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Summal-y 
A variant of  severe combined lmmunodeficiency syndrome (SCID) with a selective inability to 
produce CD8 single positive T cells and a signal transduction defect in peripheral CD4 + cells 
has recently been shown to be the result of  mutations in the ZAP-70  gene. T cell receptor 
(TCR) signaling requires the association of the ZAP-70 protein tyrosine kinase with the T C R  
complex. Human T cell leukemia virus type I-transformed CD4 + T cell lines w.ere established 
from ZAP-70-deficient patients and normal controls. ZAP-70 was expressed and appropriately 
phosphorylated in normal T cell lines after T C R  engagement, but was not detected in T cell 
lines from ZAP-70-deficient patients. To determine whether signaling could be reconstituted, 
wild-type ZAP-70  was introduced into deficient cells with a ZAP-70  retroviral vector. High 
titer producer clones expressing ZAP-70 were generated in the Gibbon ape leukemia virus 
packaging line PG13. After transduction, ZAP-70 was detected at levels equivalent to those 
observed in normal cells, and was appropriately phosphorylated on tyrosine after receptor en- 
gagement. The kinase activity of ZAP-70 in the reconstituted cells was also appropriately upregu- 
lated by receptor aggregation. Moreover, normal and transduced cells, but not ZAP-70-deficient 
cells, were able to mobilize calcium after receptor ligation, indicating that proximal T C R  sig- 
naling was reconstituted. These results indicate that this form of SClD may be corrected by 
gene therapy. 

S CID is a heterogeneous group of genetic disorders 
characterized by an absence of T and B lymphocyte 

function. Recently, one form of autosomal recessive SClD 
has been shown to be caused by defects in the ZAP-70 
protein tyrosine kinase (PTK; 1-3). The phenotype of 
ZAP-70-deficient SClD is distinctive with an absence of 
peripheral CD8 + T cells and normal to high levels of  pe- 
ripheral CD4 + T cells that cannot signal through the TCR.  
ZAP-70 has a relative molecular mass of  70-kD, and is ex- 
pressed exclusively in thymocytes, T cells, and NK cells (4). 
It contains two tandemly arranged Src homology 2 (SH2) 
domains and a carboxy-terminal kanase domain (5). 

Engagement of  the T C R  normally results in activation 
of intracellular signal transduction pathways culminating in 
gene expression and cellular proliferanon (6). Much evi- 
dence indicates that initiation of the signal is mediated 
through phosphorylation of two tyrosines located within a 
17-amino acid motif  that is present in all conserved chains 

of  the T C R ,  termed the immunoreceptor tyrosine activa- 
tion motif  (ITAM, 7-9). The Src family PTKs Lck and Fyn 
have been shown to play important roles in the tyrosine 
phosphorylation of these ITAMs (10-12). ZAP-70 can 
then associate with the phosphorylated ITAMs of the 
CD3-~ and CD3-~ chains of  the T C R  through its SH2 
domains (5, 13, 14). ZAP-70 is itself phosphorylated upon 
this interaction, in a process that is dependent on Src family 
PTKs (5, 14-16). The subsequent steps in the T C R  signal- 
ing pathway that result in T cell proliferation and cytokine 
release are not well defined. However, the observation that 
there is an almost complete abrogation of T C R  signal 
transduction in CD4 + cells in ZAP-70-deficient patients 
(1-3) indicates a critical role for ZAP-70 in this process. 

Interestingly, there is a second member of  this PTK fam- 
ily, termed Syk, that is structurally homologous to ZAP-70 
and shares 57% sequence identity (5, 17). Syk is expressed 
in a wide variety of  cells including B cells, mast cells, gran- 
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ulocytes, platelets, and thymocytes,  but  its level in per iph-  
eral T cells is significantly lower  (<10% o f  the level in B 
cells; 4). Additionally, although Syk is known  to be impor-  
tant for signaling in B cells, mast cells, and granulocytes, its 
role in T cell signaling is not  clear (18-25). W e  have re- 
cently shown that high levels of  endogenous Syk may par-  
tially compensate for the absence o f  ZAP-70  in thymocytes 
from a ZAP-70-def ic ien t  patient, resulting in signaling 
through the TC1L (26). In contrast with thymocyte  signal- 
ing, however,  there is a lack o f  signaling, as assessed by pro-  
tein tyrosine phosphorylat ion and mobil izat ion o f  [Ca2+],, 
in the peripheral CD4 + T cells from this patient (26). This 
observation again underscores the importance of  ZAP-70  
in the signal transduction pathway in peripheral T cells. 

