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Abstract
SARS-CoV-2, although not being a circulatory virus, spread from the respiratory tract resulting in multiorgan failures 
and thrombotic complications, the hallmarks of fatal COVID-19. A convergent contributor could be platelets that beyond 
hemostatic functions can carry infectious viruses. Here, we profiled 52 patients with severe COVID-19 and demonstrated 
that circulating platelets of 19 out 20 non-survivor patients contain SARS-CoV-2 in robust correlation with fatal outcome. 
Platelets containing SARS-CoV-2 might originate from bone marrow and lung megakaryocytes (MKs), the platelet precur-
sors, which were found infected by SARS-CoV-2 in COVID-19 autopsies. Accordingly, MKs undergoing shortened dif-
ferentiation and expressing anti-viral IFITM1 and IFITM3 RNA as a sign of viral sensing were enriched in the circulation 
of deadly COVID-19. Infected MKs reach the lung concomitant with a specific MK-related cytokine storm rich in VEGF, 
PDGF and inflammatory molecules, anticipating fatal outcome. Lung macrophages capture SARS-CoV-2-containing platelets 
in vivo. The virus contained by platelets is infectious as capture of platelets carrying SARS-CoV-2 propagates infection to 
macrophages in vitro, in a process blocked by an anti-GPIIbIIIa drug. Altogether, platelets containing infectious SARS-
CoV-2  alter COVID-19 pathogenesis and provide a powerful fatality marker. Clinical targeting of platelets might prevent 
viral spread, thrombus formation and exacerbated inflammation at once and increase survival in COVID-19.
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Introduction

Since December 2019, the world has experienced an out-
break of coronavirus disease 2019 (COVID-19), caused 
by the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2). Although the epidemiological and clini-
cal characteristics of patients with COVID-19 have been 
reported, biological risk factors for mortality are needed. 
Critical cardiovascular, as well as multifactorial thrombotic 
complications in patients with COVID-19 are frequent, even 
in individuals without a history of cardiovascular disease 

[1]. Furthermore, patients with severe COVID-19 admit-
ted into intensive care unit (ICU) have increased cumula-
tive thrombotic complications compared with patients not 
admitted to ICU (31% versus 1.3%) [2]. Microthrombotic 
events are especially frequent in the lung where MKs, the 
platelet precursors, are found to accumulate atypically in 
COVID-19 patients [3], suggesting abnormal behaviour [4]. 
However, anticoagulant treatment of COVID-19 patients is 
of limited efficacy, and any benefit may be patient-specific 
[5, 6]. Despite clinical evidence of a link between COVID-
19 and haemostatic disorders, the underlying mechanisms 
of thrombosis remain uncertain.

The β-coronavirus SARS-CoV-2 is a single-strand RNA 
(+) enveloped virus [7]. The viral spike protein (S) is made 
of two subunits. The subunit S1 binds to its main recep-
tors the surface expressed angiotensin-converting enzyme-2 
(ACE-2) and is cleaved from the subunit S2 by the target 
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cell serine protease TMPRSS2 [8], enabling  the virus to 
enter and infect target cells. Virus replication involves the 
production of double-stranded (positive (+)/negative (-) 
strands) complexes in the cytosol of the infected cells initiat-
ing viral component production. SARS-CoV-2 infected cells 
are found not only in the lung, but the virus is also widely 
found in other tissues [9]. The process of viral dissemina-
tion remains unknown. There is a lack of significant blood 
viremia, and only occasional detection of viral RNA due to 
rare blood cell infection [10–12]. Furthermore, no studies 
have so far demonstrated the presence of viral particles and 
their infectiousness. Therefore, the major route of SARS-
CoV-2 dissemination is not blood, although the role of plate-
lets as viral carrier has not been investigated.

Platelets have a critical role in hemostasis and thrombosis 
[13]. Their interaction with the subendothelium during viral 
infection results in platelet hyperactivity and in turn, arte-
rial thrombus producing end-organ ischemia. In particular, 
the influenza virus can directly activate platelets [14, 15] 
with consequent uncontrolled coagulation cascade result-
ing in lung injury. Besides their role in hemostasis, platelets 
have immunological functions contributing to the immune 
response and inflammation [13, 16, 17]. Platelets can also 
harbor pathogens including viruses [18, 19] where some, 
such as Dengue virus, may even replicate [20]. Furthermore, 
HIV as well as Dengue and influenza virus can infect MKs 
[21], the cell producing platelets [21–23]. Accordingly, 
platelets can also shelter viruses such as HIV in vivo as 
we have recently shown [22], thereby participating in the 
propagation of the infection and altering the viral pathology. 
Platelets are hyperactivated in COVID-19 and transcriptom-
ics found N and more often E genes associated with platelets 
in some patients, irrespective of disease severity [24, 25]. 
Whether MK infection occurs and replication-competent 
SARS-CoV-2 are contained in platelets with a possible role 
in COVID-19 thrombophilia, virus spread and patient out-
come have not been addressed.

Material and methods

Patients and ethical statement

This non-interventional study was approved by the institu-
tional review board of the ethical committee for research 
(CER) of the University of Paris-Saclay (CER-Paris-
Saclay-2020-050) and conformed to the principles outlined 
in the Declaration of Helsinki. Accordingly, all participants 
were informed in writing about the study and allowed not 
to participate. We studied prospectively samples from 76 
COVID-19 patients admitted at the Cochin (Paris, France), 
Ambroise Paré (Boulogne-Billancourt, France), and Ray-
mond Poincaré (Garches, France) Hospitals between March 

and May 2020. All patients had COVID-19 diagnosis con-
firmed by SARS-CoV-2 RNA RT-qPCR in nasopharyn-
geal swabs at the hospital. For this study, blood (n = 52), 
bronchoalveolar lavages (BAL) (n = 19) and autopsy (n = 5) 
unpaired samples were obtained from severe COVID-19 
patients.

