accidental 
death and apparent death as different adverse events, while 
the CVARD indicates the term ‘death’ for any fatal outcome. 
The evaluation showed that: (i) there is a disproportionately 
higher frequency of reports of death as an adverse effect of 
rivastigmine in comparison with the other AChE inhibiting 
drugs (the FAERS (ROR = 3.42; CI95% = 2.94–3.98; 
P<0.0001) and CVARD (ROR = 3.67; CI95% = 1.92–7.00; 
P = 0.001)) and (ii) reporting odds ratios from FAERS indi-
cates that donepezil is highly associated with reports of 
rhabdomyolysis [143]. 

 Given these shortcomings of currently approved ChE 
inhibitors, new inhibitors of AChE or both AChE and bu-
tyrylcholine esterase (BChE) have been developed in recent 
years [144]. Bajda et al. [145] used ZINC database (free data 
set of commercially available compounds, serving to virtual 
screening) for identifying new cholinesterase inhibitors. The 
latest version of the database (ZINC 12) contains over 35 
million compounds and it is provided by the Shoichet Labo-
ratory from the University of California. By bioinformatics 
and cheminfiormatics tools (molecular modeling, virtual 
screening of pharmacophore and molecular docking), the 
authors succeed to report a set of 88 compounds as possible 
cholinergic inhibitors, the most active compounds being 1-
[4-(1H-indol-3-ylmethyl)piperazin-1-yl]-2-phenoxyethanone 
2 (50.1% inhibition against BChE) and 2-[(1-benzylpiperidine-
4- yl)amino]-1-phenylethanol 4 (79.5% inhibition against 
BChE), in comparison with donepezil [145]. Borges et al. 
[146] combined virtual screening methods with molecular 

dynamics and docking in order to identify new AChE inhibi-
tors. By using ZINC database and 3D similarity searches, 
seven new structures were selected as potential hAChE  
inhibitors. 

 Donepezil is the most potent reversible AChE inhibitor 
that was initially approved in 1996 for Alzheimer’s dementia 
treatment, with a large perspective also to be used in other 
types of dementia, but is not recommended for long term 
treatment [147]. Recently, a few interesting studies combin-
ing in silico and experimental methods applied on donepezil 
derivatives were reported [148-153]. Correa-Basurto et al. 
[148] used a set of 84 N-aryl derivatives for developing 
powerful QSAR models that postulated the significant in-
volvement of molecular descriptors such as the “bond 
lengths of CAr–N and N–CO bonds, molecular electrostatic 
potential, and the frontier orbital energies” into ChE’s inhibi-
tion. QSAR equations and statistic validation of QSAR mod-
els are represented in Table 1. 

 Donepezil fluorinat derivative was investigated computa-
tionally in its anti-Alzheimer efficiency [153]. The most im-
portant molecular features (structural stability, molecular 
polarity, solubility, hydrogen bonding, partial charge and 
count of aromatic rings aromatic) were taken into account by 
using computational techniques, such as molecular docking, 
DFT, natural bond orbital (NBO) and atoms in molecules 
(AIM) theories. It was reported that fluorination substitution 
changed donepezil stability, altering its solubility and mo-
lecular polarities. AChE inhibitory capacity of donepezil 
derivatives was shown to be enhanced or decreased by the 
fluorine substitution position. 

3.1.2. Multipotent Hybrid Compounds with ChE Inhibitory 
Activities 

 The efficiency of ChE inhibitors in AD complex condi-
tions can be enhanced by derivation with moieties exerting 
other desirable effects, thus resulting in multitarget lead 
compounds. Bautista-Aguilera et al. [149] studied the bio-
logical activity of donepezil-pyridyl hybrids (DPH) on 
AChE, BChE and momoamine oxidase (MAO) active sites 

Table 1. Molecular descriptors involved in the inhibitory activity of donepezil-like derivatives expressed as: molecular volume 
(VM), water/octanol coefficient (logPm), molar refractivity (MR), Bond lengths (CAR-N,N-CO), polarizability (α), atomic 
charge of nitrogen atom using the Mulliken analysis ( CAMLK) molecular electrostatic potential (MEP), reactivity parame-
ter (Χ, χ,ω), Energy of the frontier molecular orbitals (EHOMO;LUMO) and Dipole moment (µ) and QSAR statistic parame-
ters expressed as: coefficient correlation R2, adjusted determination coefficient R2

adj, Standard Deviation SD, Fisher Cri-
terion F [148]. 

Equation Statistical Validation 

125.6397–0.00707* VM + 0.3168* logPM + 0.1624*MR – 0.4763*α – 10.1741* CAMLK + 
1.7706* MEP – 27.9435* CAr–N – 63.1731* N–CO 

R2 = 0.7327, R2
adj = 0.5544, SD = 0.1677, F = 4.1,  

q2
cv = 0.7327, q2

lmo = 0.8698, r2
m(test) = 0.7046 

5497–0.0178* VM + 0.4336* MR – 1.0032*α – 7.5257 MEP + 22.5256* χ 
R2 = 0.4909, R2

adj = 0.3212, SD = 0.4532, F = 2.8, 
q2

cv = 0.4909, q2
lmo = 0.5704, r2

m(testÞ) = 0.4418 

4.4128–14.0321* EHOMO – 1.5212* logPH + 0.4101* MR – 1.1650*α – 6.45775* MEP 
R2 = 0.7629, R2

adj = 0.6839, SD = 0.3095, F = 9.7, 
q2

cv = 0.7629, q2
lmo = 0.8211, r2

m(test) = 0.7516 

946.0467 – 25.1090* ELUMO + 0.0065* VM 2.2561* logPH – 0.3313*µ + 67.4759* CAMLK + 
46.8473 ESP – 3.5601 MEP+ 98.9023* χ + 109.1875* ω – 32.0204* CAr–N 

