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The vertebrate retina is comprised of seven major cell types that are generated in overlapping but well-defined
intervals. To identify genes that might regulate retinal development, gene expression in the developing retina was
profiled at multiple time points using serial analysis of gene expression (SAGE). The expression patterns of 1,051 genes
that showed developmentally dynamic expression by SAGE were investigated using in situ hybridization. A molecular
atlas of gene expression in the developing and mature retina was thereby constructed, along with a taxonomic
classification of developmental gene expression patterns. Genes were identified that label both temporal and spatial
subsets of mitotic progenitor cells. For each developing and mature major retinal cell type, genes selectively expressed
in that cell type were identified. The gene expression profiles of retinal Miiller glia and mitotic progenitor cells were
found to be highly similar, suggesting that Miiller glia might serve to produce multiple retinal cell types under the right
conditions. In addition, multiple transcripts that were evolutionarily conserved that did not appear to encode open
reading frames of more than 100 amino acids in length (“noncoding RNAs”) were found to be dynamically and
specifically expressed in developing and mature retinal cell types. Finally, many photoreceptor-enriched genes that
mapped to chromosomal intervals containing retinal disease genes were identified. These data serve as a starting

point for functional investigations of the roles of these genes in retinal development and physiology.
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Introduction

The vertebrate retina is a model system for studying both
the development and function of the central nervous system
(CNS). Only six major types of neurons develop within the
retina, along with a single type of glial cell (Rodieck 1998).
These cells are readily distinguished from one another by
morphology and laminar position within the retina. Birth-
dating studies have shown that retinal cell types are
generated in overlapping intervals, with ganglion cells, cone
photoreceptors, amacrine cells, and horizontal cells gener-
ated prior to birth, and bipolar neurons and Miiller glia
generated after birth in mice (Sidman 1961; Young 1985a,
1985b). Rod photoreceptors, the most abundant retinal cell
type in the retina, are born both pre- and postnatally, with a
peak of genesis coincident with the day of birth in the
mouse.

These birthdating studies, together with heterochronic
coculture experiments (Belliveau and Cepko 1999; Belliveau
et al. 2000; Rappaport et al. 2001), heterochronic trans-
plantation (Rappaport et al. 2001), and lineage analysis
(Turner and Cepko 1987; Holt et al. 1988; Wetts and Fraser
1988; Turner et al. 1990), have given rise to the competence
model of retinal cell fate specification (Cepko et al. 1996).
The competence model states that the intrinsic ability of
mitotic retinal progenitor cells to produce a particular cell
fate changes continually through development. A cell
produces only a single fate, or a subset of fates, at any one
time even though lineage analysis has shown that most retinal
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progenitors have the potential to produce many or all fates
over the entire period of retinal development. Interestingly,
even at one time in development, retinal progenitor cells
show heterogeneity in their developmental competence
(Alexiades and Cepko 1997; Belliveau and Cepko 1999;
Belliveau et al. 2000; Rapaport et al. 2001). In addition to
the contribution of intrinsic determinants of cell fate
specification, the fates chosen by the daughters of a retinal
progenitor may be influenced by extrinsic factors (Watanabe
and Raff 1990; Altschuler et al. 1993; Kelley et al. 1994; Levine
et al. 1997, 2000; Belliveau and Cepko 1999; Young and
Cepko 2004). Finally, certain aspects of retinal cell fate
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choice, such as the specification of at least some rod and
bipolar cells, appear to occur in postmitotic cells (Ezzeddine
et al. 1997).

Although the competence model was formulated to explain
cell fate choice in the retina, it is clear that cell specification
in many other regions of the developing nervous system—
including neural crest (Selleck and Bronner-Fraser 1996),
spinal cord (Ericson et al. 1996), and cerebral cortex
(McConnell 1988; Qian et al. 2000)—involve changes in
progenitor competence over time, frequently resulting in
altered sensitivity to extrinsic factors. The model of temporal
changes in competence is strongly supported by recent
elegant studies of Drosophila CNS development (Isshiki et al.
2001; Pearson and Doe 2003), where a temporal order
of transcription factor expression was found to set the
context of cell fate determination. The fundamental sim-
ilarity among these systems nonetheless accommodates
mechanistic differences. The situation in the retina, where
early progenitor cells cannot be induced to adopt late fates
and vice versa (although see James et al. [2003] for a possible
exception to this rule), is distinct from the progressive
developmental restriction that is seen in the cerebral cortex,
where early cortical progenitor cells are competent to
generate cells of upper (late-born) and lower (early-born)
layers of the cortex, but become restricted to generating only
late-born fates as development proceeds (Desai and McCon-
nell 2000).

It is not known what genes mediate changes in progenitor
competence during retinal development. Likewise, it is not
known to what extent individual retinal progenitor cells from
a single time point differ in their developmental competence
from one another, although a few genes that are expressed in
distinct subsets of progenitor cells have been found (Austin et
al. 1995; Matter et al. 1995; Alexiades and Cepko 1997; Dyer
and Cepko 2000a; Brown et al. 2001; Wang et al. 2001).
Moreover, the genes that regulate the differentiation of any
retinal cell type following commitment to a specific fate are
generally poorly understood, although a number of tran-
scription factors such as Crx, Nrl, and NR2E3 (Chen et al.
1997; Furukawa et al. 1997a; Haider et al. 2001; Mears et al.
2001) are clearly important in rod development. Unbiased,
comprehensive expression profiling studies offer the possi-
bility of identifying the molecular components and networks
underlying these processes, as well as revealing target genes
involved in intermediate and terminal differentiation of
individual retinal cell types.

We have used serial analysis of gene expression (SAGE) to
profile gene expression during the development of the mouse
retina (Blackshaw et al. 2001). SAGE, which provides an
unbiased and nearly comprehensive readout of gene expres-
sion, is conceptually very much like expressed sequence tag
(EST) sequencing, with the difference being that concate-
nated libraries of short sequence tags derived from each
cDNA found in the sample of interest are sequenced
(Velculescu et al. 1995). By identifying genes that show
dynamic expression via SAGE and testing the cellular
expression of these genes via in situ hybridization (ISH), we
can identify genes that potentially regulate proliferation, cell
fate determination, and cell differentiation. Furthermore, by
examining SAGE libraries made from adult tissue, genes that
are specifically expressed in mature cell types can be
identified.
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By employing both SAGE-based expression profiling and
large-scale ISH analysis to determine cellular expression of
developmentally dynamic transcripts, we aim to combine the
strengths of these two approaches and obtain a detailed
picture of molecular events taking place during development
of the retina. The laminar structure of the retina, which
allows identification of the major cell types expressing a
transcript under examination, makes large-scale ISH partic-
ularly informative relative to many other regions of the
nervous system.

Results/Discussion
Summary of SAGE Data

SAGE was conducted on mouse retinal tissue taken at 2-d
intervals from near the start of neurogenesis at embryonic
day 12.5 (E12.5) to nearly the end of neurogenesis at postnatal
day 6.5 (P6.5). In addition, libraries were made from P10 wild-
type mice and the adult retina. Previously generated SAGE
data from the microdissected outer nuclear layer (ONL) of
the retina, which comprises roughly 97% rod photoreceptors,
from retinal tissue from mice that were deficient for Crx
(littermates of the wild-type P10 mice), and from adult
hypothalamus were also incorporated into the analysis
(Blackshaw et al. 2001). All of these libraries were sequenced
to a depth of 50,000-60,000 SAGE tags each 14 bp long. Table
S1 lists the number of distinct tags found in the 12 retinal
libraries and their abundance levels, along with the number
of tags that do not match any known transcript. While 10% of
all unique tags found twice or more in the 12 libraries did not
correspond to an identified transcript, only 3% of the tags
found five times or more did not match a known transcript
(Table S1). Table S2 lists all individual tag levels in each of
these retinal libraries, along with data from a number of
other publicly available nonretinal mouse libraries. We have
also created a database, accessible at http://134.174.53.82/
Cepkol, that is searchable by gene name, SAGE tag sequence,
accession number, genome location, or UniGene number. It
displays all SAGE tags and their levels, as well as ISH images
(see below).

The accuracy of the SAGE data was assessed by comparing
the 15,268 SAGE tags from E14.5 retina to an unnormalized
and unsubtracted set of 15,268 ESTs generated by another
research group from E14.5 mouse retina of a different strain
(Mu et al. 2001). An r-value of 0.65 (see Figure S1) was
obtained that compares well with SAGE expression profiles
obtained in similar tissues but from different individuals that
were not strain-matched (Blackshaw et al. 2003).

Analysis of SAGE Tag Expression Patterns in Developing
Retina Using Cluster Analysis

In order to determine whether the temporal pattern of a
gene’s expression during retinal development might predict
its cellular site of expression or its molecular function,
clusters of coexpressed genes were assembled. The ten
libraries obtained from wild-type total retina were analyzed
by cluster analysis using a new Poisson model-based k-means
algorithm designed specifically for SAGE data (Cai et al. 2004)
(see Materials and Methods for a full description of the
algorithm and the protocols used). The results for a 24-cluster
analysis are shown graphically in Figure 1. Table 1 provides a
list of previously characterized genes corresponding to tags
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Figure 1. Median Plot of SAGE Tag K-Means Cluster Analysis Using 24 Clusters

Tags present at greater than 0.1% in one or more of the ten wild-type total retina libraries are considered. SAGE libraries are plotted on the x-
axis, and tag abundance, plotted as a fraction of the total tags for a gene in the library in question, is shown on the y-axis. A full list of tags and

their abundance levels used for the analysis is detailed in Table S3.
DOI: 10.1371/journal.pbio.0020247.g001

within these clusters, the number of genes associated with
tags within each cluster that were tested via ISH, and select
functional categories of genes that were enriched in specific
clusters. Table S3 lists all SAGE tags used in the analysis and
their corresponding cluster assignments.