Additional methods are detailed in supplementary 
material.

Results

Platelets from COVID‑19 non‑survivors harbor 
SARS‑CoV‑2

Platelet samples from randomly chosen individuals with 
confirmed severe COVID-19 diagnosis (n = 30) (Figure S1, 
Table 1, S1-2) were screened for SARS-CoV-2 by RT-qPCR 
(ORF, S and N genes). SARS-CoV-2 RNA was detected 
in 7 out of 30 patients. Strikingly, 6 out of the 7 platelet 
positive patients died within the week following sampling 
(mean days [95%CI]: 8.3 [5–14]), thus referred as non-sur-
vivors. Among the group of surviving patients (survivors), 
only 1 out of 24 platelet samples contained the viral RNA 
(Fig. 1A, mean [95% CI] RNA copies/million platelets in 
samples from non-survivors versus survivors, for ORF1 
gene: 580 [160–1200] vs 2.2 [1.8–8.2], p < 0.001; for S gene: 
840 [160–1600] vs 1.3 [1.1–5], p < 0.001; for N gene: 1200 
[320–2000] vs 1.6 [1.3–5.6], p < 0.001). Using 11 of these 
samples and additional ones from 28 patients, we then evalu-
ated if the RNA detected in platelets corresponded to full 
viral particles, using a flow cytometry technique for com-
bined detection of SARS-CoV-2 RNA and spike proteins 
in platelets, referred to as FISH-Flow [22], which we now 
validated for SARS-CoV-2 (Figure S2 and Table S3). Detec-
tion of both viral RNA and protein was remarkably more 
frequent in platelets from non-survivors than from survivors 
(Fig. 1B, Figure S2, mean % [95%CI] of viral RNA+/spike+ 
platelets in samples from non-survivors versus survivors, 
0.22 [0.06–0.42] vs 0.02 [0.01–0.07], p = 0.001).

Taken RT-qPCR and FISH-Flow analyses together, 
SARS-CoV-2 virus was detected within circulating plate-
lets in 20 patients out of 52, from which 19 died (Fig. 1C), 
in direct correlation with fatal outcome that persisted 
after adjustment for age (OR 63.4 [95% CI 6.6 to 610.1], 
p = 0.0003). Of note, the time from first symptoms to sam-
pling was similar between survivors and non-survivors with 
mean value of 10 days [95% CI 6;26] and 7 [95% CI 5;12.5], 
respectively (p = 0.22), and thus did not introduce a bias 
in the analysis. The presence of SARS-CoV-2 in platelets 
was the strongest factor associated with fatal outcome with 
p < 0.0001 in a multivariate analysis based on all patients’ 
clinical data collected (Table 1).
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In non-survivor patients, the virus resided inside platelets 
and was not associated to platelet surface: this was demon-
strated by confocal microscopy after viral (+) and (-) strands 
RNA in situ hybridization using RNAscope technology [22] 
we validated (Figure S3A), coupled to immunostaining of 
the platelet marker CD41 (Fig. 1D–E and Figure S3B-C). 
In contrast, no viral signal was found in platelets from 
survivors. At the ultrastructural level, spherical crowned 
structures with a diameter of 50–80 nm and visible spikes 
at their periphery typical of SARS-CoV-2 [26–30] were 
detected inside non-survivor platelets (Fig. 1F and Figure 
S3D). These viral structures were found in subcompart-
ments of the open canalicular system (OCS) [31] as well as 
in another type of compartment similar to the intra-platelet 

localization of dengue virus [32], whereas HIV [22], and 
Influenza viruses [33] are mainly found in the lumen of 
OCS. Immunolabeling of SARS-CoV-2 spike proteins on 
cryosections from these non-survivor platelets (Fig. 1G and 
Figure S3E) confirmed the SARS-CoV-2 nature of the viral 
spherical crowned images observed above (Fig. 1F and Fig-
ure S3D). Immunolabeled viruses were again exclusively 
detected within platelets, with no virus detected at the plate-
let surface. No such crowned viral structures nor immuno-
labeling were observed in survivor platelets. Platelets from 
non-survivors appeared also hyperactivated as indicated by 
the increase in frequency of platelets surface labeled for von 
Willebrand factor (vWF) in non-survivors versus survivors 
or healthy donors (Figure S4A-B) [34].

Table 1   Patient characteristics 
according to the hospital 
outcome (Platelet samples)

Bold indicates statistically significant p value (<0.05)
*Only available in those patients admitted to ICU (11 survivors and 12 deceased patients)
**Only measured in 16 survivors and 14 non-survivor patients

Median [IQR]; N(%) Survivors, n = 27 Non-survivors, n = 25 p value

Patients
 Age, years 61.6 [52.0;76.2] 72.7 [68.4;87.9] 0.009
 Male sex 17 (63%) 16 (64%) 1.00
 At least one comorbidity 22 (81%) 23 (92%) 0.42
 Obesity 6 (19%) 2 (8%) 0.27
 High Blood pressure 8 (30%) 10 (40%) 0.56
 Cardiovascular disease 7 (26%) 8 (32%) 0.76
 Diabetes 6 (22%) 10 (40%) 0.23
 Active malignancy 5 (19%) 5 (20%) 1.00
 Chronic renal failure 1 (4%) 2 (8%) 0.60
 Chronic respiratory failure 4 (15%) 3 (12%) 1.00

At Hospital admission
 Days after first symptoms 10 [6.5;25.5] 8 [5;12.5] 0.23
 Need of oxygen supply 2 (7%) 5 (20%) 0.24
 O2 saturation, % 91 [88;98] 91.5 [82;95.75] 0.40
 ICU admission 11 (41%) 12 (48%) 0.78
 IGSII* 32 [30;39] 45 [34.25;57] 0.16
 SOFA* 4 [3; 5] 4 [3.75; 8.75] 0.49