In the present work, we demonstrate successful reconstitu- 
tion o f  TCR-med ia t ed  signaling in a CD4 + peripheral T cell 
line from this ZAP-70-def ic ien t  patient. The  cell lines have 
previously been shown to have defective TCP,.-mediated sig- 
naling analogous to that seen in primary cells from the patient 
(26). Cells were reconsti tuted by retroviral-mediated trans- 
duction with the wi ld- type ZAPo70 gene. After transdnc- 
tion of  the patient's cell line, T C R  signaling was normalized 
as measured by ZAP-70  phosphorylat ion,  ZAP-70  in vitro 
kinase activity, and reconstitution of  calcium mobilization. 

Materials and Methods  

Cell Lines. The patient with ZAP-70 deficiency has been re- 
ported previously (26). Briefly, HTLV-I transformation ofpenpheral 
blood T cells from normal adult donors and the ZAP-70-deficient 
patient (AB) were performed as described (27). The normal and AB 
HTLV-I hnes were maintained in RPMI 1640 with 10% FCS, IL-2 
(20 U/ml; gift from Carolyn Paradise, Chiron Corp., Emeryville, 
CA), 2 mM 1-glutamine, 50 U/ml penicillin, and 50 Ixg/ml strep- 
tomycin. The phenotype of control and ZAP-70-deficlent T cell 
lines was similar; each expressed TCR.-oL/I3 as well as CD4. Addi- 
tionally, all cell hnes were IL-2 dependent. The human T leukemia 
cell hne Jurkat was maintained in RPMI 1640 with 10% FCS. 

Construction of the G1ZAPSvNa Vector and Packaqing Line. 
The normal ZAP-70 cDNA (5) was excised fi-om Bluescript 
KS(+) as an EcolLl fragment, blunted with Klenow DNA poly- 
merase, and cloned into the SnaBI site of the pG1XSvNa vector 
plasrmd, a Moloney munne leukemia virus-based retroviral vec- 
tor (28; Genetic Therapy, Inc., Gaithersburg, MD). 

To generate a high tlter packaging line, the resultant pGZAPS- 
vNa plasrmd was transfected into the gp+env 86 ecotropic pack- 
aging hne using DOTAP reagent (Boehnnger Mannheim, India- 
napohs IN) (29). Supematants from the ecotroplc line were then 
used to infect PG13 amphotroplc packaging cells (30), and a sin- 
gle clone with a nter of 4 × 105/ml was used for transductions. 

Retroviral Transductions. pG1ZAP70SvNa supernatants were 
added at a 1:1 dilution to AB cells in logarithmic growth phase 
(105 cells/ml) in the presence of IL-2 (20 U/ml) and 3 ~g/ml 
protamine. Fresh viral supernatants were added every 24 h for 3 
successive days. The AB cells were then &luted to "-'5 × 104 
celts/ml, and 1-ml ahquots were seeded into the wells of a 24- 
well plate and selected m 400 p~g/ml of G418 (geneticin; GIBCO- 
BRL, Galthersburg, MD). In three different transductions, approxi- 
mately four to eight wells from each plate grew after 3-6 weeks of 
G418 selection. Control cells were transduced with the LN vector, 
which contains only the neomycin phosphotransferase gene (28). 

Immunoprecipitations and Kinase Assays. Cells were starved over- 
mght in RPMI 1640 with 1% FCS (in the absence of IL-2). After 
washing twice in HBSS, cells were resuspended at 2 × 107 cells/ 
nil, incubated with 100 ~1 of a biotinylated ann-CD3 antibody 
(Leu4 mAb; Becton Dickinson & Co., Mountain View, CA) for 
15 min on ice, and then cross-linked with streptavidan (30 p,g/ 
ml, Calblochem/Novabiochem Corp., La Jolla, CA) for 2 rain at 
37°C. Cells were lysed in an NP-40 lysxs buffer (31), and postnu- 
clear supernatants were lmmunoprecapltated with a rabbit poly- 
clonal antibody to ZAP-70, 1222 (5), followed by collectmn on 
protein A/G agarose (Santa Cruz Blotechnology Inc., Santa 
Cruz, CA). Immunoprecipitates were separated on 7.5% SDS- 
PAGE gels and transferred electrophoretically to Hybond mem- 
branes (Amersham, Arlington Hmghts, IL). 