R2 = 0.9672, R2
adj = 0.9343, SD = 0.1523,  

F = 29.5, q2
cv = 0.9672, q2

lmo = 0.9124, r2
m(test) = 0.9660 
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by using experimental (spectrophotometric, fluorometric 
methods) and in silico (QSAR, molecular docking, ADMET) 
methods. The study results showed that DPH14 may be con-
sidered as the most potent compound, with AChE inhibitory 
activity equal to donepezil, but with an enhanced BChE in-
hibitory activity and with the ability to irreversibly inhibit 
MAO B enzyme. 

 Mishra et al. [152] performed a complex study in order to 
develop new donepezil multitarget derivatives starting from 
"(E)-5,6-dimethoxy-2-(4-(4-33 substituted piperazine-1-
yl)benzylidene)-2,3-dihydro-1H-inden-1-ones”. In this study, 
a combination of in silico (molecular modeling, molecular 
dynamics and docking methods) and experimental (1HNMR, 
13CNMR, mass spectroscopy) methods were used in order 
to synthesize, characterize and evaluate the biological activ-
ity of compounds for their AChE inhibition and Aβ disag-
gregation potential, antioxidant and neuroprotective activi-
ties. Results showed that: (i) among all, compounds IP-13 
and IP-15 appeared as the most active and selective AChE 
inhibitors versus donepezil, (ii) IP-9, IP-13 and IP-15 present 
enhanced anti Aβ effects in comparison to curcumin, (iii) 
derivatives IP-9, IP-13 and IP-15 significantly reduced H2O2 
induced oxidative stress in SH-SY5Y cells. Furthermore, 
these derivatives exert a potential neuroprotective effect 
against H2O2 and Aβ induced cytotoxicity in SH-SY5Y cell 
line [152]. The chemical structures of IP-9, IP-13 and IP-15 
derivatives are presented below (Fig. 5). 

 In order to understand the binding mode and the interac-
tion of the most active compounds with Aβ1-42, a docking 
protocol has been performed using the X-ray crystal struc-

ture of human Aβ1-42 (PDB ID: 1YT). Molecular dynamics 
simulation studies of compound IP-15 revealed its efficient 
binding with AChE and Aβ and its consistent interaction 
with the essential active sites during 40 ns of simulation. 
Besides, the potential of IP-9, IP-13 and IP-15 against Aβ1–
42 induced neurodegeneration in SH-SY5Y neuroblastoma 
cells was addressed using a cell viability assay. Results 
showed that IP-9, IP-13 and IP-15 exhibited neuroprotective 
effects (IP-9 and IP-13 presented the highest protective  
capability at 10 µM). The results demonstrated that these 
newly synthesized compounds did not display cytotoxic  
effects on the cells in the range of tested concentrations 
[152]. 

 Hiremathad et al. [154] reported a series of (3-hydroxy-
4-pyridinone)-benzofuran hybrids that mimic the donepezil 
drug, which was studied as potential multitargeting agents 
for AD acting on different pathophysiological targets of AD: 
AChE inhibition, metal chelation, radical scavenging and 
inhibition of Aβ aggregation. The compounds had lower 
AChE inhibitory activities in comparison to donepezil, the 
closest similarity being obtained for the O-benzyl-
hydroxypyridinone hybrids containing a 2-methylene linker. 
Free-hydroxypyridinone hybrids had the highest activities in 
terms of metal chelation, radical scavenging and inhibition 
of Aβ aggregation. It is interesting that all compounds pre-
sented drug-likeness properties and had neuroprotective ef-
fects on neuronal cells in AD conditions. 

 Dias et al. evaluated a series of novel feruloyl-donepezil 
hybrids as potential multitarget drugs for the treatment of 
AD [155]. In their work, a series of 12a-n feruloyl-donepezil 

 

Fig. (5). IP-9, IP-13 and IP-15 donepezil derivatives that presented enhanced AChE inhibitory, Aβ disaggregation and antioxidant activity in 
comparison to their parent compound – donepezil [152]. 
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hybrids were designed, synthesized and evaluated as AChE 
inhibitors and also as antioxidant compounds. The results 
revealed that compounds 12a-c were the most potent AChE 
inhibitors, highlighting 12a with IC50 = 0.46 mM. All com-
pounds presented moderate antioxidant properties. Very in-
teresting, compounds 12a-c presented: (i) significant in vivo 
anti-inflammatory activity proved on mice paw edema, (ii) 
metal chelator activity for Cu2+ and Fe2+, and (iii) neuropro-
tection of human neuronal cells against oxidative damage. 
[155] 

 Dias Viegas et al. [156] tested the anti-AD activity of 
several N-benzyl-piperidine-aryl-acylhydrazones hybrid de-
rivatives called 4 a-o. Their hybridization approach involved 
combining the following chemical structures in a single 
molecule: (i) the pharmacophoric N-benzyl-piperidine 
subunit of donepezil, (ii) the substituted hydroxy-piperidine 
fragment of LASSBio-767 (AChE inhibitor) and (iii) an 
acylhydrazone linker that was also used into a number of 
synthetic aryl- and aryl-acylhydrazone derivatives that had 
significant AChE inhibitory and anti-inflammatory activities. 
In vitro and in vivo results showed that: (i) compounds 4c, 
4d, 4g and 4j presented the best AChE inhibitory activities; 
(ii) compounds 4c and 4g presented anti-inflammatory activ-
ity against amyloid beta oligomer; (iii) compound 4c also 
showed the best in vitro and in vivo neuroprotective effects 
against Aβ oligomer. Molecular docking results revealed that 
compound 4c showed a similar binding mode to donepezil 
and presented suitable ADME-Tox profiles [156]. 