At sampling time
 Days after first symptoms 10 [6;26] 7 [5;12.5] 0.22
 WBC count, Giga/L 7.4 [5.3;9.65] 9.2 [6.4;13.8] 0.26
 Platelet count, Giga/L 238 [138.5; 334] 189 [160;255] 0.40
 Plasma Fibrinogen, g/L 6.5 [5.175;7.525] 6.6 [4.9;8.1] 0.72
 Plasma D-dimer, mg/L 4.4 [2.5;5.6] 3.5 [1.2;4.3] 0.091
 Plasma vWF, μg/ml** 9.6 [7.448;14.35] 18.0 [12.56;27.33] 0.015
 %vWF+ platelets** 5.9 [3.6;7.8] 14.5 [8.6;19.5] 0.001

SARS-CoV-2 in platelets 1 (4%) 19 (76%)  < 0.0001
At hospital discharge
 Days from first symptoms
to discharge

25 [18;72] 15 [12.5;28] 0.01

 Days from sampling
to discharge

13 [10;44] 7 [5;10] 0.001
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Although SARS-CoV-2 genes were scarcely found 
in blood [10, 11, 35], viral genes were more frequently 
detected in plasma (here in platelet-poor plasma (PPP)) from 
non-survivors than survivors (66% vs 25%) (Figure S4C). 

Furthermore, viral RNA copy number detected per million 
platelets in platelet-rich plasma (PRP) was not proportional 
to that detected per ml of PPP using RT-qPCR (Figure S4D), 
indicating that viral genes detected in the plasma are not the 
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source of virus detected in platelets. In addition, platelets 
from healthy donor incubated with infectious SARS-CoV-2 
were unable to internalize SARS-CoV-2 (Figure S4E-G), 
confirming that the source of SARS-CoV-2 in patient plate-
lets was not endocytosis of virus possibly present in the 
plasma.

In COVID‑19 non‑survivors, megakaryocytes are 
produced following a shortened megakaryopoiesis 
and express viral sensing genes

Alternative to virus endocytosis, platelets could have 
acquired SARS-CoV-2 in the bone marrow from their pre-
cursors, the megakaryocytes (MKs) previously infected dur-
ing their maturation. This has been observed in Dengue 
and Influenza virus infection [21]. After entering the cava 
vein, bone marrow MKs reach the pulmonary circulation 
and then the lung [36]. These large MKs are filtrated in the 
pulmonary capillary bed producing platelets locally, but also 

releasing MKs with monolobed nucleus that are found later 
on in the peripheral circulation [37, 38]. Such monolobed 
MKs present in PBMCs were thus used as easily accessible 
surrogates for bone marrow MKs [4, 39]. Accordingly, mon-
olobed MKs were detected at low frequencies in PBMCs 
from non-COVID-19 healthy individuals and COVID-19 
survivors but their frequency strikingly increased in COVID-
19 non-survivor samples (Fig. 2A and Figure S5A).

To further compare MK characteristics in COVID-19 
non-survivors versus survivors and healthy controls, we inte-
grated two PBMC single-cell RNA sequencing (scRNA-seq) 
data sets [4, 39] including healthy donor, COVID-19 survi-
vor and non-survivor samples. Clustering analysis revealed 
that the MK transcriptome profile was more diverse in severe 
COVID-19 than in healthy controls (Fig. 2B, C and Figure 
S5B–D). Furthermore, genes associated with megakary-
opoiesis in severe COVID-19 pointed to a shortened MK 
differentiation process. This shortened pathway is consist-
ent with the non-classical pathway recently described that 
bypasses the MK-erythroid progenitor (MEP) step from 
the classical differentiation route [40], and associated with 
inflammatory conditions [41] (Fig. 2D and Figure S5E).

Strikingly, when compared with healthy donors and 
survivors, a unique MK profile identified as cluster 3, was 
enriched in non-survivors, both when cells were analyzed 
altogether (Fig. 2B, C) and by individuals (Fig. 2E). Result-
ing differentially expressed genes (DEG) in cluster 3 (Figure 
S6A–B) comprised platelet-secreted molecules upon acti-
vation such as PF4, inflammatory genes such as S100A8, 
a large set of IFN-stimulated genes (IFI6, IFI27, IFTIM3) 
that attest viral sensing, and genes driving megakaryopoie-
sis (PF4/CXCL4, MYL9, and histone associated genes). 
Accordingly, the pathways specifically associated with clus-
ter 3 included not only rapid MK development and platelet 
functions, but also viral sensing by INF-stimulated genes 
and inflammation (Figure S6B-C). Cluster 3-enriched tran-
scription factors such as JUND, GATA1, and RUNX1 were 
characteristic of megakaryopoiesis while NFKB1, RELA 
and STAT3 characterized an inflammatory immune response 
(Figure S6B). Inferred cluster 3 transcription factor targets 
were also enriched in IFN regulatory factors (Figure S6B). 
Among all trajectories rooted on cluster 0 (Figure S6D) 
that are predominant in MKs from healthy donors (Fig. 2B, 
C), the one transitioning MKs from cluster 0 to 3 (Figure 
S6D) confirmed not only the significant increase of histone-
associated and inflammatory genes, but also that of antiviral 
IFN-stimulated genes (Fig. 2F).