Membranes were blotted with a mixture of the 4G10 (Upstate 
Baotechnology Inc., Lake Placid, NY) and pY72 antiphosphoty- 
rosine mAbs (gift from Bart Sefton, Silk Institute, La Jolla, CA) as 
previously described (31). Blots probed with a ZAP-70-specific 
mAb, 2F3.2 (14), were blocked in TBS (150 mM NaC1, 20 mM 
Tris, pH 7.5) containing 5% BSA and 0.1% Tween 20. Immuno- 
complexes were visualized using the enhanced chemilumines- 
cence detection system (Amersham). 

In vitro kinase assays were performed essentially as reported 
(32). Immunoprecipitates were washed an lysis buffer followed by 
150 mM NaC1 and 50 mM Tras HC1, pH 7.5. Precipitates were 
then incubated m 25 bd kinase buffer (20 mM Pipes, pH 7.0, 10 
mM MnCI> and 5 p, Ci [',/32p]ATP [3,000 Ci/mM]) for 10 man 
at 30°C, washed once, eluted by bolhng in 2× SDS sample 
buffer, resolved on SDS-PAGE, and wsualized by autoradiography. 

Aleasurement of Cytoplasmic Calcium Concentration. T cell lines 
were starved overnight in 1LPMI 1640 with 10% FCS (in the ab- 
sence of IL-2), and were loaded with Indo-1 (Molecular Probes, 
Inc., Eugene, OIL) in the same medium at 20°C for 45 min. Cells 
were washed and resuspended at "°10~' cells/nil in HBSS contain- 
ing 1% BSA. Cells were stimulated with bmtinylated anti-Leu4 
mAb followed by streptavidin at 37°C 111 a constantly stirred 
acrylic cuvette. Fluorescence measurements to determine [Ca2+], 
were performed with a spectrofluorimeter (Photon Technologws, 
South Brunswick, NJ) at an excitation wavelength of 350 nm (4-urn 
bandwidth), and with dual simultaneous momtoring of emission 
at 405 and 485 nm (10-nm bandwidth). The rano of emission at 
405/485 nm was measured at a rate of 2 Hz and is presented as a 
function of time (s). 

Results  

Lack of Z A P - 7 0  Expression in a Peripheral CD4 + Cell Line 
Derived from Patient AB. W e  have previously shown that pa- 
tient AB, the product  o f  a consanguineous union, has Z A P -  
70-deficient SCID (26). This syndrome was diagnosed from 
the patient 's peripheral b lood T cell phenotype  (adequate 
CD4 + count with a marked paucity o f C D 8  + T cells), the fail- 
ure o f  his PBMCs to mediate increases in [Ca2+], and an ab- 
sence of  detectable ZAP-70  protein. Additionally, no ZAP-  
70-specific tLNA could be detected in thymocytes from 
panent AB. To study signaling in peripheral CD4 + cells from 
this patient, an HTLV-I - t r ans fo rmed  polyclonal T cell line 
was derived. HTLV-I - t r ans fo rmed  CD4 + T cell lines from 
normal individuals were used as controls. Like CD4 + HTLV-I  
lines derived from normal individuals, the patient's HTLV-I  
T cell line expressed CD4, the Lck and Fyn Src family PTKs, 
the TC1L-~ chain, and P L C - y l  (data not shown). All HTLV-I  
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Figure 1. Map of the G1ZAPSvNa vector. Shown are posmons of the 
5' long terminal repeat (5' LTP,), ZAP-70 cDNA, SV-40 promoter/en- 
hancer, neomycin phosphotransferase (ne0) gene, and 3' long tertmnal re- 
peat (3' LTR). 

lines required the presence o f  exogenous IL-2 (20 U/n i l )  in 
the culture medium to sustain growth. In contrast with con- 
trol HTLV-I  lines (Normal), however, ZAP-70 expression was 
not detected in the AB HTLV-I  line (AB; see Fig. 2 B). These 
data indicated that the AB H T L V - I  line could be used as a 
tool to assess whether the transduction of  wild-type ZAP-70 
would result in the reconstitution of  TCR-media ted  signaling. 