Virtually every gene previously reported to regulate retinal
development was detected in this analysis and showed

dynamic expression during development. Several of these
transcripts were found at high levels during their period of
peak expression. For instance, NeuroDI—which regulates rod
photoreceptor survival, as well as possibly rod differentiation
(Morrow et al. 1999; Wang et al. 2001)—makes up 0.34% of all
retinal mRNA at P4.5. In the case of genes previously shown
to be required for production of certain cell types in the
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Table 1. Summary of SAGE Tag K-Means Cluster Data

Cluster  Tags in  Number Tested Previously Characterized GO Categories Enriched in Cluster Fraction Tested
Cluster by ISH Genes in Cluster by ISH
1 9 9 Gal, GCAP1 Vision, p = 0.0004 100%
2 12 0 Cryo, Cryp, Cryy Lens proteins, p = 4.8x10~ %% 0%
3 298 45 GS Mitochondrial, p = 2.0x10~%” 15%
4 224 34 Mitochondrial, p = 8.91x10™% 15%
5 173 36 Ribosomal, p = 7.8x10™"° 21%
6 72 63 NeuroD1, NR2E3, Crx, RNA processing, p = 1.89x10 % 88%
NeuroD4
7 330 60 Pax6, Chx10 RNA processing, p = 1.89x107%; 18%
endoplasmic reticulum, p = 0.00009
8 32 4 13%
9 265 46 Hesé, Pax6 Ribosomal, p = 6.4x10™%° 17%
10 264 83 Transporter activity, p = 0.00004 31%
11 163 48 CyclinD1 Ribosomal, p = 5.1x10~%; 29%
mitotic cell cycle, p = 9.1x107'°
12 55 4 7%
13 184 58 Rax 32%
14 147 50 Hes5, Six3 34%
15 112 24 Ribosomal, p = 5.0x10~%” 21%
16 307 72 23%
17 215 57 27%
18 270 36 Isl, Six3 RNA processing, p = 0.00007 13%
19 278 97 Otx2, NeuroD1 35%
20 262 38 Vesicle-mediated transport, p = 0.00002  15%
21 98 53 RGRIP, IRBP Vision, p = 1.3x1072¢ 54%
22 16 10 Nrl, rod PDEy Vision, p = 0.0000251 63%
23 154 26 Six6, Math5 Ribosomal, p = 1.2x107%; 17%
mitotic cell cycle, p = 0.0009
24 193 100 PrCdh, blue cone opsin Vision, p = 1.2x107% 52%
Total 4133 1053 25%

Tags present at greater than 0.1% in one or more of the ten wild-type total retina libraries were considered. The number of SAGE tags in each cluster is shown, along with
the number and percentage of SAGE tags in each cluster that match genes whose expression was examined by ISH in developing retina. Selected genes that were previously
examined in the context of retinal development are indicated. P-values for GO categories that are overrepresented in individual clusters were calculated using EASE (Hosack

et al. 2003) and represent raw EASE scores for the categories in question.
DOI: 10.1371/journal.pbio.0020247.t001

developing retina, such as Ath5 and ChxIO—which are
required for ganglion cell and bipolar neurons , respectively
(Burmeister et al. 1996; Morrow et al. 1999; Brown et al. 2001;
Wang et al. 2001)—peak expression typically occurred around
or just after the peak time of exit from mitosis for that cell type.

Certain functional categories of genes were highly over-
represented in a number of SAGE tag clusters. Ribosomal
proteins, which typically showed higher expression early in
development, were highly enriched in clusters 5, 9, 10, 15, and
23 (Table 1)—clusters that also were enriched for cell cycle
regulators (particularly clusters 10 and 23). Mitochondrial
proteins, by contrast, were concentrated in clusters 4 and 5.
Cluster 2 consisted entirely of crystallins, which may be due
to contamination by lens tissue in the E12.5 and PO0.5
libraries. Phototransduction genes, on the other hand, were
found to be concentrated in the late-onset clusters 1, 21, 22,
and 24. Genes representing a number of other functional
categories also were enriched in specific clusters, although
the reasons in these cases are not clear. Examples of this
include the concentration of genes involved in RNA process-
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ing in clusters 6 and 7, genes coding membrane transporters
in cluster 10, and genes that are involved in vesicle-mediated
transport in cluster 20.

Large-Scale ISH of Dynamically Expressed Genes

Genes identified by SAGE were chosen for analysis via ISH
by focusing on genes that showed dynamic expression by k-
means cluster analysis using Euclidean distance, and some
degree of retinal enrichment (i.e.,, genes were expressed at
lower levels in nonretinal SAGE libraries—see Table S2).
Within this data set, genes whose presumptive function
suggested that they might regulate cell fate choice (e.g,
transcription factors, growth factors and their receptors, etc.)
received highest priority for testing, although many genes of
unknown function with developmentally dynamic expression
also were tested. See Table S4 for the Gene Ontology
Consortium (GO) classification of each probe tested. The
analysis was restricted to genes represented by at least 0.1%
of total SAGE TAGS in at least one of the retinal libraries, so
as to control for sampling variability and to allow for ready
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detection via ISH. (Exceptions were made for a number of
transcription factors and other genes of potentially major
functional interest.) This abundance threshold was met by
4,133 tags. Probes corresponding to 1,051 of these tags were
tested via ISH. This total included the 346 candidate
photoreceptor-enriched genes tested in our previous work
(Blackshaw et al. 2001), as well as 37 previously characterized
retinal genes that served as positive controls for ISH and to
allow clarification of cellular expression patterns. Retinal
expression was examined at every time point used for SAGE
(see Materials and Methods for details). See Table S5 for a full
list of the cellular expression data for each probe in the
retina, along with the accession number of the cDNA used to
generate each probe used for ISH. See also http://
134.174.53.82/cepkol for images of all of the ISH data.

Classification of Cellular Gene Expression Patterns in the
Developing Retina

The laminar structure of the retina makes it relatively
straightforward to assign a tentative identity to cells express-
ing a given gene. During early stages of retinal development,
the outer neuroblastic layer (ONBL) consists almost entirely
of mitotic progenitor cells, while newborn neurons (mostly
consisting of amacrine and ganglion cells) reside in the inner
neuroblastic layer (INBL). The position of mitotic progeni-
tors within the ONBL varies depending upon their progress
through the cell cycle, with S phase cells being found on the
vitreal side of the ONBL near the border with the INBL and
M-phase cells being found on the scleral side of the ONBL
abutting the retinal pigment epithelium (Young 1985a,
1985b). Around the time of birth, immature photoreceptors
occupy the outer portion of the ONBL. They are comingled
with mitotic cells of the G2, M, and G1 phases of the cell cycle,
while the S phase mitotic progenitors are in the vitreal side of
the ONBL. Finally, by P6, most retinal cells occupy their final
positions within the retina. Rod and cone photoreceptors
occupy the ONL. Bipolar neuron cell bodies occupy the
scleral portion of the inner nuclear layer (INL); the cell
bodies of Miiller glia occupy a strip in the center of the INL;
and amacrine cell bodies are found in the vitreal portion of
the INL. The ganglion cell layer (GCL) contains both ganglion
cells and a displaced amacrine cells.

In the developing retina, expression in the scleral and
vitreal portions of both the ONBL and INBL were scored
separately, along with whether the gene in question was
expressed in all or only a subset of cells in the layer in
question. In the case of the adult retina, cell identity in wild-
type animals could be scored readily by laminar position of
the cells expressing the gene of interest (Rodiek 1998), and
thus the identity of expressing cells was scored directly.

Extracting order from the diversity of gene expression
patterns observed in the developing nervous system can be a
daunting task. It is not obvious how best to generate a useful
taxonomy of these expression patterns. In tackling this
problem, we found it useful to classify cellular expression
patterns of genes both by eye and by clustering software. Both
methods have specific advantages—user classification more
readily identifies rare but distinct patterns, while machine-
based clustering allows more flexibility with respect to cluster
number and appears to better accommodate classification of
intermediate patterns. All classifications were based on the
location of the ISH signal within the retinal layers over time
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during development. Table S6 contains the full list of
expression patterns generated by visual inspection, and Table
S7 has the full list of cellular expression clusters generated by
clustering software. See Materials and Methods for more
details on how these data were generated.

Comparison of the user-annotated and machine-generated
clusters demonstrated fairly strong similarities between the
two sets of clusters (Table S8), although genes placed in a
single category by user annotation were invariably grouped
into larger clusters by clustering software. On the other hand,
genes in certain large clusters generated by user annotation—
such as panretinal, TRAP2-like, and Nlk-like (see Table S6)—
were dispersed among many clusters in the machine-
generated data sets, with placement within particular clusters
varying with replicate program runs. Genes in these
categories were expressed at some level in most cells of the
developing and mature retina. This variability likely reflects
the relative lack of specificity of the expression pattern in
these clusters. The finding that most of the highly cell-specific
clusters identified by user annotation were readily distin-
guished by the clustering software supports this hypothesis
(Table S8).

Using SAGE Data to Predict Cellular Expression Patterns in
Developing Retina

Temporal changes in gene expression as measured by
SAGE turn out to be a useful but inexact method of
predicting cellular expression patterns of genes within the
retina. While no SAGE cluster was invariably associated with a
given cellular expression pattern, genes in certain late-onset
SAGE clusters (e.g., clusters 1 and 22) were highly likely to be
expressed in developing rods. In the case of early-onset gene
expression patterns, which would likely be expressed in
retinal progenitor cells, comparison to a microarray-based
study could be made. Microarray profiling data of 4N
progenitor enriched versus 2N cells has led to the identi-
fication of a number of these genes as being enriched in 4N
progenitor cells (Livesey et al. 2004). These genes were
concentrated in a limited number of SAGE tag clusters
(particularly clusters 5, 15, and 23), but were largely absent
from clusters that showed a perinatal peak in expression
(such as cluster 6), which were enriched for genes expressed
in developing rods, bipolars, and amacrine cells (see Table S9
for a full breakdown of 4N-enriched genes by SAGE tag
cluster).

In general, the temporal expression pattern observed in a
given SAGE tag cluster was accurately reflected by the ISH
data, although precise prediction of cellular expression
patterns based on cluster data were not achieved. Clusters
that showed postnatal peaks in expression, such as cluster 6,
could contain a great diversity of cellular expression patterns,
yet still be enriched for genes that showed strong expression
in specific cell types that were differentiating. Table S10,
which details the percentage of tags in a given cluster that
represent each specific user-annotated expression pattern,
can serve as a starting point for predicting the probability
that a gene matching a given SAGE tag will show a given
cellular expression pattern in the developing retina.

The expression clusters—whether generated by user
annotation or clustering software—at best represent a lower
limit to the number of distinct expression patterns within the
developing retina. Although the number of distinct types of
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cells in the developing retina is not known, it is undoubtedly
high (MacNeil and Masland 1998). Particularly when consid-
ering genes expressed in subsets of cells in the ONBL, or
subsets of developing amacrine cells, the level of resolution of
our ISH-based screen does not allow one to distinguish many
of the more complex patterns. Techniques such as multiple-
probe fluorescence-based ISH (Levsky et al. 2002) and single-
cell microarray analysis (Tietjen et al. 2003) will be required
to resolve such questions as whether individual cells coex-
press genes that display complex expression patterns.