Infected bone marrow MKs in COVID‑19 patients 
as a source of platelets containing SARS‑CoV‑2

Altogether, the scRNA-seq results indicated that MKs from 
COVID-19 non-survivors have matured faster than usual and 

Fig. 1   Platelets from non-survivor patients with COVID-19 harbor 
SARS-CoV-2. A Copies of SARS-CoV-2 ORF1 (blue), Spike (S, 
magenta) and Nucleocapsid (N, orange) RNA per million platelets 
detected by RT-qPCR, from COVID-19 survivors, COVID-19 non-
survivors and healthy donor samples. Asterisk indicates statistical 
significance in the comparison between survivors and non-survivors 
per detected gene target (Kruskal–Wallis between the three groups). 
LOD = limit of detection. B Combined detection of SARS-CoV-2 
spike protein and SARS-CoV-2 RNA by flow cytometry (FISH-flow). 
On the left, SARS-CoV-2 spike+/RNA+ detection gate (red) showing 
an example of healthy donor, COVID-19 survivor, and COVID-19 
non-survivor. On the right, the percentage of SARS-CoV-2 spike+/
RNA+ platelets among platelets from COVID-19 survivors and non-
survivors, normalized by detected events in healthy donor samples. 
Samples were classified as negative (gray) or positive (orange) for the 
presence of SARS-CoV-2 in platelets. Asterisk indicates statistical 
significance in the comparison between survivors and non-survivors 
(Mann-Whitney between the two groups). C Number of COVID-
19 survivors (blue) and non-survivors (magenta) among individu-
als tested for the presence of SARS-CoV-2 in platelets (negative or 
positive). OR: odds ratio. D-E Representative confocal micros-
copy images after CD41 (green) immunolabeling and SARS-CoV-2 
RNA in  situ hybridization (red) for SARS-CoV-2 (+) RNA (D) or 
SARS-CoV-2 (-) RNA (E) in platelet samples from a COVID-19 
non-survivor. Images show low magnification (upper, bar = 10  μm), 
three-dimensional projections (xy, xz and yz, lower left, bar = 2 μm) 
and three-dimensional rendering (lower right, bar = 1  μm). Arrow-
heads indicate SARS-CoV-2 RNA, showing definite intracellular 
localization of the virus within the platelets. F Representative elec-
tron microscopy images of platelets with spherical crowned SARS-
CoV-2 particles of 50-80 nm in diameter (arrowheads) located in the 
lumen of OCS in platelets of non-survivors (bars = 200 nm). Dotted 
line indicates area magnified as shown in the insets (bar = 100 nm). 
G Representative immunogold labeling with a polyclonal anti-spike 
antibody of non-survivor platelets otherwise tested positive for the 
presence of SARS-CoV-2 by FISH-Flow techniques (two examples, 
upper and lower images). Dotted squares point magnified regions 
where spike proteins are immunolocalized (red arrowhead). No spike 
immunolabeling was observed on platelet surface. Bar = 100, 200 or 
500 nm

◂



	 A. Zhu et al.

1 3

365  Page 6 of 18

have sensed the virus, thus being likely infected. In addition, 
MKs at an abnormally higher density were detected in bone 
marrow from COVID-19 versus non-COVID-19 autopsy 
cases (Table 2 and Fig. 2G, 49.89 ± 14.37 cells per mm2 
versus 13 ± 3 cells per mm2, p = 0.0001), with an increased 

diameter size (103.36 ± 42.36 μm versus 30–100 μm). Fur-
thermore, these bone marrow MKs recurrently contained 
replicative viral (-) RNA (Fig. 2H) with 14.99 ± 9.58% of the 
bone marrow MKs positive to (-) SARS-CoV-2 RNA (Figure 
S7A), establishing that MKs are infected in the bone marrow 

Fig. 2   In COVID-19 non-survivors, MKs are infected and express viral sensing genes. A Frequency of MKs detected among PBMC from 
healthy donors and COVID-19 survivors and non-survivors as quantified by flow cytometry. Asterisks indicate statistical significance (Kruskal–
Wallis test). B–F Transcriptional identity of MKs in COVID-19 patients by single-cell RNA sequencing reveals distinct phenotypes in non-
survivor patients. B UMAP of single-cell transcriptomic data of MKs detected among PBMC from non-COVID-19 healthy donors (n = 30), 
COVID-19 survivors (n = 140) and COVID-19 non-survivors (n = 13). Unsupervised clustering detected 9 different clusters (0 to 8) of all cells 
analyzed. MK singlets are indicated by blue region. C Proportion of each cluster in healthy donors, COVID-19 survivors and non-survivors. 
D Scored gene signature expression of classical (upper) and non-classical (bottom) MK differentiation. E Fraction of cells from cluster 3 in 
comparison to all other clusters in individual patient samples categorized as healthy donors, COVID-19 survivors and non-survivors. F Heat-
map of the genes that significantly change along pseudotime trajectory of MK development (p < 0.05 and Morans I score > 0.25). G Hema-
toxylin/eosin histology of bone marrow tissue obtained after COVID-19 non-survivor autopsy (low magnification (bar = 50 μm)) in which some 
MKs surrounded by blue circles are shown in high magnification insets (bar = 20 μm). Arrowheads indicate MKs. H Representative confocal 
microscopy images after CD41 (green) immunolabeling and replicative SARS-CoV-2 (-) RNA strand in situ hybridization (red) in bone marrow 
samples obtained from tissue autopsies of three different COVID-19 non-survivors (bar = 10 μm). Arrowheads indicate SARS-CoV-2 (-) RNA 
inside MKs
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in COVID-19 non-survivors and constitute the likely source 
for producing platelets containing SARS-CoV-2.