ZAP-70  Is Expressed and Tyrosine Phosphorylated after 
Transduction with GIZAPSvNa .  To determine whether  
wild-type ZAP-70 would restore TCP,. function m AB T cells, 
ceils were transduced with a retroviral vector G1ZAPSvNa,  
into which the entire ZAP-70  c D N A  was cloned (Fig. 1). 
Pools o f  AB cells from three different transduction experi-  
ments were selected in G418 for 3 -6  wk  to obtain cells 
containing G I Z A P S v N a  (AB/ZAP-70 cells). In these trans- 
duced T cell pools, ZAP-70  was expressed at levels ranging 
from 0.2 to 2.0-fold o f  the levels observed in control T cell 
lines (data not  shown). In Fig. 2 B, ZAP-70  expression in 
an A B / Z A P - 7 0  T cell pool  is equivalent to that observed 
in a normal T cell line (Normal). This indicates that retrovi-  
ral transduction o f  ZAP-70  into deficient cells can result in 
approximately normal levels o f  ZAP-70  expression. The  
level o f  ZAP-70  expressed in six individual pools o f  A B /  
ZAP-70-transduced cells did not change after up to 8 mo of  
continuous culture in the absence o f  G418, as monitored by 
immunob lo t  analysis (data not  shown). This result demon-  
strates that ZAP-70 can be stably expressed in cultured T cells 
after transduction with the G 1ZAPSvNa retroviral vector. 

U p o n  T C R  stimulation, ZAP-70  normally associates 
with phosphorylated ITAMs that are present in the C D 3 - e  
o r - {  chains, and is i tselfphosphorylated (5, 13-16). There-  
fore, we assessed whether  ZAP-70  would  be tyrosine phos-  
phorylated in AB/ZAP-70 - r econs t i t u t ed  cells after recep- 
tor engagement.  Cell  lines were rested overnight in the 
absence o f  exogenous IL-2 before stimulation o f  the T C R  
with a biotlnylated an t i -CD3 mAb (Leu4) /bi lowed by 
cross-linking with streptavidin. In a normal as well as the 
reconsti tuted cell line (AB/ZAP-70) ,  the 70-kD ZAP-70  
protein was tyrosine phosphorylated upon T C R  aggrega- 
tion. It is interesting to note that several molecular  mass 
species o f  > 7 0  kD were also tyrosine phosphorylated,  al- 
beit  at lower levels, in ZAP-70  immunoprecipi tates  from 
oL-CD3-stimulated normal and reconstituted cell lines. Be- 
cause the phosphotyrosine-react lve bands in the A B / Z A P -  
70- t ransduced cells were o f  slightly lower  intensity than 
those observed in the normal T cells, these higher molecu-  
lar weight species were not  evident in the A B / Z A P - 7 0  
lane shown In Fig. 2 A. O n  longer ECL exposures, how-  
ever, the identical pattern of  phosphotyrosine-reactive bands 

ZAP-70 IP Figure 2. Retrovlral-mechated 
"- O ~ transductlon of the wild-type 

ZAP-70 gene results m ZAP-70 
~ expression and its phosphoryla- 

tion upon CD3 aggregaUon. (A) 
N ZAP-70 was lmmunoprecipi- 

tated using a polyclonal rabbit 
ocCD~ ~= + ~= + === + annbody from a normal PBL line 

It ' ~  (Normal), a ZAP-70-deficmnt 
91h PBL line (AB), and a ZAP-70- 

~ Q  ~ deficient PBL line reconstituted 
Q Q by retrovlral-me&ated transduc- 

tmn with a wild-type ZAP-70 
0t P-Tyr gene (AB/ZAP-70). 107 cells 

were either unsnmutated ( - )  or 
b stimulated (+) with a bmtmylated 

antl-CD3 mAb followed by 
~ ~ streptawdin Immunopreclpitated 

[ysates were fractlonated on a 
polyacrylamlde gel, analyzed by 

o/Z~P-70 immunoblottmg with the 4GI0 
monoctonal annphosphotyrosme 

annbody, and developed with enhanced chemiluminescence to assess the 
phosphorylanon status of ZAP-70. (B) The blot was stopped and re- 
probed with a ZAP-70-speclfiC *nAb to assess the level of tmmunopre- 
clpitated ZAP-70. 

was also observed in the A B / Z A P - 7 0  ceils (data not  shown). 
This result was reproducible in six tested pools o f  A B /  
ZAP-70- t ransduced  cells, with levels o f  ZAP-70  ranging 
from 0.2- to 2.0-fold o f  those observed in control  T cell 
lines. N o  tyrosine-phosphorylated ZAP-70  would  be ex- 
pected, or was observed, in the nontransduced AB ceils or 
in AB cells transduced with the LN vector, since the Z A P -  
70 protein is not  expressed in these cells (Fig. 2 and data 
not  shown). Thus, one o f  the proximal events o f  T C R  sig- 
naling, the tyrosine phosphorylat lon o f  ZAP-70  itself, was 
reconstituted in A B / Z A P - 7 0  cells. 