 Bellozi et al. [157] synthesized and evaluated the anti-
oxidant, anti-inflammatory and neuroprotective properties of 
a series of N-benzyl-piperidine-aryl-acylhydrazone deriva-
tives. Four very potent compounds were identified, namely 
PQM-56, PQM-57, PQM-67 and PQM-75, with very good 
AChE inhibitory activity and also anti-inflammatory and 
neuroprotective effects. Compounds PQM-56 and PQM-67 
displayed the best profile of memory recovery, representing 
potential drug candidates for AD treatment [157]. 

 Galantamine, an alkaloid isolated from the bulbs and 
flowers of Galanthus caucasicus, Galanthus woronowii, is 
currently considered the most valuable drug for AD treat-
ment. There are a few studies [158-160] that combined in 
silico with experimental methods in order to design and test 
the efficiency of galantamine derivatives in modulating 
AChE activity and in preventing AChE induced aggregation 
of Aβ peptides. The latter feature can be achieved by inhibit-
ing AChE PAS that is involved in accelerating amyloid 
deposition [161]. 

 Atanasova et al. [158] designed and synthesized a series 
of 41 galantamine derivatives with indole moiety in the side 
chain and tested these compounds in their AChE inhibitory 
activities. Study results showed that all newly synthesized 
derivatives presented AChE inhibitory activities between 11 
and 95 folds, all of them being more active than galantamine 
at AChE active site. The study concluded that there is a good 
correlation between docking results (GoldScores) and in vivo 
tests results of galantamine derivatives. The chemical struc-
ture of newly synthesized compounds allows the concomi-
tant targeting of both AChE binding sites. The galantamine 
moiety binds the CAS, while the indole moiety can bind in 

the PAS or in its proximity, preventing the deposition of Aβ 
on the enzyme. 

 Stavrakov et al. [159] used docking-based predictions to 
identify 20 novel galantamine derivatives, with alkylamide 
spacers of different lengths ending with aromatic fragments. 
Their results showed that among the tested terminal aromatic 
fragments, the phenethyl substituent is the most suitable for 
binding in PAS. Supplementary, critical molecular features 
like molecular mass, logP, number of hydrogen bond donors 
and acceptors were calculated for the considered molecules 
using ACD/logD v.9.08 (Advanced Chemistry Development, 
Inc.). The BBB permeability was predicted by the BBB Pre-
dictor [162]. According to this database, compounds are 
classified into compounds that can cross the blood-brain bar-
rier (BBB+) or do not cross (BBB-). Study results showed 
that: (i) the heptylamide spacer is long enough to bridge the 
galantamine moiety bound in the catalytic site and the aro-
matic fragments interacting with PAS, (ii) the phenethyl sub-
stituent is the most suitable for binding in PAS, (iii) the pres-
ence of a methyl carboxylate group in close proximity to the 
aromatic fragment is unfavorable for the binding conformation. 

 Rivastigmine is frequently used as an efficient treatment 
against AD. Wang et al. [163] reported a series of 13 novel 
chalcone-rivastigmine hybrids that were designed, synthe-
sized, and tested in vitro for their inhibitory activities against 
human AChE and BChE. In this study, hybrid compounds 
were obtained through interactions between rivastigmine 
with precursors of flavonoids and isoflavonoids, namely 
chalcones (trans-1,3-diphenyl-2-propen-1-ones, 1). The chal-
cones were chosen based on their antioxidant, anticancer, 
anti-inflammatory, antimalarial, antifungal, antilipidemic, 
antiviral and anti-amyloid activities. The authors used a 
combination of in silico methods like drug design, SAR 
analysis, molecular docking, molecular dynamic and predic-
tive ADMET with experimental procedures involving the 
synthesis, Ellman assay, kinetic characterization, in vitro cell 
viability assays, antioxidation activity assays to determine 
the anti-AChE and BChE activities of compounds. Results 
showed that the most potent inhibitor, namely compound 3: 
(i) inhibits BChE with IC50 values (0.87 and 0.36 µM), 
which are comparable or slightly better than rivastigmine, 
(ii) has negligible cytotoxicity on SH-SY5Y cell line in 
comparison with rivastigmine, (iii) has good predicted 
ADMET features, namely a good absorption, low solubility, 
low permeability of BBB and does not present hepatotoxic-
ity, (iv) blocks the formation of ROS in SH-SY5Y cells. 

 Babitha et al. [164] reported the anti-AD activity of two 
hybrid compounds formed by rivastigmine-fluoxetine and 
coumarin-tacrine. The authors reported that p-chlorophenyl 
substituted rivastigmine-fluoxetine and –OCH3 substitute 
Coumarin–Tacrine hybrids demonstrated a superior pharma-
cological profile. For these compounds, the molecular dock-
ing and predicted ADME-Tox were performed. 