Infected MKs are retained in the lung in COVID‑19 
non‑survivors

Bronchoalveolar lavages (BAL) from severe COVID-19 
patients provide an easily accessible fluid to probe the 
lung thrombotic and inflammatory environment during the 
progression of the disease. Thus, among a panel of factors 
implicated in hemostasis, inflammation and tissue repair ana-
lyzed, PF4/CXCL4 (platelet activation) and S100A8 (neutro-
phil and macrophage inflammatory activation) and VEGF-
A and PDGF-BB (tissue repair and angiogenesis) were the 
only ones significantly increased in BAL from non-survi-
vors compared to survivors (Table 3, Fig. 3A, PF4/CXCL4 
mean pg/ml, 1487.8 [459.8–2798.7] vs 334.7 [111.9–630.6], 
p = 0.048; VEGF-A mean pg/ml, 3481.8 [1308.7–6077.6] 
vs 335 [68.9–826.4], p = 0.006; PDGF-BB mean pg/ml, 24 
[6.7–43.5] vs 0, p = 0.037; and S100A8 mean pg/ml, 5004.7 
[1481.4–8762.9] vs 242.2 [63.53–484.4], p = 0.01). This 
set of cytokines issued from or implicated with platelet/
MK lineage which was enriched in BAL from non-survivor 
patients pointed to a virus-mediated MK impairment and 
retention in the lung, as already observed in the bone mar-
row in deadly COVID-19.

MKs appear specifically recruited into or retain within the 
lung in COVID-19 autopsy cases [3] together with endothe-
lial damages [42, 43]. We, therefore, searched for MKs in 
BAL from patients with severe COVID-19 (Table 3). In line 
with the infection that we observed in bone marrow MKs, 

pulmonary MKs, identifiable through their large size and 
multilobed nucleus harboring cytoplasmic SARS-CoV-2 
(+) RNA were detected in the BAL of COVID-19 patients 
irrespective of outcome, signing their viral infection (Fig. 3B 
and Figure S7B). When quantified by flow cytometry, a 
trend, although statistically non-significant, towards increase 
frequency of MKs and platelets among BAL cells from non-
survivors compared to survivors was observed (Fig. 3C, Fig-
ure S7C). The frequencies of both infected spike+ MKs and 
virus-containing spike+ platelets in total MK and platelet 
populations were significantly increased respectively by 4- 
and 29-fold in BAL from non-survivors versus survivors 
(Fig. 3D, Figure S7C) (mean % spike+ MKs and platelets in 
BAL from non-survivors versus survivors, 9.5 [7.1–12.3] vs 
2.3 [0.8–4.7], p = 0.016, and 2.9 [0.8–6.5] vs 0.1 [0.07–0.2], 
p = 0.029, respectively).

The lack of statistically significant correlation between 
the frequency of spike+ platelets among total platelets recov-
ered in BAL measured by flow cytometry and the viral load 
measured per ml of BAL by RT-qPCR (Figure S7D), further 
indicates that detection of virus in platelets is not a result of 
cell-free virus endocytosis from BAL.

Upon pathological examination of lung autopsy cases, 
a high density of MKs, identified by their size and the 
caterpillar appearance of their large nuclei, surrounded 
by fibrin webs, was detected by histochemistry (Table 2, 
Fig. 3E upper). Furthermore, capillary walls were highly 
damaged lacking the usual covering endothelial layer. 
MKs were not only found within the pulmonary vessels. 
Indeed, MKs also entered the alveoli (Fig.  3E lower) 
(Fig. 3E lower inset) and were found in the alveolar space 

Table 2   Patient characteristics according to the hospital outcome (autopsy samples)

 F female; M male; AINS non-steroidal anti-inflammatory drugs. AHT arterial hypertension; AVB1 atrioventricular block level 1; N.A. not appli-
cable

Patient A1 A2 A3 A4 A5

Sex F M F M M
Age 82 51 59 51 71
ICU days 11 10 13 11 0
Days until demise 17 20 18 19 N.A.
BMI index 24.1 34.5 28.4 38.0 N.A.
Cardiovascular No AHT, AVB1 AHT AHT Low grade coronary illness
Pre-existing  

condition
N.A. Small airways 

obstruction/  
Leukemia

Asthma Small airways 
obstruction/ 
Arthritis

Marked hepatic steatosis

Treatment N.A. AINS Corticoids N.A. N.A.
Cause of death Multivisceral  

failure
Pulmonary  

embolism
Pulmonary  

embolism
Massive pulmonary 

embolism
Major pulmonary edema

Lung sampling Yes Yes Yes Yes Yes
Bone Marrow 

sampling
Yes No Yes Yes No



	 A. Zhu et al.

1 3

365  Page 8 of 18

as confirmed after specific vWF immunolabeling (Fig. 3F 
and Figure S7E) and in line with the unexpected presence 
of MKs in the BAL. When quantified in non-COVID-19 
(n = 6) and COVID-19 (n = 3) lung autopsies as described 
[44, 45], the quantities of MKs increased by almost four-
fold (from 5.78 ± 4.97 to 20.25 ± 6.99 cells per section. (5 
mm2 and 5–7 μm thickness) in non-COVDI-19 vs COVID-
19 autopsies: p = 0.0015), as well as their mean diameter 

(52.98 ± 21.98 μm in non-COVDI-19 vs 79.68 ± 19.45 μm 
in COVID-19 autopsies: p = 0.05) and nucleus size 
(26.6 ± 1.1 μm in non-COVDI-19 vs to 30.3 ± 1.2 μm in 
COVID-19 autopsies, p = 0.044, Figure S7F).

Furthermore, as observed in bone marrow and in BAL, 
lung tissue MKs were found actively infected harboring 
replicative viral (-) RNA (Fig. 3G). Indeed, 21.33 ± 12.1% 
(n = 3) of lung MKs were positive for SARS-CoV-2 RNA, 
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and infected lung MKs were 2.5 ± 0.8(n = 3) times more fre-
quently detected in alveoli than in blood vessels from lung 
tissues (Figure S7A). This suggests that platelets containing 
SARS-CoV-2 could also be produced in the lung of patients 
with deadly COVID-19.