One interesting and potentially useful finding from the
SAGE cluster data is that genes known to have highly selective
cell-specific expression within a single retinal cell type could
show different times of onset of expression. For instance,
there is heterogeneity in the time of onset of expression
among the genes that mediate rod phototransduction, a
feature that has previously been reported in ferret retina
(Johnson et al. 2001). Phototransduction genes were found in
four different clusters (see Table 1), with genes such as
RPGRIP showing comparatively early onset of expression,
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followed by the progressively later onset timesof rod arrestin,
rhodopsin, and, finally, Goul and GCAPI (see Table S11 for a full
list of tags corresponding to these genes). ISH confirmed the
accuracy of the SAGE data for these onset times (see Figure
S$2). This heterogeneity of the time of onset of expression is
observed for terminal differentiation markers of every cell
type studied in the retina, as well as for markers of subsets of
mitotic progenitor cells (see http://134.174.53.82/cepkol for
the full set of ISH data). Such profiles could be explored for
the possibility of control by cascades of transcription factors.

Gene Expression Patterns Define Subsets of Retinal
Progenitor Cells

Recent studies in systems as diverse as Drosophila neuroblast
specification and the specification of neural-crest-derived cells
(Anderson 1999; Isshiki et al. 2001; Pearson and Doe 2003) have
demonstrated the role of temporal changes in gene expression
in the specification of neural cells. With respect to the retina,
the competence model as originally proposed predicted that
mitotic progenitor cells would show both temporal changes in
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gene expression across broad sets of retinal progenitors, and
expression of selected genes in specific subsets of progenitor
cells at a given time (Cepko et al. 1996).

We have identified a number of genes that show temporally
restricted expression in early ONBL. By analyzing the
expression of a large number of genes that were highly
expressed early in development (particularly in SAGE tag
clusters 5, 11, and 15), a number of genes that are expressed
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in broad but temporally restricted subsets of mitotic
progenitor cells were identified (Figure 2A). sFrp2 RNA was
found to be broadly expressed in the ONBL until E16, after
which it rapidly decreased, a pattern that corresponded well
with its SAGE tag levels. Expression of Fgfl5 and Edr RNA was
seen to persist longer, but neither was easily detected after
PO, at which time both ¢yclin DI mRNA—a recognized marker
of mitotic progenitor cells in the retina (Sicinski et al. 1995;
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Table 2. Fraction of Progenitor Cells Expressing sFRP2 and FGF15 Decreased as Development Proceeded

Time Period Gene Percent Positive Percent *H-Positive Percent *H-Positive That Expressed Gene
E14 SFRP2 22.6 28.7 40.8

E16 sFRP2 57 25 10.1

PO SFRP2 0 194 0

E14 FGF15 323 259 58

E16 FGF15 183 219 37

PO FGF15 10.5 21.6 26.6

Retinal explants were labeled with *H-thymidine for 1 h, and then disociated and placed on slides. ISH was performed and the fraction of cells expressing sFRP2 and FGF15 is
indicated, along with the fraction of cells labeled with *H-thymidine, and the fraction of *H-thymidine-positive cells that were labeled with probe.

DOI: 10.1371/journal.pbio.0020247.t002

Ma et al. 1998)—and BrdU labeling were still readily
detectable in the central retina. Edr RNA showed an unusual
patchy distribution in the ONBL at P0O—a pattern that was
not detected for any other gene tested and has not been
previously reported. Lix2, by contrast, was weakly expressed
in subsets of cells in the ONBL until PO, when it was
dramatically and transiently upregulated throughout the
ONBL. Microarray analysis of 4N versus 2N retinal cells at
E16 indicates that both sFrp2 and Lhx2 are enriched in 4N
mitotic progenitor cells (Livesey et al. 2004).

To further investigate the expression of these genes in
mitotic progenitor cells, ISH was performed on dissociated
retinal cells in conjunction with SH thymidine labeling at E14,
E16, and PO (Table 2). A substantially lower fraction of
double-labeled cells for Fgfi5 at PO relative to earlier time
points was observed, while sFrp2 labeling was absent at birth
and substantially lower at E16 than at E14.

A limited number of genes have previously been reported
as expressed in subsets of mitotic retinal progenitor cells,
including genes such as Ath5, and have been shown to be
required for retinal ganglion cell development (Brown et al.
2001; Wang et al. 2001). We identified a large number of genes
that showed selective expression at certain times during
development in relatively small subsets of cells in the ONBL
(Figure 2B). These include a large number of known and
putative transcription factors, such as Sox2, Sox4, Tbx2, Eya2
and Mbitdl (a novel polycomb family member), along with
many genes of other functional classes. Particularly intriguing
is the early and transient expression of Puml, a mammalian
homolog of the pumilio gene, which has been shown to
mediate asymmetric mRNA distribution in Drosophila
(Micklem 1995). Many of these genes showed highly dynamic
expression during development—rapidly shifting their cel-
lular expression patterns in the course of a few days, as in the
case of PumlI and Sox2, or being expressed for only a few days,
as in the case of Eya2 and Pgrmc2. In some cases, these subsets
were scattered throughout the ONBL, such as Eya2 at E14,
while for other genes, such as Puml and Pgrmc2, expression
was in only the scleral portion of the ONBL, suggesting that
these genes may show strongest expression near M phase in
retinal progenitor cells.

From these data, it is difficult to determine whether most
of these genes were expressed in cycling progenitor cells or
cells that have newly exited from mitosis, as these two
populations are intermingled in the ONBL. However, micro-
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array analysis of 4N versus 2N cells of the early retina (Livesey
et al. 2004) has indicated that a number of these genes, such as
Sox2, are enriched in 4N progenitor cells. See Figure S3 for
more examples of genes expressed in subsets of ONBL cells
and contrast with Figure S4, which shows genes with broad
but selective expression in the ONBL.

The genes that are expressed in subsets of presumptive
retinal progenitors include a large number of transcription
factors (e.g., Sox2, Lhx2, and FEya2) as well as signal trans-
duction components. These intrinsically acting factors
represent potential candidates for regulating developmental
competence and, by analogy with the Drosophila retina, may
act combinatorially to help specify cell fate (Flores et al.
2000). Furthermore, a number of genes that are expressed in
temporal subsets of progenitor cells encode secreted differ-
entiation factors such as FGFI5 and sFRP2. Since cell fate
choice is determined by the interaction of intrinsic proper-
ties and extrinsic factors, these genes are good candidate
regulators of cell fate determination.

Strikingly, the temporal expression profile of very few
progenitor-enriched cell cycle genes tracked precisely with the
fraction of mitotic cells in the retina. Even many well-
established markers of mitotic progenitor cells, such as
cyclinD1 and c¢dk4 were highly expressed until P2.5 and
detectably expressed as late as P6.5—long after the fraction
of mitotic cells in the retina had decreased drastically (Figure
2A). These data imply that expression of these genes frequently
persists after the end of mitosis. In addition, one might have
predicted that the levels of cell cycle regulators would be
highest at the earliest time point analyzed (E12.5), when the
percentage of mitotic cells was highest. However, we found
that progenitor-enriched genes such as ¢yclinD1 and cdk4 often
had RNA levels that peaked around P0.5. This observation
suggests that the number of mRNA molecules per cell for many
of the genes that mediate mitotic activity increases as
development proceeds. The functional significance of these
findings is unclear, although a number of features of retinal
progenitor cells change over the course of development,
including the length of the cell cycle (Young 1985a; Alexiades
and Cepko 1996) and the probability of producing progeny
that are no longer mitotic (Livesey and Cepko 2001).

Genes Expressed in Immature Differentiating Retinal Cell
Subtypes

One characteristic expression pattern of genes likely to be
involved in cell fate specification and/or the early steps of the
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developing and mature retina are indicated with colored bars. All pictures were taken at 200x. See Table S5 for a full list of probes used.
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differentiation process is restriction to newly postmitotic
cells and cells actively undergoing differentiation. Many of
the genes demonstrated to show such expression in develop-
ing retina, such as Crx, Nrl, and NR2E3 (Furukawa et al. 1997a,
1997b; Chen et al. 1997; Haider et al. 2001; Mears et al. 2001)
have been shown to play an active role in regulating cell
differentiation. We have identified genes that are selectively
expressed in immature postmitotic retinal cells of every
major class, with the exception of cone photoreceptors,
greatly expanding the set of genes known to be selectively
expressed in immature retinal precursor cells (Figure 3).
KIAA00I3, an uncharacterized RhoGAP, was found to be
expressed exclusively in immature ganglion cells, and only
expressed detectably outside in limited subsets of developing
neurons, such as Cajal-Retzius cells of the developing cerebral
cortex, and the developing thymus. Cdc42GAP was found to be
strongly and transiently expressed in newly postmitotic rods,
while the leucine zipper transcription factor Zf-I was
expressed in presumptive bipolar cells. Septin 4 was found
to be selectively and persistently expressed in developing
horizontal cells, while Mm.23916, a novel dual-specificity
protein phosphatase, was found to be expressed selectively in
immature amacrine cells. Finally Tweetyl, an unconventional
chloride channel (Suzuki and Mizuno 2004) was strongly
expressed in newly postmitotic Miiller glia. Along with genes
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whose cellular expression could be clearly identified visually,
a number of genes with strong but transient expression in
undefined subsets of cells of the neonatal retina were
observed. Expression of these genes persisted after the end
of mitosis in the central retina (see Figure 2A), so at least
some of the cells that express them must be postmitotic.
Genes in this category include inhibin BB, brain fatty acid binding
protein 7, BMP7, the transcription factor Sal3, and the orphan
neurotransmitter transporter NT7T7(see Figure Sb).

Genes Expressed in Developing Photoreceptor Cells

Rod photoreceptors make up 70% of cells in the retina
(Young et al. 1985b; Jeon et al. 1998). The SAGE-derived
expression profile of genes selectively expressed in develop-
ing rods is thus more comprehensive than that of other cell
types. Based on the ISH data and aided by our SAGE study of
mature tissue (Blackshaw et al. 2001), as well as previous
reports of mutant mice lacking transcription factors known
to be important for rod development, a model of a temporal
order of transcription factor expression during rod develop-
ment was made (Figure 4). Transcription factors known to be
involved in cell fate specification sometimes show broad
expression in mitotic progenitor cells and persistent expres-
sion in mature cell types (e.g., Liu et al. 1994; Belecky-Adams
et al. 1997; Livesey and Cepko 2001). We observed a number
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Figure 4. Transcription Factor Cascade in Photoreceptor Development

Transcription factors that are selectively expressed in developing rods (and possibly cones as well) are shown. The schematic diagram integrates
gene expression data from previously identified photoreceptor-enriched transcription factors and from genes explored in this study. The genes
shown are Mm.193526/Yboxbp4, Mm.3499/Rax, Mm. 89623/mCas, Mm.1635/PIAS3, and Mm.235550/ERRp. See Figure S6 for images of the
developmental expression patterns of previously characterized transcription factors. Sections were from central retina. Cellular laminae of both
the developing and mature retina are indicated with colored bars. All pictures were taken at 200x. See Table S5 for a full list of probes used.