 New candidates for AD treatment were identified [165] 
as 7-methoxytacrine-p-anisidine hybrid compounds that tar-
get both cholinesterases and the amyloid cascades. Kora-
becny et al. [165] used 7-methoxytacrine (7-MEOTA), a less 
toxic derivative of tacrine, an AChE inhibitor previously 
used in AD that was removed from the market due to its he-
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patotoxicity. 7-MEOTA was conjugated through thiourea or 
urea moieties alkyl tether with p-anisidine, a compound that 
decreases the intracellular accumulation of APP. The inhibi-
tory potencies of 7-MEOTA-p-anisidine heterodimers (syn-
thesized compounds 9–22) on human AChE and BChE were 
determined experimentally by a modified Ellman method 
and were compared to those of tacrine and 7-MEOTA. A 
higher AChE inhibitory activity was associated with com-
pounds with longer methylene tethers, with either thiourea 
(compounds 14, 15) or urea (compound 19) moieties. The 
binding of compounds to AChE investigated by molecular 
docking showed that, in spite of the differences in the linker 
region of compounds, their orientation and interactions in the 
active site of AChE are determinants for their effects. In the 
case of BChE, synthesized compounds (9-22) are less effec-
tive than tacrine, but more potent than 7-MEOTA. In 
thiourea subset, the length of the linker is inversely corre-
lated with BChE inhibition, the most potent compound being 
the shortest analog (compound 9). An opposite trend was 
identified in the urea subset, the longer derivative (com-
pound 22) being the most active. Results showed that a 
thiourea derivative (compound 9) is the most effective in-
hibitor of human BChE, while a urea derivative (compound 
9) is the most effective AChE inhibitor. Kinetic analyses 
showed that the identified AChE inhibitors perform a non-
competitive AChE inhibition, suggesting that AChE PAS is 
involved in the interaction. This type of interaction, also 
supported by molecular docking, suggests an additional ef-
fect of compounds in preventing AChE promoted Aβ aggre-
gation [165]. 

3.1.3. NMDA Antagonists 

 Memantine is a non-competitive NMDA antagonist, as 
the steady activation of NMDA receptors by the excitatory 
amino acid glutamate has been considered to have a mean-
ingful role in AD symptomatology [166]. At present, only a 
few in silico studies on memantine or memantine-like com-
pounds were published. Recently, Takahashi et al. [167] 
published an interesting paper on nitro-memantine, a me-
mantine derivative that provides a dual-site, hypoxia-
regulated antagonism on the NMDA receptor. The study 
results showed that: (i) nitro-memantine can down-regulate 
excessive NMDA receptor activity at a point when meman-
tine alone would lose effectiveness, (ii) it might be expected 
that the nitro group would target the NMDA receptor only 
during periods of open-channel block by the aminoadaman-
tane moiety, i.e., in the presence of agonists; (iii) nitro-
memantine spares even more synaptic activity while antago-
nizing extrasynaptic activity to an even greater degree than 
memantine. These may account for the increased efficacy of 
the new compound and bodes well for its clinical tolerability 
in human testing. 

3.1.4. Other Anti Aβ Molecular Hybrids 

 New approaches in prospective AD treatment are based 
on the application of hybrid molecules connecting synthetic 
drugs or nanoparticles. Very recently, Son et al. [168] re-
ported that small, nontoxic fragments using ruthenium (II) 
complex {[Ru(bpy)3]2+} work as highly sensitive, biocom-
patible and photoresponsive anti-Aβ agents. Here, we pre-
dicted the pharmacokinetic features of ruthenium (II) com-

plex {[Ru(bpy)3]2+} by using the ADME-Tox databases like 
pkCSM database [80] and ProTox-II [82] and the most sig-
nificant features are presented in Table 2. These predictions 
suggest that ruthenium (II) complex {[Ru(bpy)3]2+} is not 
toxic for liver or skin, does not induce mutagenesis, is not 
cytotoxic and does not trigger stress response pathways, pre-
dictions in agreement with the experimental results of Son et 
al. [168]. 

3.2. Natural Compounds 

 Currently, the limited potential of pharmacological ther-
apy in AD management led to an increasing interest in the 
identification of compounds from natural products that could 
be helpful in managing AD. This direction is especially in-
teresting since, during the last decade, various pharmaceuti-
cal active compounds extracted from plants had neuroprotec-
tive effects in phenotypic screening assays reflecting AD 
neurotoxicity pathways [169] and there is clinical evidence 
that the usage of adjuvant plant based therapies like Chinese 
herbal medicine has additive beneficial effects in the treat-
ment of AD [170]. Research in this direction is encouraged 
by the existence of exhaustive natural compounds databases 
and analysis platforms like Traditional Chinese Medicine 
Integrated Database (TCMID) [171], Traditional Chinese 
medicine systems pharmacology database and analysis plat-
form (TCMSP) [83], FooDB, Medicinal plant Activities, 
Phytochemical and Structural Database (MAPS) [172], Phy-
tochemica platform [173], etc. Their usage would allow the 
identification of natural compounds effective on diverse AD 
targets and of new scaffolds to be used in the design of anti-
AD medication. Also, such investigations would help in un-
derstanding the mechanism of action behind effective phy-
totherapies as Traditional Chinese Medicine and harness it to 
the benefit of AD patients. 