Accordingly, a rough estimation of (-) SARS-CoV-2 posi-
tive platelet in tissue autopsies was obtained by measuring 
the Pearson’s correlation coefficients [46] for colocalization 
of SARS-CoV-2 RNA with CD41 after excluding the signal 
from large CD41 + polylobed MKs, and including CD41 
signal from anucleated bodies only. As a result, correla-
tion coefficients are significantly higher in both lung and 
bone marrow tissues from COVID-19 individuals (Pearson’s 
coefficient: 0.739 ± 0.252 and 0.747 ± 0.632, respectively) as 
compared with non-COVID-19 individuals (Pearson’s coef-
ficient for lung and bone marrow tissues: 0.160 ± 0.093 and 
0.122 ± 0.056, respectively) (p < 0.005, n = 3).

Platelets containing SARS‑CoV‑2 are captured 
by pulmonary macrophages

The rupture of the endothelium from the lung capillaries and 
the epithelium covering the alveolar surface observed here in 
COVID-19 lung autopsies and as we reported [56] might let 
platelets penetrate the alveolar tissue and space. In turn mac-
rophages could capture these platelets by hemophagocytosis 

Fig. 3   SARS-CoV-2 in platelets and MKs in lung from non-sur-
vivor COVID-19 patients. A Quantification of different cytokines/
chemokines in bronchoalveolar lavage samples from COVID-19 sur-
vivors (blue) and non-survivors (magenta). Asterisk indicates statisti-
cal significance in the comparison between survivors and non-survi-
vors (Mann–Whitney). B Representative confocal microscopy images 
after SARS-CoV-2 RNA in  situ hybridization (red) for positive (+) 
RNA strand and immunolabeling of either CD41 (upper row) or vWF 
(lower row), both in green, in bronchoalveolar lavage samples from 
two different COVID-19 non-survivors (bar = 10 μm or 5 μm for the 
inset in upper image). Arrowheads indicate SARS-CoV-2 RNA inside 
MKs. C Frequency of MKs and platelets among the cell population 
detected in bronchoalveolar lavage samples from COVID-19 survi-
vors (blue) and non-survivors (magenta) detected by flow cytometry. 
D Frequency of SARS-CoV-2+ MKs and platelets among the popu-
lation of MKs and platelets detected in bronchoalveolar lavage sam-
ples from COVID-19 survivors (blue) and non-survivors (magenta) 
as quantified  by flow cytometry. Asterisk indicates statistical sig-
nificance in the comparison between survivors and non-survivors 
(Mann–Whitney). E Hematoxylin/eosin/saffron histology and vWF 
immunohistochemistry (lower inset) of lung tissue from COVID-19 
autopsy, showing low (bar = 50 μm) and high magnification (bar = 20 
and 25 μm) images. Blue arrowheads indicate MKs. F Hematoxylin/
eosin histology of lung tissue in which some MKs indicated by dot-
ted square region (left), resided to reside inside alveolar space (right) 
(bar = 25  μm). Orange arrowheads indicate MKs. G Representative 
confocal microscopy images after CD41 (green) immunolabeling 
and replicative SARS-CoV-2 (-) RNA strand in  situ hybridization 
(red) in lung samples obtained from tissue autopsies of  five different 
COVID-19 non-survivors (bar = 10 μm). Arrowheads indicate SARS-
CoV-2 (-) RNA inside MKs

◂

Table 3   Patient characteristics 
according to the hospital 
outcome (BAL samples)

Bold indicates statistically significant p value (<0.05)
*Only available indicated number of patients

Median [IQR]; N(%) Survivors, n = 6 Non-survivors, n = 13 p value

Patients
 Age, years 54 [42;66] 69 [63;77] 0.046
 Male sex 5 out of 6 (83%) 7 out of 13 (53%) 0.33
 At least one comorbidity* 5 out of 6 (83%) 5 out of 11 (45%) 0.62
 Obesity* 1 out of 6 (16%) 1 out of 11 (9%) 1.00
 Cardiovascular disease* 2 out of 6 (33%) 4 out of 11 (36%) 1.00
 Diabetes* 2 out of 6 (33%) 2 out of 11 (18%) 0.58

At hospital admission
 Days after first symptoms* 9 [6;9] 4.5 [3;7] 0.49
  Days from Hospital admission to 

ICU admission*
1 [1;4.5] 1 [1;1.5] 0.83

 ICU admission 6 out of 6 (100%) 13 out of 13 (100%) –
 Need of oxygen supply
at ICU admission*

5 out of 6 (83%) 10 out of 12 (83%) 1.00

At Sampling time
 SARS-CoV-2 in BAL fluid 4 out 6 (66%) 6 out 13 (46%) 0.62

At hospital discharge
 Days from first symptoms
to discharge*

46.5 [38.5;66] 41.5 [23;51.5] 0.57

 Days from sampling
to discharge*

21 [20;74] 25 [12;27] 0.89
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[47–49], establishing a route to lung macrophage infection 
mediated by SARS-CoV-2-containing platelets and inflam-
matory modulation [50]. Indeed, hemophagocytosed plate-
lets were detected in macrophages in the alveolar tissue and 
alveolar space of COVID-19 autopsies (Fig. 4A, Table 2). 
Furthermore, in BAL from additional severe COVID-19 
patients, macrophages from non-survivors contained also 
platelets sheltering SARS-CoV-2 RNA (+) (Fig. 4B).

When analysed by flow cytometry, BAL from non-sur-
vivors had increased frequencies of platelet-macrophage 
conjugates than survivors (Fig. 4C and Figure S7C, mean 
frequency of platelet-macrophage conjugates among total 
macrophage in BAL from non-survivors vs survivors: 4.6 
[3.5–5.8] vs 2.4 [1.5–3.3], respectively, p = 0.011). How-
ever, the frequency of macrophages (Figure S7G left) and 
spike+ lung macrophages (Figure S7G right) conjugated or 

not with platelets did not differ in BAL from non-survivors 
and survivors.