DOI: 10.1371/journal.pbio.0020247.g004

of genes that were expressed in early ONBL from E16 on,
with expression persisting in mature photoreceptors, such as
Yboxbp4. A similar pattern were seen for the mouse ortholog
of the Drosophila castor gene, though this gene was observed in
a more restricted subset of cells in the ONBL at E16, and for
the orphan nuclear receptor ERR, although this gene had
relatively lower expression prenatally and had pronounced
expression in an undefined subset of cells in the immature
photoreceptor layer during the first postnatal week.

In contrast to being expressed in mitotic cells as well as
differentiating photoreceptor cells, a number of transcrip-
tion factors were selectively expressed in postmitotic but
immature photoreceptors. The Rax homeodomain factor
showed, as has been previously reported (Furukawa et al.
1997a; Mathers et al. 1997), strong expression in mitotic
progenitor cells in the ONBL that vanished with the end of
mitosis. However, expression transiently reappeared in
immature photoreceptors at P8. This situation is analogous
to that seen in a number of other vertebrates, in which a
duplication of the ancestral Rax gene has resulted in Rax
genes with distinct expression in photoreceptor and progen-
itor cells (Chuang et al. 1999; Chen and Cepko 2002). PIAS3,
which encodes a SUMO lyase that directly regulates the
activity of a broad subset of transcription factors (Kotaja et al.
2002; Haider et al. 2001), was strongly and selectively
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expressed only in developing photoreceptors, with expression
beginning at E18, peaking at P8, and largely fading away in
the adult, a pattern that in many respects is reminiscent of
Crx (see Figure S6). In contrast to these patterns, Nrl and
NR2E3 showed no detectable expression prenatally, and
showed peak expression around P6. Somewhat surprisingly,
the RNAs for many of these transcription factors is enriched
in the inner segments of photoreceptors, as are a large
fraction of the other photoreceptor-enriched genes charac-
terized in this study, a finding that is in line with our earlier
work (Blackshaw, et al. 2001). The functional significance of
this remains unclear.

In addition to transcription factors,
classes of genes, including genes of unknown function, were

other functional
expressed in developing photoreceptors, with strongest
expression typically found in the first postnatal week (Figure
S7). In some cases, these genes fall into pathways known to
regulate rod differentiation. Both PIAS3 and the multifunc-
tional protein Hrs (Chung et al. 1997; Scoles et al. 2002)
selectively inhibit STAT3, and thus possibly inhibit the action
of ciliary-derived neurotrophic factor, a factor that has been
shown to inhibit rod differentiation in rodents (Ezzeddine et
al. 1997; Kirsch et al. 1998; Schulz-Key et al. 2002). Cdc42GAP
expression (see Figure 2) may mediate the polarization and
initiation of outer segment formation taking place in photo-
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receptors at this time (Nobes and Hall 1999). In other cases,
genes newly identified as selectively expressed in developing
photoreceptors imply the existence of novel facets of photo-
receptor development. The expression of synaptic vesicle
protein Cpx2 suggests that developing photoreceptors may be
actively secreting some developmentally relevant signal, while
the expression of Hrs also potentially suggests high levels of
regulated endocytosis and destruction of unknown extra-
cellular proteins (Lu et al. 2003). The expression of the
previously uncharacterized tumor necrosis factor family
member Tnfsf13 and A20-like signal transduction compo-
nents such as TRABID and Fin29 suggest an unexplored role
for this pathway in normal photoreceptor development.

Genes Expressed in Developing Interneurons of the INL

Many genes were selectively expressed in the other,
nonphotoreceptor retinal cell types during development. A
temporal sequence of transcription factors was observed in
bipolar cells as they differentiated (Figure S8). The homeo-
domain factor Lhx4, and the uncharacterized leucine-zipper
protein Zf-1 (see Figure 2), showed expression at E16 in the
ONBL, with expression continuing postnatally and persisting
in adult bipolar cells. Zfhi4 was expressed in developing
amacrine cells and in subsets of cells in the ONBL prior to
P4, and was robustly and transiently expressed in bipolar
cells, with peak expression at P6. The relatively late-onset Dbp
was first seen in the second postnatal week across the INL.
Chx10, as has been previously reported (Liu et al. 1994), and
Gli5 were broadly expressed across the ONBL prior to P4, at
which point they both showed elevated expression in
developing bipolar cells. Microarray analysis confirmed that
both of these genes are expressed in mitotic progenitor cells
(Livesey et al. 2004). Possible downstream targets of these
transcription factors include previously uncharacterized cell
adhesion molecules such as the Ig-superfamily member
Mm.41284, kinases such as Prkel, and the putative growth
factor receptor SEZ-6. Furthermore, despite the fact that they
comprise only 0.3% of the cells in the adult retina, genes that
are highly enriched in both developing and mature horizon-
tal cells (Figure S9), such as the GTPase regulator Borg4, were
found.

Many genes tested by ISH were selectively expressed in
developing amacrine cells (Figure S10). The expression
patterns were tremendously diverse, a fact that may reflect
the reported extensive heterogeneity among amacrine cell
subtypes (MacNeil and Masland 1998). Certain genes, such as
the kinase Unc51-like-1, ArfGAP, and the orphan G-protein-
coupled receptor Mm.6393, were found to be expressed both
in immature amacrine cells and in subsets of cells in the
ONBL, particularly in the region of the ONBL that comprises
the outer or scleral surface, where M phase mitotic
progenitor cells are localized. Cytoskeletal-associated kinases
such as Unc51-like-1, and small GTPases such as ArfGAP, may
play a role in neurite extension or process formation.
Additionally, the expression of neuropeptide receptors such
as Mm.6393 in the ONBL before mature neural circuits have
formed fits with data from other parts of the developing CNS
showing early expression of neurotransmitter receptors and
suggesting that neurotransmitters may act on mitotic
progenitor cells to regulate cell cycle or cell fate specification
(Rueda et al. 2002; Ohtani et al. 2003). Similarly, recent work
from our laboratory on the role of glycine receptors in the
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formation of rod photoreceptors (Young and Cepko 2004)
confirms such predictions for at least one such receptor.

Other genes, such as syntrophin-associated kinase and the
novel dual-specificity phosphatase Mm.23916, were confined
to immature amacrines only. Syntrophin-associated kinase, in
particular, may regulate maturation of synaptic connections
(Lumeng et al. 1999). Others genes, such as necdin, the basic
helix-loop-helix transcription factor Nhlh2, and the novel
PLC isoform Mm.215653, showed complex and often biphasic
patterns. The Slit receptor robo3 was strongly and transiently
expressed in the first postnatal week in a single sublamina
within the INBL, perhaps corresponding to a single subtype
of developing amacrine cells. A role for Slit-Robo signaling in
regulating cortical dendrite maturation has been demon-
strated (Whitford et al. 2002), and these data suggest such a
mechanism may be at work in regulating subtype-specific
amacrine cell laminae formation in the retina. Neuropeptide Y
was strongly and transiently expressed in a subset of amacrine
and horizontal cells towards the end of the first postnatal
week, with expression dropping dramatically in the adult—
suggesting a possible role for this factor in the formation of
mature retinal circuitry. Finally Mm.41638, which is weakly
homologous to a lysosomal membrane protein, was expressed
solely in postnatal amacrine cells, though expression re-
mained in a more restricted subset of amacrine cells in the
adult.

Muller Glia Are Highly Similar to Retinal Progenitor Cells

Genes selectively expressed in Miiller glia share a number
of defining features. Mitotic retinal progenitor cells and
Miller glia showed a great degree of transcriptional over-
lap—far more so than other retinal cells that differentiate
postnatally. Of the genes identified as being specifically
expressed in Miiller glia after the first postnatal week, 68%
were found to be enriched in mitotic progenitor cells based
on their ISH pattern, in contrast to only 14% of photo-
receptor-specific genes (Figure 5A). Of the genes identified as
enriched in 4N progenitor cells by micorarray analysis
(Livesey et al. 2004) that were tested by ISH in adult retina,
43% were enriched in Miiller glia, compared to 11% that
were enriched in photoreceptors.

Typical expression patterns for Miller-glia-enriched genes
are shown Figure 5B. Genes in this category, such as the
negative regulator of Wnt signaling Dkk3, the collagen
receptor DDRI, and the endosomal protein AD024, were
observed to be strongly and broadly expressed across the
ONBL throughout development, though expression in the
adult was restricted to Miller glia. Microarray analysis
suggests that a number of these genes, including Dkk3 and
DDRI, are enriched in 4N mitotic progenitor cells (Livesey et
al. 2004). A smaller set of genes, such as Mm.35817, GPCR37,
and Tweetyl (see Figure 2) were found to be expressed across
the ONBL early in development, but showed dramatically and
transiently upregulated expression at the end of the first
postnatal week as Miiller glia began to differentiate. While
over two-thirds of Miiller-glia-enriched genes showed en-
riched expression in retinal progenitors relative to other cell
types in the developing retina, virtually all Miiller-glia-
enriched genes were expressed at detectable levels in retinal
progenitors (without necessarily being enriched in progeni-
tors). In fact, only two genes that are Miuller-specific in the
adult—clusterin and carbonic anhydrase 2—were expressed in
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mature Miiller glia but not detected in mitotic progenitors.
However, previous work suggests that carbonic anhydrase 2 may
be expressed in retinal progenitors at levels below our ability
to detect (Vardimon et al. 1986), and this may be the case for
clusterin as well. Additional Miiller-glia-enriched genes are
shown in Figure S11.

The extensive overlap in gene expression between Miiller
glia and mitotic progenitor cells raises the question of how
closely these two cell types resemble each other at the
functional level. Miiller glia morphologically resemble mitotic
progenitor cells in having apical and basal processes that span
the radial dimension of the retina (Rodiek 1998)—a feature
that is shared with retinal progenitor cells as well as radial
glia of the developing brain, a cell type known to be the
cortical progenitor cell (Doetsch 2003). Miiller glia are one of
the last cell types to exit mitosis (Young 1985b; Reh and
Levine 1998), and they are the only cell type in the mature
retina that can reenter mitosis following retinal injury (Dyer
and Cepko 2000b; Vetter and Moore 2001). Finally, data from
chicken suggest that, at least in some birds, Miiller glia can be
induced to divide and give rise to some types of retinal
neurons for a short period of time near the end of retinal
development (Fischer and Reh 2001). The question arises,
then, as to whether Miiller glia are fundamentally multipotent
progenitor cells that are quiescent regarding cell division and
the production of neurons (Morest and Silver 2003; Walcott
and Provis 2003). If they are progenitor cells, they are
progenitor cells that have acquired the specialized properties
needed for a support role in the mature retina, e.g.,
neurotransmitter reuptake and structural roles. The few
genes that are specifically expressed in mature Miller glia,
such as clusterin, may be emblematic of such roles. Mis-
expression in mature Miiller glia of genes that are candidates
for regulating neuronal production in the postnatal retina,
followed by injury-induced division, offers a potential
approach for future therapies that might lead to photo-
receptor or ganglion cell replacement in diseased retinas by
cells derived from Muller glia.