 Sun et al. [77] published a critical review on bioinformat-
ics and cheminformatics methods applied on various herbals 
with applicability in AD treatment. By an extensive text min-
ing on the literature from PubMed and the clinical trial data-
base (www.Clinicaltrials.gov), the authors identified Ginkgo 
biloba, Huperzia serrata, Melissa officinalis and Salvia offi-
cinale as the top in AD treatment research. The investigation 
conducted by inquiring several databases in order to identify 
the active compounds from these plants that were experi-
mentally linked to AD, their molecular targets and the rele-
vance of the targets for AD and other disorders from a net-
work perspective led to the conclusion that herbs could have 
beneficial effects on AD symptoms and could inhibit path-
ways closely related to AD like downregulation of intracellu-
lar Ca2+ homeostasis, inflammation, cancer or diabetes [77]. 
In silico combined with experimental methods were applied 
in order to highlight the therapeutic effects of natural com-
pounds extracted from Mentha spicata, Salvia oficinalis or 
Perovskia atriplicifolia Benth and Salvia glutinosa L. in AD 
treatments [174-179]. 

 In the following, we reviewed in silico studies focusing 
on the potential benefits of natural products in AD treatment 
due to their interaction with AChE, BChE, BACE, NMDA 
receptors, or with other AD targets such as metal ions that 
induce oxidative stress, mitochondria or amyloid. 



Potential Therapeutic Approaches to Alzheimer’s Disease By Bioinformatics Current Neuropharmacology, 2020, Vol. 18, No. 8    709 

3.2.1. ChE Inhibitors 

 Ferlemi et al. [176] published a paper regarding the anx-
iolytic and AChE inhibitory activity of rosemary tea at mice 
by pharmacophore alignment and molecular docking. Natu-
ral compounds from rosemary are able to penetrate the BBB 
and can be used as AChE inhibitors. A similar study was 
performed by Senol et al. [178] that used molecular docking, 
QSAR and ELISA assays to prove that diterpene and rosma-
rinic acids present different inhibitory activities on BChE 
and AChE. Results revealed that rosmarinic acid is a good 
BChE inhibitor versus galantamine, but it is a weak AChE 
inhibitor. All of the tested compounds could be good precur-
sor models for BChE-inhibiting molecules. In particular, 
15,16-dihydrotanshinone could be more promising since it 
can display dual inhibition toward both enzymes. 

 Very recently, Kuppusamy et al. [177] identified that 
some commercially available flavonoids (diosmin, silibinin, 
scopoletin, taxifolin and tricetin) are good candidates as in-
hibitors of AChE enzyme by in silico and in vitro studies. 
Flavonoids and their related compounds are a group of natu-
ral products that exhibit various biological and pharmacol-
ogical activities like antibacterial, antiviral, antioxidant, anti-
inflammatory, anti-allergic, hepatoprotective, antithrom-
botic, antiviral, antimutagenic and several enzymes inhibi-
tory effects. Flavonoids can be promising remedies to allevi-
ate AD symptoms by inhibiting AChE and thereby increas-
ing ACh levels. In this study, authors combined bioinformat-
ics and cheminformatics programs such as Python 2.7, Mo-
lecular graphics laboratory (MGL) tools and AutoDock 4.2, 

Discovery studio visualizer 2.5.5, Chemsketch, molecular 
docking with the chemical synthesis of compounds and in 
vitro testing of AChE and BChE inhibition. From these fla-
vonoid compounds, scopoletin was found to be the most po-
tent and specific inhibitor of ChEs with IC50 values of 
10.18±0.68 µM. The molecular docking results reinforced 
that scopoletin (binding energy =-6.95 kcal/mol) and dios-
min (binding energy =-6.03 kcal/mol) are good candidates 
for AChE inhibition. These results are confirmed by experi-
mental results in the case of scopoletin (inhibitory constant = 
36.86 microM) and diosmin (inhibitory constant = 8.36 mi-
croM), while tricetin (binding energy =-4.27kcal/mol; inhibi-
tory constant = 739.02 mM) and taxifolin (binding energy =-
5.22kcal/mol; inhibitory constant = 150.32 mM) appeared as 
week AChE inhibitors. The study results are optimistic with 
respect to the usage of flavonoids as AChE inhibitors, the in 
silico AChE inhibitory activities of the compounds being in 
the following order: scopoletin > diosmin > silibinin > taxi-
folin > tricetin > donepezil. In vitro AChE inhibitory assay 
confirmed these results, including that scopoletin is more 
potent than the standard, donepezil. 

3.2.2. NMDA Antagonists 

 Recently, Avram et al. [174] published a computational 
study aiming to identify more potent lead phytopharmaceuti-
cal compounds for AD treatment, considering the natural 
compounds isolated from Mentha spicata L. subsp. spicata 
essential oil. In this paper, complex structure - activity rela-
tionship (SAR) models were generated in order to predict the 
biological activities of 14 natural compounds from Mentha 

Table 2. Predicted pharmacokinetics features of ruthenium (II) complex {[Ru(bpy)3]2+} obtained by inquiring the bioinformatics 
databases pkCSM database [80] and ProTox-II [82].  

Pharmacokinetics Features pkCSM Database  ProTox-II 

Intestinal absorption (human) Good  - 

BBB permeability Good  - 

CNS permeability Low  - 

Organ Toxicity 

Hepatotoxicity No No 

Skin Sensitisation No - 

Toxicity end points 

Mutagenity No No 

Carcinogenicity - No 

Immunotoxicity - No 

Citotoxicity - No 

Stress response pathway 

Nuclear factor-like2/antioxidant responsive element - No 

Heat shock factor response element  - No 

Mitochondrial Membrane Potential  - No 

Phosphoprotein (Tumor Suppressor) p53  - No 
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spicata L. subsp. spicata in their interaction with active sites 
of AChE and NMDA receptor. The molecular features of 
natural and synthetic compounds (memantine, donepezil an 
galantamine) were compared. The names and biological ac-
tivities of synthetic and natural compounds expressed as 
IC50 against AChE are presented in Table 3. 