SARS‑CoV‑2 contained in platelets of non‑survivors 
is infectious

Whereas circulating SARS-CoV-2 free particles are not usu-
ally detected in infected patients [10], SARS-CoV-2 infected 
cells are found not only in the lung, but also at extrapulmo-
nary sites in deadly COVID-19 [9]. We thus hypothesized 
that, in these patients, infection could be spread by platelets 
containing SARS-CoV-2 present in the circulation and at 
the pulmonary level.

We first investigated whether SARS-CoV-2 contained 
by platelets could be titrated on non-phagocytic Vero cells 
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using the very sensitive FISH-flow assay we validated using 
different concentrations of SARS-CoV-2 (Figure S8).

To measure the titer of SARS-CoV-2 within platelets, 
we had first to force the virus to exit platelets from within, 
namely purging, by activating platelet with thrombin recep-
tor activating peptide (TRAP) [51]. TRAP treatment induced 
virus release in the medium without platelet aggregation 
[52]. Platelets from COVID-19 non-survivors, with con-
firmed detection of SARS-CoV-2, were thus treated or not 
with TRAP, and centrifuged to collect platelet supernatants, 
referred to as releasates. Releasates were then titrated on 
Vero cells (Figure S9A). In paired samples of three differ-
ent non-survivors, the percentage of SARS-CoV-2 RNA+/
dsRNA+ Vero cells infected with TRAP-treated compared 
to untreated platelet releasates was statistically significantly 
higher (p = 0.042). Untreated platelet releasates fall below 
the limit of detection established using healthy donor platelet 
controls (Fig. 4D and Figure S9B). Vero cell infection was 
estimated in PFU using the PFU/FISH-flow standard curve 
(Figure S8D). From this calculation, the mean titer of SARS-
CoV-2 virus sheltered in platelets and released by activating 
platelets was approximated to 35 [CI: 19–50] SARS-CoV-2 
PFU per million platelets from COVID-19 non-survivors 
(n = 3) (Fig. 4D).

Transfer of SARS‑CoV‑2 infection from platelets 
to macrophages is blocked by anti‑platelet drug 
abciximab

Platelets are short-lived and are mainly eliminated fol-
lowing their capture by tissue macrophages [53]. Further-
more, lung macrophages express the main receptor for the 
virus and viral spike-priming protease necessary for infec-
tion (ACE2 and TMPRSS2) [54–56]. Lung macrophages 
are found infected in COVID-19 and support SARS-CoV-2 
replication in vitro, as we and others have demonstrated 
recently [57–60]. They are thus a key cell in promoting 
viral spread [57–60] and the cytokine storm driving severe 
COVID-19 [50]. Primary macrophages derived from blood 
monocytes cultivated with M-CSF, interleukin (IL)-4 and 
IL-13 to mimic tissue macrophages [22, 61] and referred to 
here as MDM, expressed ACE2 and TMPRSS2, and sup-
ported SARS-CoV-2 replication with self-limiting release 
of infectious viruses (Figure S10A-D). As schematized in 
Fig. 4E, MDM were also incubated with platelets from non-
survivors for 2 h (pulse), extensively washed and further cul-
tivated for 24 h (chase). After the chase, both viral (+) and 
(-) strands RNA indicative of virus replication were detected 
in macrophage cytosol after in situ hybridization and confo-
cal microscopy analysis (Fig. 4F right). In contrast, after the 
pulse, only the (+) RNA signal corresponding to the platelet 
inoculum was detected in MDM (Fig. 4F left). Viral RNA 
signal was also undetectable after incubation with platelets 