In Vitro Kinase Activity of ZAP-70  Is Activated by T C R  
Stimulation in A B / Z A P - 7 0  Cells. To investigate whether  
ZAP-70  is activated as a result o f  CD3 clustering in the re- 
constituted ZAP-70-def ic ien t  HTLV-I  cell line ( A B / Z A P -  
70), an in vitro klnase assay was performed. After CD3 
stlnmlation, immunoprecipi ta t ion with a ZAP-70--specific 
antibody was performed in the Jurkat T cell leukemia 
clone, normal and AB HTLV-I  T cell lines, as well as in 
two different pools o f  AB-transduced ceils (AB/ZAP-70~ 
and AB/ZAP-70b) .  Immunoprecipi tates  were incubated in 
the presence of  [2/32p]ATP. ZAP-70  was autophosphory-  
lated inJurkat  T cells, as wel l  as in the normal and reconsti-  
tuted A B / Z A P - 7 0  cell lines, but  not  in the AB cell line 
(Fig. 3). This klnase activity increased upon receptor  st imu- 
lation (Fig. 3). Wi th in  each cell line tested, the level o f  
ZAP-70  protein immunoprecipi ta ted before and after CD3 
cross-linking was the same as that assessed by immunoblo t -  
ting with an an t i -ZAP-70  mAb. The level of  ZAP-70 in the 
AB/ZAP-70b  pool  (equivalent to that in a normal HTLV-I  
T cell line), however,  was approximately fivefold higher 
than in the AB/ZAP-70~ pool  (data not  shown), account-  
ing for the lower ZAP-70  kinase activity observed in A B /  
ZAP-70~, as compared with the normal and A B / Z A P - 7 0  b 
lines (Fig. 3). Interestingly, a protein with a molecular  mass 
of  "-'140 kD, which coimmunoprecipl ta ted  only in the 
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Figure 3. In vitro kinase activity of ZAP-70 as stimulated by TCR ag- 
gregation in ZAP-70-reconstituted cells. Jurkat T cells, as well as PBL 
lines from a normal individual (Normal), patient AB, and two different 
pools of ZAP-70-transduced cells (AB/ZAP-70, and AB-ZAP-70b), were 
assessed for autophosphorylation. After TCR aggregation (+), lysates from 
107 cells were immunopreclpltated with a polyclonal ZAP-70-speclfiC 
antibody, and an in vitro klnase assay was performed The amount of 
ZAP-70 lmmunoprecipltated before and after stnnulatlon was identical, as 
assessed by c~-ZAP-70 lmmunoblottlng (not shown). 

presence of ZAP-70,  was also phosphorylated after TC1L 
stimulation. Although the identity of this second protein is 
not known,  its phosphorylation also increased upon T C R  
ligation in both normal and reconstituted cell lines (Fig. 3). 
We  are presently analyzing whether the 140-kD protein is 
expressed as a consequence of HTLV-I  transformation, and 
furthermore, whether it can be coimmunoprecipitated 
with antibodies directed against different ZAP-70 epitopes. 

Calcium Mobilization after T C R  Stimulation Is Dependent 
on ZAP-70  Expression. The increases observed in cytoso- 
lic calcium concentrations [Ca2+]1 after T C R  aggregation is 
absent in ZAP-70-deficient  T cells (1-3). Calcium flux is 
one of the proximal events induced upon T C R  stimulation 
(10-12, 33-35). We  therefore assessed whether changes in 
[Ca2+]. would be observed in reconstituted AB/ZAP-70  
cells. For calcium measurements, cells were loaded with the 
calcium-sensitive dye Indo-1 and stimulated with a biotin-  
ylated CD3 mAb followed by streptavidin. Changes in 
[Ca2+]1 were then monitored by fluorimetry. In contrast to 
AB cells, in which little or no [Ca2+]1 flux was noted, nor-  
mal cells and three different pools of  A B / Z A P - 7 0 - r e c o n -  
stituted cells (including AB/ZAP-70  a and AB/ZAP-70b) 
had a sustained increase In [Ca2+]1 upon receptor cross- 
l inking (Fig. 4 and data not  shown). Equivalent loading of 
all cell lines with Indo-1 was affirmed in all experiments by 
demonstrating calcium flux after addition of calcium iono-  
phore (ionomycin; data not shown). 