 Avram et al. [174] reported the molecular features rele-
vant for the biological activity of natural compounds isolated 
from M. spicata essential oil, such as rotatable bonds, hydro-
phobicity, energy of molecular orbitals, solvent accessible 
area and their subdivided. Results predict that one of the 
main compounds of M. spicata essential oil, namely 1,8 
cineole, could be a NMDA antagonist in a similar manner 
with memantine, while it presents a weak inhibitory activity 
on AChE, in respect of: (i) hidrophobicity (logP 1,8 - cineole 
=2.95, logP memantine =2.81, logP donepezil =4.11), (ii) the 
energy of LUMO (eLUMO 1,8 - cineole =3.01 eV, eLUMO 
memantine =3.35 eV, eLUMO donepezil = - 0.35 eV) and 
(iii) the solvent accessible surface areas over all hydrophobic 
(SA_H 1,8 - cineole = 350 Å2, SA_H memantine = 358 Å2, 
SA_H donepezil = 655 Å2) or polar atoms (SA_P 1,8 - cine-
ole = 4 Å2, SA_P memantine =10 Å2, SA_P donepezil 
=44.62 Å2) [174]. 

3.2.3. BACE Inhibitors 

 Resveratrol is a natural compound from red wine. Due to 
the health benefits of resveratrol and resveratrol derivatives, 
these are considered for alternate therapy or prevention in 
several disorders such as, cancer, inflammation, brain dis-
ease and disorders, etc. Koukoulitsa et al. [175] performed a 
biological and computational evaluation of the inhibitory 
activities of resveratrol and its derivatives on beta secretase 
(BACE-1) by molecular docking and molecular dynamics 
methods. Results showed that resveratrol derivatives 3, 5, 10 
and 11 have higher inhibitory activities in comparison with 
resveratrol. 

 A very interesting computational study on the pharma-
cokinetic and pharmacodynamics features of resveratrol was 
performed by Udrea et al. [81]. In this study, ADME-Tox 
features of resveratrol were presented in depression, as  
secondary pathology in AD. The results are presented in  
Table 4. The ADMET study was run in pkCSM platform [80], 
the SMILES structure of the drugs and natural compounds 
were retrieved from the Drug Bank database [77]. 

3.2.4. Anti-inflammatory and Antioxidant Compounds 

 Another important natural compound in AD is ursolic 
acid. Recently, Duda Seiman et al. [180] addressed the anti-
inflammatory features of ursolic acids by computational and 
experimental methods. Besides, ADME-Tox features of ur-
solic acids were evaluated in comparison to quercetin. The 
authors identified that both quercetin and ursolic acid com-
ply with Lipinski and Veber rules, implying that both com-
pounds can be considered drug-like. Also, the bioavailability 
of compounds is very good, ursolic acid presenting a higher 
bioavailability than quercetin. The predictive ADME-Tox 
investigations showed that: (i) Ursolic acid presents a pre-
dicted value of 1.287, which indicates a good Caco-2 perme-
ability, while Caco-2 permeability of quercetin is low (-
0.162); (ii) Both molecules present a high intestinal absorp-
tion; (iii) ursolic acid (-0.174) has a medium predicted BBB 
permeability; (iv) ursolic acid has a CNS permeability value 
of -1.118, indicating that it penetrates; (v) ursolic acid pre-
sent no AMES toxicity, AMES toxicity test being an indica-
tive if a compound is mutagenic or not [180]. 

 Caesalpinia crista is a medicinal plant known for its anti-
microbial, anti-inflammatory and anti-oxidant properties. A 
recent study [181] evaluated the neuroprotective effects of 
methanolic extracts of Caesalpinia crista on aluminium-
induced neurodegeneration in rats. Its co-administration sig-
nificantly ameliorated the aluminium-dependent cognitive 
impairment, AChE hyperactivity and oxidative stress in the 
hippocampus and in the frontal cortex of the rat brain. 

Table 3. Biological activity expressed as IC50 at AChE and NMDA receptor of anti-AD conventional drugs and natural com-
pounds extracted from Mentha spicata essential oil [174]. 

Mentha spicata extract oil 

No Constituents IC50 AChE (microM) IC50 NMDA 

1 Limonene 195  

2 1.8-cineole 41  

3 Linalool L 200  

4 Pulegone 136  

5 Piperitenone 110  

6 Piperitenone oxide 64  

Conventional anti-AD drugs 

7 donepezil 16  

8 galantamine 300  

9 memenatine 4360 1.24 
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 Jomova et al. [182] studied the role of the flavonoid 
quercetin as a promising potent anti-copper and antioxidant 
agent and obtained interesting results: (i) copper(II)-
quercetin is more efficient in radical scavenging in compari-
son to quercetin alone; (ii) the formation of copper(II)-
quercetin complexes significantly suppressed the formation 
of hydroxyl radicals in the Cu(II) catalyzed Fenton reaction; 
(iii) quercetin has a protective effect against DNA damage, 
but only at higher stoichiometric ratios relative to copper. 