Prominent Expression of Metabolic Enzymes in
Developing Miller Glia

A second notable feature of genes expressed nearly
specifically in developing Miiller glia is the highly dynamic
and cell-specific expression of a number of metabolic
enzymes (Figure 5). The novel hexokinase-related gene HK-
R was selectively expressed in developing Miiller glia cells, but
not in any other cell in the body examined. Mu-crystallin,
which does not encode a crystallin in placental mammals but
rather an uncharacterized homolog of the bacterial enzyme
ornithine cyclodeaminase (Segovia et al. 1997), showed a
similar expression pattern in the retina but also was
expressed in other developing sensory organs. Glycine
decarboxylase was strongly and selectively expressed in retinal
progenitor cells, differentiating Miiller glia, and to a lesser
extent, developing photoreceptors.

The reasons for such high enzymatic activity in develop-
ment is unclear, although some of these genes may have
regulatory functions unconnected to their metabolic roles.
For instance, mu-crystallin is also a thyroid hormone binding
protein (Vie et al. 1997). Such proteins also may regulate the
abundance of small molecules that can act as signals that may
be relevant for development. For example, glycine levels may
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Figure 5. Miiller-Glia-Enriched Genes

(A) Miller-glia-enriched genes show stronger expression in retinal
progenitors than do genes enriched in other postnatally born cell
types. See Materials and Methods for details of how progenitor-
enriched and cell-specific expression patterns were determined, and
p-values for progenitor-enrichment of genes that are cell type-
specific in the mature retina were calculated. Data on 4N-enriched
transcripts were obtained from Livesey et al. (2004). Numbers for
each value are as follows. For N, the number of cell-enriched genes,
Nyig = 86, Np, = 112, N = 21, and No¢ = 57. For I, the number of
genes that show retinal progenitor-enriched patterns by ISH, /o0 =
180, Iy = 66, Ipg = 15, Iyc = 4, and Ip¢c = 8. For M, the number of
genes enriched in 4N retinal progenitor cells that were tested by ISH
in adult retina, Mo = 28, My = 12, Mpr = 3, Mpc = 3, and Muc
= L% p <1073 %% p < 0.0001.

(B) Miiller-glia-enriched genes show strong expression in mitotic
progenitors. The genes shown are: Mm.26062/ADO24, Mm.55143/Dkk3,
Mm.5021/DDR1, Mm.35817, Mm.20465/GPCR37, Mm.200608/clusterin,
and Mm.22288/cyclin D1. Sections were from central retina. Cellular
laminae of both the developing and mature retina are indicated with
colored bars. All pictures were taken at 200x. See Table S5 for a full
list of probes used.

(C) Dynamic expression of metabolic genes in developing retina.
Metabolic enzymes are often selectively expressed in mitotic
progenitors and developing Miiller glia. The genes shown are
Mm.27953/glycine decarboxylase, Mm.9114/mu-crystallin, and Mm.213213/
HK-R. Cellular laminae of both the developing and mature retina are
indicated with colored bars. Sections were from central retina. All
pictures were taken at 200x. See Table S5 for a full list of probes used.
DOTI: 10.1371/journal.pbio.0020247.g005

be kept low by glycine decarboxylase so that taurine can bind
to and activate the glycine receptor to promote rod differ-
entiation (Young and Cepko 2004). These data point to future
directions of research examining the intersection of metab-
olism and development and suggest the usefulness of
supplementing gene expression profiling with metabolomic
analysis (Watkins and German 2002).

Dynamic Expression of Putative Noncoding RNAs in
Developing Retina

A number of RNA transcripts that do not appear to encode
proteins were strongly expressed in the developing retina
(Figure 6). These transcripts are typically spliced and
polyadenylated, but do not encode evolutionarily conserved
open reading frames (ORFs), or any ORFs encoding proteins
longer than 100 amino acids, while often showing high
similarity at the nucleotide level between mouse and human
(Numata et al. 2003). Table S12 provides a list of these
transcripts. Putative noncoding transcripts that showed
developmentally dynamic expression include retinal noncoding
RNA 1 (RNCRI), which was expressed throughout the ONBL
during early development and which was later restricted to
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continued.
Miiller glia. It was transcribed in a head-to-head fashion, and no mouse/human conservation of this putative protein was
largely coexpressed, with Six3. This transcript showed observed, while high similarity was observed at the nucleotide
extensive alternative splicing, and while one splice form level in other regions of the transcript. RNCR2 , on the other
contained a potential ORF of greater than 100 amino acids, hand, was expressed in a large subset of cells in both the
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A number of presumptive noncoding RNAs are strongly expressed in dynamic subsets of retinal progenitor and precursor cells. The transcripts
shown are Mm.150838/ RNCR1, Mm.44854/ RNCR2, and Mm.194050/RNCR3. Sections were from central retina. Cellular laminae of both the
developing and mature retina are indicated with colored bars. All pictures were taken at 200x. See Table S5 for a full list of probes used.

DOI: 10.1371/journal.pbio.0020247.g006

ONBL and INBL prenatally, with expression restricted to the
INL and GCL postnatally. ISH signal for RNCR2 was strongly
concentrated in what appeared to be nuclear or perinuclear
regions of expressing cells. RNCR3 was expressed in a steadily
increasing subset of cells in the ONBL from E14 and gradually
resolved to an adult pattern that was photoreceptor-enriched
but present in the inner retina at lower levels.

Although additional assays are required to conclusively
demonstrate that these RNAs do not encode functional
proteins, there is precedent for this conclusion from recent
genomic work. Large-scale EST sequencing efforts from
mouse have uncovered up to several thousand putative
spliced transcripts that do not appear to encode for proteins
(Numata et al. 2003). Likewise, oligonucleotide array experi-
ments using probes that tile individual human chromosomes
at high density report substantial transcription from many
regions not predicted to have protein-coding genes (Kapra-
nov et al. 2002; Cawley et al. 2004), and suggest that
microarray-based expression profiling that uses probes
designed only against predicted protein-coding genes may
miss a significant fraction of the transcriptome. The func-
tional role of these transcripts is obscure, although non-
coding spliced RNAs such as Xist and H19 in mammals and
Rox1 and Rox2 in Drosophila have been implicated in a variety
of epigenetic processes (Mattick 2003). The possibility that
RNCR1 might somehow regulate expression of Six3 or other
progenitor-specific transcripts awaits further investigation.

Both Xist and Tsix, noncoding RNAs that play a crucial role
in X-inactivation, were expressed in subsets of cells in the
ONBL and INBL early in development, but were expressed
strongly and selectively in the INL around the end of the first
postnatal week (Figure S12). This finding is quite surprising,
given that photoreceptors and ganglion cells do not express
these transcripts and would thus appear to escape X-
inactivation. Since genetic evidence suggests that this is not
the case for either cell type (Reese et al. 1999), our findings
implicate the existence of possibilities such as alternate cell-
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specific pathways of X-inactivation or dramatic cell-specific
variations in Xist levels required to mediate X-inactivation.

Expression Profiling and Candidate Gene Analysis

Although we have identified a plethora of transcription
factors, growth factors, and signal transduction components,
the data do not clearly implicate a known signaling pathway
as selectively involved in the differentiation of a given cell
type within the retina. For example, negative regulators of
Wnt signaling were identified, but these genes display a
diversity of cellular expression patterns that cloud a simple
model for their action. Dkk3 and Nkdl are expressed broadly
in progenitor cells and Miiller glia, together with beta-catenin,
while sFRP-2 is expressed exclusively in early progenitor cells,
and Nlk is expressed strongly in postmitotic but immature
cells of the postnatal retina. Another approach to the
creation of models of pathways that control retinal develop-
ment is to combine the ISH analysis of genes identified via
SAGE with a candidate gene approach, even for genes not
identified by SAGE. For example, we examined the expres-
sion of all known regulators of Wnt signaling, all fibroblast
growth factor receptors, and all Slit and Robo genes whether
or not SAGE tags corresponding to these genes were
identified. See Table S5 and http://134.174.53.82/cepkol for a
full list of genes and their expression patterns.

Cell-Specific Gene Expression in the Mature Retina
Identifies Candidate Retinal Disease Genes

A molecular catalog of gene expression in the adult retina
was assembled with molecular markers for every major class
of retinal cell (Figure 7). The catalog of photoreceptor-
enriched genes reported in previous work (Blackshaw et al.
2001) was expanded, and a large number of genes expressed
in the inner retina were identified. Some of these include
genes that mark subsets of amacrine and ganglion cells.
Knowledge of which genes show cell-specific expression in the
retina can aid in identifying retinal disease genes. The
expression of nearly half of all cloned photoreceptor
dystrophy genes is selectively enriched in photoreceptors
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The most commonly observed patterns of gene expression in the
adult retina are indicated. Data are taken from Table S5 and cover all
genes examined in the adult retina. Genes are placed in a category
corresponding to a single cell type if expression is substantially
greater in that cell type than in any of the other cell types examined.
Genes are placed in categories corresponding to multiple cell types if
expression is approximately equal in more than one cell type. The
number of genes expressed in photoreceptors and Muller glia differs
somewhat from those used in the analysis shown in Figure 5A, since
the expression of a large number of photoreceptor-enriched genes
was not examined prenatally, and a number of Miiller-enriched genes
were detectable in Miuller glia through the end of the second
postnatal week, but not in adult retina. AC, amacrine cells; BC,
bipolar cells; GC,ganglion cells; HC, horizontal cells; MG, Miiller glia;
sAC, subset of amacrine cells; sBC, subset of bipolar cells; sGC, subset
of ganglion cells
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(Blackshaw et al. 2001), while hereditary optic neuropathies
have been suggested to be partially mediated by mutations in
ganglion-cell-enriched genes (Votruba et al. 1998). Further-
more, a number of other retinal and anterior segment
abnormalities result from mutations in genes that are broadly
expressed in retinal progenitor cells (Hanson et al. 1999;
Ferda Percin et al. 2000). See Table S13 for a full list of the
chromosomal locations of the human orthologs of genes
examined in this work. This list also contains a full list of
mapped but unidentified Mendelian human retinal disease
genes and orthologs of photoreceptor-enriched genes iden-
tified in this work that lie within those chromosomal
intervals. A total of 164 photoreceptor-enriched genes not
previously linked to retinal disease were found in chromo-
somal intervals containing retinal disease loci, representing a
total of 42 distinct loci. While photoreceptor-enriched
transcripts make up roughly half of all cloned retinal disease
genes (Blackshaw et al. 2001), roughly one-third of retinal
disease genes are expressed in all cells of the retina,
suggesting that it is fruitful to consider such genes when
screening candidate disease genes. We find that 22 panreti-
nally expressed genes map within intervals containing
unidentified disease genes, representing 16 distinct loci.