Discuss ion  

We have shown that retroviral-mediated transduction of 
the wild-type ZAP-70  cDNA into a CD4 + HTLV-I- t rans-  
formed T cell line from a ZAP-70-deficient  patient results 
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Figure 4. ZAP-70 is reqmred for calcium mobilization afi:er TCtL stimula- 
tion. Cells fi'om a ZAP-70-deficlent PBL line (AB), a ZAP-70-reconstltuted 
line (AB/ZAP-7@, and a normal PBL lane (Normal) were loaded wath 
the calcium-sensitive dye Indo-1 and analyzed for increases m [Ca2+],. 
Cells were stimulated wath a baotlnylated oe-CD3 antibody (Leu4-B) fol- 
lowed by streptavadan (SA), as indicated. Changes i n  [Ca2+]l were moni- 
tored by fluonmetrg as a measure of the ratio of emission at 405/485 nm 
(ordinate axis) using a Photon Technologies spectrofluonmeter for the in- 
dicated time period (s). 

in reconstitution of the proximal TCtL signaling pathway, 
as assessed by the phosphorylation and activation of ZAP-70 
itself and by the mobilization of  cytosolic calcium. This 
phenotypic correction was observed in six different pools 
o f T  cells transduced with G1ZAPSvNa. Since the level of 
ZAP-70 in each transduced T cell pool did not  vary during 
> 8  mo of culture in the absence of G418 selection, this 
retroviral-based vector can be used to achieve stable ZAP-70 
expression. U p o n  similar transduction of G 1ZAPSvNa into 
normal HTLV-I- t ransformed T cells, overexpression of 
ZAP-70 could not be achieved, suggesting that high levels 
of ZAP-70 were counterselected in cultured T cells (data 
not shown). Further analyses in animal models will be nec- 
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essary to determine whether  T cell polyclonality and diver- 
sity o f  the T cell repertoire is maintained after transduction 
with the G1ZAPSvNa retroviral vector. 

Multiple cellular PTKs interact with the T C R  and con- 
tribute to the signal transduction pathway, including the 
Src family PTKs Lck and Fyn, as well as the ZAP-70 and 
related Syk PTKs (10-12, 35-38).  Increased levels of  Syk 
were observed in both the HTLV-i - t rans formed thy- 
mocyte and peripheral T cell fines derived from the ZAP-  
70-deficient patient described in this report (reference 26, 
and Bacon, K., S. Smith, T. Jahn, T. Kadlecek, A. Weiss, 
K. Weinberg,  and N. Taylor, unpublished observations). 
Syk appears to compensate for ZAP-70 only under specific 
cellular conditions; TCR-s t imula ted  calcium flux was ob- 
served in the patient's IL-2-dependent  thymocyte cell line 
(26), but not in the IL-2-dependent  peripheral T cell line 
derived from the same patient (Fig. 4). Nevertheless, upon 
transition of  the patient's peripheral T cell line to IL-2 in- 
dependence with concurrent activation of  the J A K / S T A T  
klnase pathway, as described previously (39-41), Syk was 
sufficient to mediate a calcium response (Bacon, K., and N. 
Taylor, unpublished observations). Work  is in progress to ad- 

dress the relative contributions of  these two PTKs to T C R  
signaling in ZAP-70-reconst i tu ted thymocytes and T cells. 

Our  experiments focused on the role of  ZAP-70 in 
T C R  signaling, but the phenotypes of  ZAP-70-deficient pa- 
tients and mice indicate that ZAP-70 also plays an impor-  
tant role in T cell development (1-3, 42). ZAP-70-deficient 
patients have normal or increased numbers of  CD4 ÷ cells 
with a paucity of  CD8 + cells, whereas mice with a targeted 
deletion of  the ZAP-70 gene express neither CD8 nor CD4 
single positive T cells (42). Introduction of  ZAP-70 into 
hematopoietic stem cells isolated from the ZAP-70-def i -  
cient mouse may provide insights into the biological effects of 
exogenous ZAP-70 expression. It will be important to de- 
termine the bases of  the differences between ZAP-70--defi- 
cient patients and mice, however,  since gene therapy pro- 
tocols for ZAP-70-def ic ient  SCID patients will have to 
target a progenitor o f T  lymphocytes that is able to achieve 
correction of  T cell ontogeny. The present experiments 
demonstrating correction of  signal transduction through 
the T C R  in a ZAP-70-def ic ient  T cell line lay the founda- 
tion for these further preclinical investigations. 
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