 The effect of natural products on mitochondria was re-
viewed by Gibellini et al. [183], showing that natural prod-
ucts influence all mitochondrial functions: (i) quercetin, res-
veratrol, curcumin, (−)epigallocatechin gallate (EGCG), 
(−)epicatechin gallate, genistein, or biochanin inhibit F0F1 
ATPase; (ii) curcumin, resveratrol and quercetin, the more 
extensively studied products, exhibit dose-dependent and 
tissue-dependent effects on the oxidative phosphorylation 
process; (iii) resveratrol has antioxidant effects in mitochon-
dria by decreasing ROS, modulating the expression of pro-
teins and increasing the expression of ROS scavenging en-
zymes; (iv) curcumin is an efficient antioxidant that prevents 
mitochondrial dysfunctions and mitochondrial-induced apop-
tosis; (v) the effects of curcumin, quercetin and resveratrol 
on mitochondria biogenesis are quite controversial, being 
influenced by animal model, experimental design or dosage 
[183]. Mangiferin and morin were also identified as power-
ful neuroprotective antioxidants that limit mitochondrial 
damage in Aβ oligomer-treated neurons [184]. Their identi-
fied effects on mitochondria were the prevention of cyto-
chrome c release in cytosol and preservation of mitochondria 
membrane potential [184]. The quest for natural compounds 
with applicability in diseases associated with mitochondrial 
dysfunctions takes into account different sources, like tradi-
tional Chinese medicines. A screening study of potential 
mitochondrial-targeting compounds of these medicines 
through an efficient mitochondria-based centrifugal ultrafil-
tration/liquid chromatography/mass spectrometry led to the 
identification of 12 novel compounds that can target mito-

chondria, from which the ability of 6 compounds to affect 
mitochondrial function was proven in vitro [185]. 

3.2.5. Anti Aβ Compounds 

 Natural compounds were also proved to be effective 
amyloid inhibitors. Velander et al. [186] conducted a data-
base search for natural compounds acting as amyloid inhibi-
tors, resulting a list of 72 compounds comprising 44 phenolic 
compounds: “16 flavonoids, 4 anthraquinones, 13 alkaloids 
(including 3 indoles, 3 pyridines, and 2 porphyrins), terpe-
nes, and steroids” [186], from which we can mention res-
veratrol, curcumin, oleuropein, oleocanthal, EGCG, caffeic 
acid, rosmarinic acid, cinnamaldehyde, genistein. These 
compounds may bind Aβ fibrils in different ways (covalent, 
non-covalent, charge-charge). Molecular modeling tech-
niques were used to address the binding of curcumin and 
EGCG to amyloid and tau fibrils. Results on the molecular 
docking of curcumin to a fragment (“steric zipper” hexapep-
tide) of Aβ1-40 led to the identification of a “binding and de-
stabilization” effect, as curcumin binding produces a pertur-
bation of β-sheets in Aβ spine [187]. A similar mechanism 
was revealed by molecular dynamics (MD) simulation of 
curcumin bound to tau hexapeptide VQIVYK [188]. The 
simulation was performed starting from the crystal structure 
of curcumin bound to four tau hexapeptides that pictures 
curcumin located in a β-sheet pocket formed by tau frag-
ments [189]. MD showed that curcumin disrupts the order of 
fibrils by breaking the interaction between tau chains [188]. 
MD also helped characterize a different mechanism by 
which curcumin prevents high order amyloid aggregation, 
namely curcumin molecules self-assemble to form a nuclea-
tion site that binds and stabilizes small amylin assemblies 
which become unavailable for further aggregation [190]. MD 
simulations of EGCG bound to amylin dimers showed that 
EGCG alters the cross-beta amyloid conformation, leading to 
the formation of conformations comprising mostly coil struc-
tures [191]. Velander et al [186] reviewed experimental data 
and molecular modeling studies on the binding types and 

Table 4. In silico ADME-Tox predicted values for natural compounds: resveratrol, melatonin, linalool and linalyl acetate com-
pared with antidepressant fluoxetine [81]. 

Predicted Values for 
Model 

Resveratrol Melatonin Linalyl Acetate Linalool Fluoxetine 
Unit 

Intestinal Absorption (human) 90.935 94.164 95.275 93.163 91.813 
% Absorbed 

(>30%=poorly absorbed) 

VDss (human) 0.296 0.082 0.069 0.152 1.058 
log L/kg 

(low -0.15 >logVDss> 0. 45 high) 

Fraction unbound (human) 0.166 0.289 0.423 0.484 0.039 
Fu (higher fraction unbound more 

efficient drug) 

BBB permeability -0.048 -0.076 0.516 0.598 0.505 
log BBB (poorly cross -1 >logBBB 

>0.3 crosses) 

Total Clearance 0.076 0.735 1.627 0.446 0.68 log ml/min/kg 

Rat (LD50) 2.529 2.159 1.729 1.704 2.849 mol/kg 

Hepatotoxicity No No No No Yes Yes/No 
 



712    Current Neuropharmacology, 2020, Vol. 18, No. 8 Avram et al. 

interaction mechanisms (including mediated by redox metals 
copper, zinc, iron, aluminum) of phenolic compounds with 
AD fibrils (amyloid, tau), providing their atomic-level analy-
sis, which is an important starting point for the design of 
potent Aβ inhibitors. 