Genomic Approaches to Development
The retina consists of a number of distinct cell types that
are relatively well defined morphologically, as well as
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molecularly. They undergo differentiation in defined intervals
and are found in stereotypical locations within the retina.
These characteristics allow a fairly straightforward evaluation
of the cell-specific expression of genes within the retina. We
have coupled SAGE-based expression profiling with large-
scale ISH analysis to obtain an atlas of gene expression for the
developing and mature retina. This atlas is useful for many
purposes—in particular, providing many candidate genes for
studies of retinal development and function. SAGE analysis
can be nearly comprehensive (Velculescu et al. 1995), but its
sensitivity is limited by the number of tags sequenced, the
level of expression of a transcript within a given cell, and the
abundance of given cell subtypes within a tissue sample. Thus
this analysis detected relatively rare cell-specific transcripts
primarily for the abundant rod photoreceptors and their
precursors, and for genes broadly expressed in retinal
progenitor cells. Nonetheless, the catalog does include some
genes selectively expressed even in the rarest cell types, such
as the horizontal cells (0.3% of all retinal cells; Jeon et al. 1998)
and subtypes of ganglion cells, as well as genes expressed
selectively in small subsets of cells in the early ONBL.

A recent microarray-based study in developing neural crest
screened over 90 candidate genes via ISH (Gammill and
Bronner-Fraser 2002), and a recent study using serial stages of
embryonic Drosophila has analyzed hundreds of genes by such
methods (Tomancak et al. 2002). However, while a number of
recent studies have used microarray analysis to profile
developing neural tissue, large-scale ISH-based validation of
genes identified as being expressed in developing CNS by
such expression profiling has not yet been conducted. Large-
scale ISH studies enhance our ability to interpret expression
profiling data, as the precise cellular expression of a gene in
heterogeneous tissues of the developing nervous system
cannot be inferred reliably from the profiling of bulk tissue.

Other considerations underscore the benefits of verifying
primary expression data from expression profiling methods
by using other approaches. For instance, several studies
describing microarray-based expression profiling of similar
starting material have obtained contrasting results for sets of
differentially regulated genes (Claridge-Chang et al. 2001;
McDonald and Rosbash 2001; Lin et al. 2002; Ivanova et al.
2002; Ramalho-Santos et al. 2002). These may result from
either experimental variation among labs or biological
variation in gene expression among the samples and
individuals tested (Pritchard et al. 2001; Blackshaw et al.
2003), but nonetheless suggest that large-scale verification of
expression differences by techniques such as quantitative RT-
PCR or ISH would aid interpretation of such differences.
Studies that rely on large-scale ISH as an initial screen
generate vast amounts of data, but typically have been
conducted using sets of identified or random cDNAs without
using expression screening to preselect genes that show high
or dynamic expression in the tissue of interest (Gawantka et
al. 1998; Neidhardt et al. 2000; Kudoh et al. 2001; Thut et al.
2001). Using expression profiling to generate a set of
candidate genes for large-scale ISH analysis will increase the
probability of testing genes that show enriched or dynamic
expression in a tissue of interest.

Towards a Functional Genomics of Neural Development
The data presented here provide the starting point for
medium-throughput functional analysis of the role of many
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genes in retinal development. The use of in vivo electro-
poration (Matsuda and Cepko 2004) and plasmid constructs
encoding small inhibitory RNAs delivered by electroporation
or retroviruses will make possible medium-throughput gain-
and loss-of-function studies of gene function in the retina.
The identification of a variety of progenitor subtypes and
stage-specific precursor markers will enable a deeper
interpretation of such studies. Construction of appropriate
Cre lines will allow lineage analysis to determine with
precision the mature cell types to which subsets of mitotic
progenitor cells or posmitotic precursors give rise. Combin-
ing the knowledge of cell-specific transcription factors and
cell-specific target genes, together with bioinformatic ap-
proaches that take advantage of mammalian genome
sequence information in a manner like recent efforts in
Drosophila (Stathopoulos et al. 2002), may allow the character-
ization of the combinatorial code of cis- and trans-acting
elements that specify mature neuronal identity. We anticipate
that similar approaches are likely to be useful in any region of
a developing tissue where birthdating studies have been
conducted and cell subtypes can be readily identified based
on their spatial localization.

Materials and Methods

Generation of SAGE libraries. Isolation of mouse brain and retinal
tissue, as well as construction of all SAGE libraries derived from
retinal and hypothalamic tissue, was conducted as previously
described (Blackshaw et al. 2001). Publicly available mouse libraries
used in the analysis include 3T3 fibroblasts (obtained from http:/
www.sagenet.org), P8 cerebellar granule precursor cells maintained in
culture for 24 h (GCPcntr; obtained from http://www.ncbi.nlm.nih.
govISAGE), P8 cerebellar granule precursor cells maintained in
culture and treated with Shh for 24 h (GCP4+SHH; obtained from
http:/lwww.ncbi.nlm.nih.gov/ISAGE), freshly harvested P8 cerebellar
granule precursor cells (GC__P8; obtained from http://www.ncbi.nlm.
nih.govISAGE). Libraries from E15 and Pl cerebral cortex were
obtained from Gunnersen, et al. 2002. ). All retinal and hypothalamic
SAGE data have been submitted to NCBI, and will be available for
download at http://lwww.ncbi.nlm.nih.gov/ISAGE.

SAGE data analysis. The SAGE 3.0.1 program (courtesy of Victor
Velculescu and Ken Kinzler, Johns Hopkins University School of
Medicine, Baltimore, Maryland, United States) was used to extract
SAGE tags and eliminate duplicate ditags. Identity of SAGE tags was
obtained from the National Center for Biotechnology Information
(NCBI) “reliable” tag map set for UniGene (available at http://
www.ncbinlm.nih.gov/ISAGE). UniGene Build 131 of Mus musculus
(http:/f/www.ncbi.nlm.nih.gov/UniGene) was used for the mappings. In
cases where ISH results for genes matching a “reliable” tag did not
match the temporal expression profile for the tag in question, along
with all cases of unknown tags (i.e., tags which had no “reliable” tag to
gene assignment) that were present at greater than 0.1% of total tags
in any one SAGE library, the genes were tested via NCBI BLASTN
searching (http://www.ncbi.nlm.nih.gov/IBLAST/) against the nr and
dbest databases, with Expect threshold set to 100 (Karlin and Altschul
1990). A tag was considered to match a specific transcript if it
corresponded to the 3'-most Nlalll site in a given polyadenylated
transcript (Velculescu et al. 1995). If no such match was found, tags
matching the 3’-most Nlall sites in 5’ reads of retinal-derived MGC
cDNAs (Strausberg et al. 2002) were considered to match those
transcripts, in cases where no further 3’ sequence information was
available for those ESTs. Each tag representing a gene tested by ISH,
moreover, was checked by BLASTN using these parameters to verify
the accuracy of the NCBI tag-to-gene matches.

Human orthologs of mouse genes were identified through the use
of the Homologene data set and verified by BLASTN and/or BLASTX
analysis using the NCBI server, or BLAT analysis using the University
of California at Santa Cruz genome server (http://genome.ucsc.edu).
In cases where no curated ortholog was present in the database,
BLASTN analysis against nr, dbest, and htgs databases was used to
identify transcripts that showed over 85% sequence conservation
over 100 bp and did not match any repeat sequence. The University
of California at Santa Cruz genome browser using the October 2003
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freeze (http://genome.ucsc.edul/cgi-bin/hgGateway) was used to deter-
mine if any transcripts with no obvious coding sequence mapped
within 5 kb of the 3’ end of an identified gene and were transcribed in
the sense orientation relative to that gene. If so, these were
considered to represent novel 3’ ends of that gene. All other data
analysis and curation was conducted with Microsoft Excel and
Microsoft Access.

Tissue section, ISH, and BrdU staining. ISH was conducted as
previously described (Blackshaw et al. 2001). For BrdU staining, mice
were given a single interperitoneal injection of 37.5 mglkg BrdU and
killed 1 h later. Fresh-frozen sections were used following 15 min
fixation in 4% paraformaldehyde. The protocol of BrdU staining was
carried out using an anti-BrdU monoclonal antibody (Roche, Basel,
Switzerland) and detected using an AP-conjugated secondary anti-
body, using recommended blocking and washing conditions.

Dissociated cell ISH. Retinas were dissected from E14.5, E16.5, and
PO mice and cultured_for 1 h in DMEM/10% fetal calf serum
containing 5 pCi/ml *H-thymidine. The labeled retinas were
dissociated into single cells by incubating for 30 min at 37 °C in
100 units/ml of papain (Worthington Biochemical, Lakewood, New
Jersey, United States) in Hank’s balanced salt solution (HBSS)
containing 10 mM HEPES (pH 7.6), 2.5 mM cysteine, and 0.5 mM
EDTA. The suspensions were then gently triturated and incubated
with 0.1 mg/ml DNase I for 10 min at 37 °C. The cells were pelleted,
washed twice in HBSS, and plated on polyD-lysine-coated glass slides
for 15 min at room temperature. Cells were fixed to the slides in 4%
paraformaldehyde for 5 min at room temperature, washed twice in
PBS, and dehydrated in 100% methanol. For acetylation, probe
incubation, and subsequent washings, the in situ protocol detailed
herein for tissue sections was used. A tyramide signal amplification
system (TSA Plus, PerkinElmer, Wellesey, Massachusetts, United
States) combined with an anti-digoxigenin-HRP antibody (Roche)
was used according to the manufacturer’s instructions to detect the
signal. Autoradiographic processing was performed in emulsion
(NTB2, Eastman Kodak, Rochester, New York, United States) exactly
as previously described (Alexiades and Cepko 1996).

Classification of cellular expression data in retina by user-based
classification and cluster analysis. Two classification schemes of the
patterns of expression over time were developed: human and
machine-aided. In the first case, a single observer (S.B.) generated a
presumptive minimal classification of expression patterns following
visual inspection of each hybridization pattern (see Table S6 for a full
list). This subjective classification took into account a relatively
informal assessment of signal intensity. This approach yielded a total
of 72 distinct patterns, of which 19 contained only a single member.
In the second case, laminar expression within the retina was scored
on a 0-5 point scale based upon visual inspection for each defined
cell type in the prenatal, perinatal, and mature retina, and cluster
analysis software was used to perform k-means clustering (using
Euclidean distance) of cellular expression patterns (see Table S7 for
the full data set). As with the cluster analysis of the SAGE data, in
order to determine an optimal minimal number of clusters, the total
distance among data points within the clusters of cellular expression
data (within cluster dispersion) were plotted for cluster sizes from 10
to 65 over 100 simulations (Table S14) using Euclidean distance
measure (De Hoon et al. 2004). Algorithms used for this analysis are
available at http://bonsai.ims.u-tokyo.ac.jp/mdehoon/software/cluster/
index.html. It was found that at approximately 45 clusters there was a
pronounced discontinuity in the rate of change in the distance
among points within the cluster, and this was adopted as a tentative
minimal number of clusters.

Determination of cell-enriched expression in adult retina and
retinal progenitor cells. For the data presented in Figure 5A,
numerical cellular expression data from Table S7 was used. Tran-
scripts were assayed as enriched in a specific cell type if they showed
highest (but not necessarily exclusive) expression in the cell type in
question after the first postnatal week of life. Genes enriched in
subsets of bipolars or amacrines were treated as bipolar- and
amacrine-enriched, respectively.

Whether or not a gene showed retinal-progenitor-enriched
expression was determined from Table S7 by the following empirical
set of criteria, which were found to cover virtually all known retinal-
progenitor-enriched genes: early vO/svO or scOlsscO greater than 1,
early (scO +sscO + vO + svO) greater than early (scI + sscl + vI+ svl),
early (vO + svO) greater than or equal to early (scO + sscO), and mid
(vO + svO) greater than mid (scO + sscO). (See legend of Table S5 for
a key to these abbreviations.)

To determine whether genes that are cell type-specific in the adult
retina are disproportionately enriched in retinal progenitors (see
Figure 5A), we have used the hypergeometric distribution statistical
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analysis to compute the probability that a subset of genes of a given
size will have a given number of occurrences of the pattern we
examine, when chosen randomly from the group of all known genes
(Johnson et al. 1992).

Cluster analysis of SAGE data. Considering the numerous types of
transcripts present in a cell or tissue and the small probability of
sampling a particular type of transcript at each draw, the number of
sampled transcripts of each type is assumed to be approximately
Poisson distributed. Statistically, when this actual sampling process is
random enough, Poisson would be the most practical and reasonable
assumption compared to other probability models. This assumption,
with the assumption that each tag is uniquely mapped to a transcript,
leads to the probability model used for clustering analysis of SAGE
data (below).

First, all SAGE tags were assigned at random to k groups. Second, a
cluster center, which led to the expected expression pattern of each
tag, was calculated for each cluster. Chi-square test statistics were
used to measure the distance between the observed expression
pattern and the expected expression pattern of a tag in a cluster.
Third, using an iterative method, tags were moved between clusters,
and intra- and intercluster distances were measured with each move.
Tags were allowed to remain in the new cluster only if they were
closer to it than to their previous cluster. Fourth, after each move, the
expression vectors for each cluster were recalculated. Last, the
shuffling proceeded until moving any more tags made the clusters
more variable, increasing intracluster distances and decreasing
intercluster dissimilarity (see Protocol Slfor full details of the
algorithms used, as well as Cai, et al. 2004 for a more detailed
discussion of applications of the protocol).

To compute optimal values for the number of clusters k, the
within-cluster dispersion was computed for increasing values of k.
This within-cluster dispersion declined as new clusters were added.
We thus looked for the reduction at each step, and observed the rate
of change. Discontinuities in the rate of change were taken to
indicate that a meaningful cluster number had been obtained, with
the lowest number of clusters that showed such a discontinuity being
used for analysis (Hartigan 1975; Yeung et al. 2001).

In order to determine the optimal number of clusters to use in the
analysis of the SAGE data, the within-cluster dispersion was
determined for a range of ten to 65 clusters over 100 iterations. If
certain numbers of clusters gave a better fit to the data, they should
show discontinuities in the rate of decrease (Hartigan 1975). It was
found that setting the number of k-means clusters at around 25, 40,
and b5 showed these features (see Table S15)

Database construction. Data from 21 SAGE libraries and ISH
images were gathered and stored in a MySQL relational database
(http://lwww.mysql.com). Information on the measurement values for
the SAGE libraries and ISH images can be accessed at http://
134.174.53.82/cepkol. The database was developed to provide up-to-
date mapping of SAGE tags to UniGene clusters. Since a single
sequence tag can represent different genes and, conversely, an
individual UniGene cluster can be represented by more than one tag,
both “full” and “reliable” tag-to-UniGene mappings (Lash et al. 2000)
have been created and can be selected by the user. The cluster
assignments and their reliability were obtained from NCBI SAGEmap
(http:/f/www.ncbi.nlm.nih.govISAGE). For the database reported here-
in, UniGene Build 131 of Mus musculus and Build 164 of Homo sapiens
(http:/f/www.ncbi.nlm.nih.gov/UniGene) were used for the mappings.
However, the database at http://134.174.53.82/cepko/ includes up-to-
date mapping data. For each UniGene cluster, all measurement values
and ISH images of associated tags are provided. Measurement values
can also be segregated and summed up for each library if more than
one SAGE tag is mapped to a given UniGene cluster. A plot of
measurement values was also created to visualize patterns across the
SAGE libraries. Additionally, for each UniGene cluster, links to gene
functions using GO, accession numbers for annotated human
orthologs, and LocusLink IDs have been provided.

Supporting Information

Figures S2-S12 show ISH data for genes that show dynamic
expression in developing retina. All pictures were obtained from
central retina. Cellular laminae of both the developing and mature
retina are indicated with colored bars. All pictures were taken at
200x. See Table S5 for a full list of probes used.

Figure S1. Comparison of E14.5 EST Versus E14.5 SAGE Data

The number of times a gene was observed in a set of 15,268 individual
ESTs obtained from E14.5 mouse retina (data obtained from Mu et al.
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[2001]) compared to a set of 15,268 individual E14.5 retinal SAGE tags
generated in this study. Only genes present at least ten times in the
EST data set were considered.

Found at DOT: 10.1371/journal.pbio.0020247.sg001 (1.7 MB TIF).
Figure S2. Heterogeneous Developmental Onset of Phototransduc-
tion Gene Expression

The genes shown are rod arrestin, PrCdh, Gyl1, rod PDEY, rhodopsin,
peripherin 2, Gol, and GCAPI.

Found at DOIL: 10.1371/journal.pbio.0020247.sg002 (26.9 MB TIF).

Figure S3. Genes Expressed in Subsets of Cells in Developing ONBL

Sections were from central retina. The genes shown are Otx2, RORp,
Yboxbpl, Mm.38347, Mm.11660, BTF3, H2Ax, Ppplri4b, Grbl0,
Mm.158631, HMG-ATI, Mm.24141, KIAA1411, Mm.25018, IAP5, and
Chaflb.

Found at DOT: 10.1371/journal.pbio.0020247.sg003 (25.7 MB TIF).

Figure S4. Genes Expressed Broadly in Mitotic Progenitors

The genes shown are PDK3, Gia2, B-catenin, LRCS, Nrarp, Foxn4, and
HMG-17.

Found at DOI: 10.1371/journal.pbio.0020247.sg004 (27.4 MB TIF).
Figure S5. Genes Expressed in Undefined Subsets of Progenitors/
Precursors

The genes shown are FABP7, BMP7, NTT7, Inhibin BB, and Sal3.
Found at DOL 10.1371/journal.pbio.0020247.sg005 (20.8 MB TIF).
Figure S6. Known Transcription Factors Expressed in Developing
Rods

These data are shown to allow direct comparison with the data in
Figures 4 and S7. The genes shown are NeuroDI, Crx, Nrl, and NR2E3.

Found at DOIL 10.1371/journal.pbio.0020247.sg006 (24.9 MB TIF).

Figure S7. Genes Expressed in Developing Rods

The genes shown are Cpx2, TRABID, Fin29, Mak, Mm.24642, Nk, Hrs,
Tnfsfl3, and Arip2.
Found at DOL 10.1371/journal.pbio.0020247.sg007 (18.3 MB TIF).

Figure S8. Genes Expressed in Developing Bipolar Cells

The genes shown are Chx10, Gli5, Dbp, Lhx4, Mm.41284, Prkel, SEZ-6,
and Zfh4.

Found at DOIL: 10.1371/journal.pbio.0020247.sg008 (21.4 MB TIF).

Figure S9. Genes Expressed in Developing Horizontal Cells
The gene shown is Borg4.
Found at DOI: 10.1371/journal.pbio.0020247.sg009 (11.0 MB TIF).

Figure S10. Genes Expressed in Developing Amacrine Cells

The genes shown are Unc-51-like-1, ArfGAP, robo3, mecdin, SAK,
Mm.6393, Mm.34130, Nhih2, NPY, Mm.21657, Mm.215653, and
Mm.41638.

Found at DOIL: 10.1371/journal.pbio.0020247.sg010 (19.1 MB TIF).

Figure S11. Genes Expressed in Developing Miiller Glia

The genes shown are KIAA0937, Mm.157502, Slc38a3, Nkdl, DspS,
carbonic anhydrase 2, and cyclin DI.

Found at DOL 10.1371/journal.pbio.0020247.sg011 (40.1 MB TIF).
Figure S12. Additional Noncoding RNAs Expressed in Developing
Retina

The genes shown are MEG3, Xist, and Tsix.

Found at DOIL: 10.1371/journal.pbio.0020247.sg012 (13.6 MB TIF).
Protocol S1. Description of Methodology Used for Cluster Analysis of
SAGE Tags

Found at DOI: 10.1371/journal.pbio.0020247.sd001 (52 KB DOC).
Table S1. Summary of SAGE Tag Distribution

The total cumulative number of tags found at each abundance level in
all 12 retinal libraries (i.e., the ten libraries from total retinal of wild-
type animals, the library from P10.5 erx™ animals, and the library
from microdissected ONL of adult animals) is shown. The number of
tags, and the fraction of total tags, that do not show any reliable
match for any gene (data from NCBI) are also shown.
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Found at DOI: 10.1371/journal.pbio.0020247.st001 (14 KB XLS).
Table S2. Full List of Tag Counts in All SAGE Libraries Considered

This list includes not only all libraries made from retinal tissue, but
also nonretinal SAGE libraries made by this group, and other mouse
libraries that are publicly available. Raw, unnormalized tag counts are
shown. See Materials and Methods for more details on the SAGE
libraries analyzed.

Found at DOI: 10.1371/journal.pbio.0020247.5t002 (17.9 MB TXT).

Table S3. Twenty-Four-Cluster Analysis for SAGE Tags

All tag abundance levels were normalized to 100,000. Tags present at
greater than 0.1% in one or more of the ten wild-type total retina
libraries were considered. The single most probable “reliable” tag-to-
gene match (http://www.ncbi.nlm.nih.gov/SAGE) is shown, along with
the confidence level of that assignment. Mouse UniGene number is
shown for each tag-to-gene match, along with LocusLink ID, where
available. In each case where a gene was analyzed by ISH in
developing retina, that fact is indicated in the final column. In some
cases, a gene that matched the tag with a lower confidence level was
tested. In these cases, the UniGene number of the gene tested by ISH
differs from that of the most probable tag match.