3.2.6. Multipotent Hybrid Compounds 

 Coumarins are found in a large variety of sources, like 
fruits, nuts, coffee, tea, vegetables or fruits. Depending on 
their core structure and substituents, these exhibit many ef-
fects that could be desirable in AD condition, including anti-
oxidant, ROS scavenging, anti-inflammatory, cholinesterases 
inhibition of CNS stimulation [192]. In a recent review, Ste-
fanachi et al. [192] presented coumarins as a scaffold of 
great interest for the development of novel derivatives and 
therapeutic multitarget agents useful in complex pathologies, 
such as neurodegenerative diseases. Hamulakova et al. [193] 
reported a series of coumarin–tacrine hybrid compounds as 
therapeutic agents with multiple effects: (ii) antioxidant and 
copper-chelating activity, (ii) DNA protection, (iii) modula-
tion of cholinergic activity and (iv) inhibition of amyloid 
aggregation. The efficiency of these compounds is based on 
their chemical structure. While the presence of tacrine seg-
ment assures the cholinesterase inhibitory activity of com-
pounds, the antioxidant properties of these compounds rely 
on the interaction of hybrids with Cu(II) that involves the 
reduction of Cu(II) to Cu(I) species, which prevents the 
Cu(II) mediated decomposition of hydrogen peroxide [193]. 

CONCLUSION 

 The main problem that we are facing in developing a 
cure for AD is its highly complex pathophysiology. There-
fore, a combination of therapeutic methods is more likely 
required in order to hopefully cure or at least maintain the 
cognitive state of the patients. Current AD medication has 
proven ineffective on the long-term progression of the dis-
ease; therefore a great effort is put into the identification of 
novel compounds effective in inhibiting AD neurotoxic 
pathways. Bioinformatics, cheminformatics and ADME-Tox 
methods can be of great assistance in this quest, as they al-
low efficient management of the wealth of information exist-
ing on drugs and natural compounds, their molecular targets, 
the association of targets with diseases, the interactions be-
tween targets in the context of cellular networks, etc. Based 
on the analysis of this data, they allow the prediction of 
compounds biological activities and pharmacokinetic fea-
tures, resulting in the identification of promising compounds 
for the treatment of AD. Nevertheless, the predictions must 
be pre-clinically and afterward clinically validated in order 
to establish their effects in the complex AD condition. 

 Here we listed a series of synthetic chemicals and natural 
compounds extracted from plants with inhibitory action on 
AD molecular targets and pathways, thus showing potential 
beneficial effects that could be harnessed in relieving AD 
symptomatology and modifying disease progression. Our 
focus was on the compounds and their derivatives that were 
analyzed by bioinformatics, cheminformatics and predictive 
ADME-Tox methods. Wherever available, we present ex-
perimental studies validating their effects on molecular tar-
gets, cell cultures and animal models. 

 In the case of synthetic compounds, we identified in 
silico combined with experimental studies presenting new 
molecules acting mostly as cholinesterase inhibitors and only 
a few NMDA antagonists. Furthermore, we presented studies 
on synthetic multipotent hybrids targeting at the same time 
ChEs and other AD processes (Aβ deposition, oxidative 
stress, etc) and metal-organic compounds acting as very po-
tent, nontoxic Aβ inhibitors. 

 Regarding the neuroprotective effects of natural com-
pounds, their analysis by in silico methods is limited by the 
lack of experimental studies pointing to their exact AD mo-
lecular targets. Most of the studies that we reviewed take 
into account the inhibitory effect of natural compounds on 
cholinesterases, NMDA receptors, secretases or amyloid. 
The usage of natural compounds in AD has great potential, 
as clinical trials showed that a plant-based therapy can be 
adjuvant to the classic AD therapy. Natural compounds ap-
peared as multipotent agents, acting on several AD path-
ways. In the future, more effort should be directed toward a 
coherent characterization of their in vivo efficacy in AD con-
dition and in the identification of their optimal dosages in 
order to prevent side effects. Also, attention should be given 
to therapeutic approaches involving hybrid molecules con-
necting synthetic drugs, natural compounds or nanoparticles. 

LIST OF ABBREVIATIONS 

Aβ = Acetylcholine 
ACD = Advanced Chemistry Development 
ACh = amyloid beta 
AChE = Acetylcholinesterase 
AD = Alzheimer’s disease 
ADMET = absorption, distribution, metabolism, and 

excretion – toxicity 
APOE = apolipoprotein E 
APP = amyloid precursor protein 
BACE = beta-secretase 
BBB = blood-brain-barrier 
BChE = butyryl-cholinesterase 
BDDCS = Biopharmaceutics Drug Disposition Classi-

fication System 
CAS = catalytic anionic site 
CVARD = Canada Vigilance Adverse Reaction Data-

base 
EO-FAD = early-onset familial Alzheimer’s disease 
FAERS = Food and Drug Administration Adverse 

Event Reporting System 
MEOTA = Methoxytacrine 
MGL = Molecular graphics laboratory 
MOE = Molecular Operating Environment 
NCBI = National Center for Biotechnology Infor-

mation 
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NF-kB = nuclear factor-kappaB 

NFT = neurofibrillary tangles 

NMDA = N-metil-D-aspartat 

NRf2 = nuclear transcriptional factor-2 

OMIM = Online Mendelian Inheritance in Man 

PAS = peripheral anionic site 

PCR = Polymerase chain reaction 

PDB = protein databank 

PSEN1 = presenilin 1 

PSEN2 = presenilin 2 

QSAR = quantitative structure–activity relationship 

ROR = reporting odds ratios 

SAR = structure - activity relationship 

TM = transmembrane 

TTD = Therapeutic Targets Database 

WGS/WES = whole genome and exome sequencing 
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