Found at DOI: 10.1371/journal.pbio.0020247.st003 (1.0 MB XLS).

Table S4. Molecular Function, Biological Process, and Subcellular
Compartment GO Data Are Shown for Each Gene Analyzed by ISH in
the Retina

Gene names and LocusLink IDs for these genes are also shown
Found at DOI: 10.1371/journal.pbio.0020247.st004 (225 KB XLS).

Table S5. Complete List of Cellular Expression Patterns for Each
Probe Tested

The SAGE tag matching each gene tested is given, as well as the
accession number of the cDNA used to generate each probe used for
ISH. Cellular expression is scored on a 0-5 point scale for each time
point tested, as well as for E16 embryo and P6 head cut in horizontal
section. A, amacrine cells; Ast, astrocytes; B, bipolar cells; Bv, blood
vessels; Cb, cerebellum; CM, ciliary margin; CP, cortical plate; Ctx,
cerebral cortex; DG, dentate gyrus of hippocampus; DRG, dorsal root
ganglia; EGL, external granule layer of developing cerebellum; EOM,
extraocular muscles; G, ganglion cells; H, horizontal cells; Hippo,
hippocampus; I, inner neuroblastic layer; In, inner nuclear layer; MG,
Miiller glia; MGE, medial ganglionic eminence; ND, not determined;
O, outer neuroblastic layer; OB, olfactory bulb; OE, olfactory
epithelium; ORN, olfactory receptor neurons; P, panretinal; PC,
Purkinje cells; PNS, peripheral nervous system; Pr, photoreceptors;
Pr(is), inner segments of photoreceptors; sA, subset of amacrine cells;
sB, subset of bipolar cells; SC, spinal cord; sG, subset of ganglion cells;
sI, subset of cells in INBL; sIn, subset of cells in INL; scl, scleral INBL;
sscl, subset of cells in scleral INBL; svl, subset of cells in vitreal INBL;
sO, subset of cells in outer neuroblastic layer; scO, scleral ONBL;
sscO, subsets of cells in scleral ONBL; svO, subset of cells in vitreal
ONBL; sPr, subset of photoreceptors; SVZ, subventricular zone; vI,
vitreal INBL; vO, vitreal ONBL; VRN, vomeronasal receptor neurons;
VZ, ventricular zone.

Found at DOI: 10.1371/journal.pbio.0020247.st005 (381 KB XLS).

Table S6. User-Curated Cellular Expression Clusters for Genes
Tested by ISH in Retina

Here, data from Table S5 are summarized such that the predominant
cellular expression pattern from early (E12-E18), mid (P0-P4), and
late (P6-adult) developing retina is recorded, and genes are grouped
into coexpressed clusters by user annotation. The main cell types
expressing the gene in the retina over the interval in question are
listed, with weaker expression in other cell types being noted in
parentheses. Clusters are given a name (after a representative gene)
and a unique cluster number, and the presumptive cell types that
show greatest expression are listed. Genes for which the full
developmental expression profile was not determined are tentatively
assigned to clusters that showed the best fit based on two out of three
criteria, with tentative assignments being indicated as such

Found at DOI: 10.1371/journal.pbio.0020247.st006 (261 KB XLS).
Table S7. Numerical Cellular Expression Data Used for Machine-

Aided Cluster Analysis of Cellular Expression Patterns of Genes
Tested by ISH in Retina

To obtain these numbers, data from Table S5 were modified. As in
Figure S6, expression data were summarized for early (E12-E18), mid
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(PO-P4), and late (P6-adult) developing retina. In cases where cellular
expression changed dramatically within one of these three intervals
(e.g., expression shifted from INBL to ONBL), these cellular
expressions were both entered in the category in question. Genes
that were not examined in all three of these time intervals were not
considered in this analysis. Cellular expression data, scored on a 0-5
point scale, were then entered for each time point separately in each
of the categories used to score retinal cellular expression in Table S5.

Found at DOL 10.1371/journal.pbio.0020247.st007 (266 KB XLS).

Table S8. Comparison of User-Curated Cellular Expression Clusters
from Table S6 and a 45-Cluster Machine-Aided Analysis of the
Cellular Expression Data from Table S7

The fraction listed notes the fraction of genes in the machine-
generated cluster that were found in a given user-curated cellular
expression cluster. The presumptive cellular expression pattern of
each user-curated cellular expression cluster is also listed (following
Table S6).

Found at DOL 10.1371/journal.pbio.0020247.st008 (86 KB XLS).

Table S9. Comparison of 4N-Enriched Genes from Livesey et al.
(2004) and SAGE Cluster Data from Table S3

Shown is the percentage of tags that matched genes enriched in 4N
retinal progenitor cells found in a given SAGE tag cluster.

Found at DOI: 10.1371/journal.pbio.0020247.st009 (14 KB XLS).

Table S10. Comparison of the SAGE Tag Cluster Data from Table S3
and the 72-Cluster Analysis of the User-Curated Cellular Expression
Data from Table S6

Values indicate the fraction of all tags found in a given SAGE tag
cluster that were found in a specific user-curated cellular expression
cluster. The presumptive cellular expression pattern of each cellular
expression cluster is also listed (following Table S6).

Found at DOL 10.1371/journal.pbio.0020247.st010 (209 KB XLS).

Table S11. SAGE Tags Representing the Known Photoreceptor-
Specific Genes Analyzed in Figure S2

Tags in each library are expressed as the fraction of all tags that
match the gene in question that were found in the ten libraries
considered.

Found at DOT: 10.1371/journal.pbio.0020247.5st011 (15 KB XLS).

Table S12. Candidate Noncoding RNAs Analyzed by ISH in This
Study

The SAGE tag corresponding to the transcript in question is listed,
along with UniGene numbers, and accession numbers of the probes
used for ISH for each candidate noncoding RNA. P-values for
BLASTN and BLASTX mouse/human comparisons are shown. Tran-
scripts that show high BLASTN, but low BLASTX, matches to human
may represent the best candidates for noncoding mRNAs of
functional importance and are indicated as likely to be genuine
noncoding RNAs. NS, not significant.

Found at DOL 10.1371/journal.pbio.0020247.st012 (17 KB XLS).

Table S13. Accession Numbers for Full-Length Transcripts for Genes
Tested by ISH in This Study, Along with Their Human Orthologs

Chromosomal localizations are shown for both the mouse genes and
their human orthologs. Genes located within chromosomal intervals
containing mapped but uncloned retinal disease genes are indicated
by the name of the disease (terminology from Retnet; http:/
www.sph.uth.tmc.edu/Retnet/disease.htm). User-curated cellular ex-
pression data of the genes in question (derived from Table S6) are
shown to aid in prioritizing candidate disease genes for further
investigation. ND, not determined.

Found at DOIL: 10.1371/journal.pbio.0020247.st013 (291 KB XLS).

Table S14. Average Distance Analysis of Cellular Expression Data
from Table S7

The values shown here are the average sum-of-squares within k-means
clusters over all variables. Euclidian mean distance-directed cluster-
ing is used (Hartigan 1975). The proportional reduction of error
(PRE) for each number of clusters is also shown. This measures the
ratio of reduction in within-cluster dispersion to the previous within-
cluster dispersion (Hartigan 1975). For this analysis, PRE is given by
(Nt — N(i - 5))INi, where N is the average within-cluster distance and i
is cluster number.
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Found at DOI: 10.1371/journal.pbio.0020247.st014 (14 KB XLS).
Table S15. Average Distance Analysis of SAGE Tag Clusters

Tags present at greater than 0.1% in one or more of the ten wild-type
total retina libraries were considered and were normalized to 100,000
for this analysis. The average sum-of-squares within k-means clusters
for each number of clusters is shown. The PRE, given by (Ni — N(i - 5))/
Ni, is also shown.

Found at DOI: 10.1371/journal.pbio.0020247.st015 (14 KB XLS).

Accession Numbers

The GenBank (www.ncbi.nlm.nih.gov) accession numbers for the
genes discussed in this paper are B-catenin (NM__007614), ArfGAP
(BC030682), Arip2 (NM__025292), BMP7 (NM__007557), Borg4
(NM__012121), brain fatty acid binding protein 7 (NM__021272), BTF3
(NM__145455), carbonic anhydrase 2 (NM__009801), cdk4 (NM__009870),
Chaf1b (NM__028083), Chx10 (NM__007701), Cpx2 (NM__007756), Crx
(NM__007770), Dbp (NM__016974), Drosophila castor gene (BC035954),
Dsp8 (XM__181424), FABP7 (NM__021272), Fin29 (NM__172275),
Foxn4 (NM__148935), GCAPI (NM__008189), Gia2 (NM__008138),
Gli5 (NM__031184), Grb10 (NM__010345), Gol (NM__008140), GyI
(NM__010314), H2Ax (NM__010436), HMG-17 (NM__016957), HMG-
ATI (NM__016660), Hrs (NM__008244), IAP5 (NM__009689), inhibin
BB (BC048845), KIAA0937 (NM__172442), KIAAI411 (NM__026604),
Lhx4 (NM__010712), LRC8 (NM__172736), Mak (NM__008547), MEG3
(NM__144513), Mm.103742/Cdc42GAP (NM__020260), Mm.11660
(AKO034313), Mm.11738/Ark-1 (BC005425), Mm.142856/Lhx2
(NM__010710), Mm.150838/RNCR1 (AK044330), Mm.157502
(NM__026592), Mm.158631 (XM__132295), Mm.1635/PIAS3
(NM__018812), Mm.18789/Sox4 (NM__009238), Mm.19155/sFrp2
(NM__009144), Mm.193526/Yboxbp4 (NM__007705), Mm.194050/
RNCR3 (AK044422), Mm.200608/clusterin (NM__013492), Mm.20465/
GPCR37 (NM__010338), Mm.213213/HK-R (NM__145419), Mm.215653
(NM__183191), Mm.21657 (BC038057), Mm.2214/septin 4
(NM__011129), Mm.22288/cyclin DI (NM__007631), Mm.2229/Eya2
(NM__010165), Mm.235550/ERR (NM__011934), Mm.23916
(AK009781), Mm.24141 (NM__025615), Mm.24642 (NM__146168),
Mm.25018 (BC010304), Mm.26062/AD024 (NM__025565), Mm.27953/
glycine decarboxylase (NM__138595), Mm.29067/Mbtdl (NM__134012),
Mm.29496/Zf-1 (AK004085), Mm.29729/Tweetyl (NM__021324),
Mm.29924/Arl6ipl (BCO10196), Mm.34130 (AK012601), Mm.34701/
Puml (NM__030722), Mm.3499/Rax homeodomain factor (NM__013833),
Mm.35817 (NM__145940), Mm.35829/Edr (NM__133362), Mm.38347
(XM__126644), Mm.3904/Fgf15 (NM__008003), Mm.40321/Pgrmc2
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