Fig. 4   SARS-CoV-2 sheltered by platelets from non-survivor patients 
with COVID-19 is infectious to macrophages. A Upper row: Hematoxy-
lin/eosin/saffron stain histology of representative  lung tissue autopsy 
of COVID-19 patients showing a macrophage, indicated by dotted 
square region (left) in the process of  phagocytosing a red blood cell 
as shown in higher magnification (right, blue arrowhead). Bar = 10 μm. 
Lower panel: Immunohistochemistry for vWF of alveoli from non-
survivor lung autopsy (indicated by blue dotted square at low magni-
fication, bar = 150 μm) where a macrophage (indicated by blue dotted 
square at middle magnification, bar = 30  μm) contained hemophago-
cytosed vWF+ platelets (blue arrowheads in high magnification image, 
bar = 5 μm). B Representative confocal microscopy images after vWF 
(green) and CD68 (purple) immunolabeling and SARS-CoV-2 RNA 
in situ hybridization (red) for positive (+) RNA strand in BAL samples 
from COVID-19 non-survivors. Images show three-dimensional projec-
tions (xy, xz and yz, bar = 3  μm). Arrowheads indicate SARS-CoV-2 
RNA inside platelets engulfed by macrophages (representative of n = 3 
different individuals). C Frequency of macrophage-platelet conjugates 
among macrophages in bronchoalveolar lavage samples from COVID-
19 survivors (blue) and non-survivors (magenta) detected by flow 
cytometry. Asterisk indicates statistical significance in the comparison 
between survivors and non-survivors (Mann–Whitney). D Paired com-
parison of percentages of SARS-CoV-2 RNA+/dsRNA+ Vero cells 
treated with releasate from platelets treated or not with TRAP, from 3 
different non-survivors. The detection threshold (dotted red line) was 
established with healthy donor platelets treated equally. The percentages 
were converted in PFU per million platelets using the standard curve we 
established. Mann–Whitney test. The estimated mean PFU per million 
platelets is shown in blue, with 95% confidence intervals. E Scheme 
of the experiments evaluating platelet-mediated SARS-CoV-2 transfer 
of infection to macrophages in  vitro. SARS-CoV-2 -containing plate-
lets from non-survivors interacted with macrophages in the presence or 
absence of abciximab (anti-GpIIbIIIa) for 2 h (pulse) followed by 24-h 
chase. At these time-points, macrophages harboring (+) and (-) SARS-
CoV-2 RNA were enumerated by in situ hybridization and macrophage 
supernatants were collected and further evaluated for infectious virus 
content in reporter Vero cells. SARS-CoV-2 RNA+/dsRNA+ Vero cells 
were detected by in  situ hybridization and quantified by FISH-flow. F 
Confocal microscopy images of SARS-CoV-2 RNA in  situ hybridiza-
tion (red) for positive (+) and negative (-) strand RNA in macrophages 
that interacted in vitro with platelets samples from COVID-19 non-sur-
vivors. Images were acquired after 2 h (pulse, left) or 24 h (chase, right) 
of interaction with platelets. Images show three-dimensional projec-
tions (xy, xz and yz, bar = 10 μm). Arrowheads indicate SARS-CoV-2 
RNA. Macrophage nuclei are stained with DAPI (blue). G Outgrowth 
in Vero reporter cells of SARS-CoV-2 produced by macrophages after 
platelet-mediated infection. On the left, confocal microscopy image of 
double-strand RNA (dsRNA, red) in Vero cells cultivated with mac-
rophage supernatants for 24 h. Arrowheads indicate infected Vero cells 
(bar = 30 μm), Vero cells nuclei are stained with DAPI (blue). On the 
middle graph, infected Vero cells were quantified by FISH-flow and 
expressed as % of SARS-CoV-2 RNA+/dsRNA+ Vero cells, comparing 
negative controls (medium, gray = non-infected Vero), positive controls 
(virus, green = primary SARS-CoV-2 obtained from patient bronchoal-
veolar lavage) and COVID-19 non-survivors platelets after pulse (2  h 
interaction with macrophages, light red) and chase (24 h after interaction 
with macrophages, red). Asterisk indicates statistical significance in the 
comparison between pulse and chase (Mann–Whitney). The right graph 
shows the outgrowth of SARS-CoV-2 in Vero cells incubated with mac-
rophages that interacted with COVID-19 non-survivors’ platelets in the 
presence or not of abciximab (10 μg/ml) also quantified by FISH-Flow. 
Results are expressed as % of SARS-CoV-2 RNA+/dsRNA+ Vero cells 
in the two conditions. The % inhibition of Vero cell infection in the pres-
ence of abciximab is indicated, with asterisk corresponding to statistical 
significance in the comparison between the two groups (Student T-test)

◂
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from survivors (not shown). Furthermore, infection of MDM 
mediated by platelet transfer of SARS-CoV-2 was produc-
tive. Indeed, when measured using Vero cells as reporter 
cells as in [62], replication-competent virus was detected in 
the 24 h supernatant of the MDM pulsed first with platelets 
containing virus for  2 h (Fig. 4G left image and middle 
graph). In contrast, no viral signal was detected after the 
pulse (Fig. 4G middle, % of SARS-CoV-2 RNA+/dsRNA+ 
Vero cells infected by the supernatant of MDM incubated 
with platelets samples from non-survivor after the pulse vs 
the chase, 0 vs 1.07% [0.6–1.5], p = 0.029). When titrated on 
Vero reporter cells, plasma deprived of platelets from sur-
vivors and non-survivors were not infectious (Figure S10E 
left). This experiment reveals the absence of infectious virus 
in the circulation despite viral gene detection. In contrast, 
plasma containing SARS-CoV-2 -positive platelets added to 
macrophages resulted in the production of infectious viral 
particles, titrated on Vero reporter cells (Figure S10E right).

Finally, transfer of infection from the SARS-CoV-2-con-
taining platelets to MDM was blocked when platelets were 
pre-incubated with an anti-platelet GPIIbIIIa drug, abcixi-
mab, prior to MDM inoculation. In the presence of abcixi-
mab, the production of replication-competent virus by MDM 
after 24 h infection was reduced by 98 ± 0.9% (p < 0.001) 
(Fig. 4G right graph).

Discussion

Platelet activation, thrombophilia and hypercoagulabil-
ity have emerged as crucial pathological characteristics in 
severe COVID-19 that can lead to fatal outcome [1]. Hence, 
the frequency of thrombotic events in critical COVID-
19 cases is particularly high, with increased frequency of 
venous and arterial thrombosis. These symptoms result 
in clinical complications including pulmonary embolism, 
ischemic stroke, and myocardial infarction [2, 6]. Increased 
platelet activation has been shown as a poor prognostic 
factor [34]. Furthermore,  the presence of SARS-CoV-2 
components in platelets has been reported in the context of 
COVID-19 platelet hyperactivation [24] [25].

The present study adds two novel platelet features 
that comfort the contribution of platelets to severe COVID-
19. We not only demonstrate for the first time the presence 
of replication-competent functional virus in platelets but 
also correlate the detection of virus-containing platelets 
with patient outcome. In addition to contribution to life-
threatening thrombotic disorders described in COVID-19 
[1, 2], we now show that platelets can also harbor infectious 
SARS-CoV-2, detected as early as three weeks prior to death 
(median [IQR] days from sampling to death: 7 [5;10] [from 
1 to 20]) (Table 1). Furthermore, in patients with COVID-
19, the presence of infectious SARS-CoV-2 in platelets is 

a strong predictive marker of fatal outcome. The detection 
of SARS-CoV-2 in platelets by RT-qPCR or FISH-Flow, 
easily implementable as a routine analysis, could serve as 
a diagnostic useful tool to foresee as early as possible poor 
prognosis and take appropriate medical action.

The present results prompt the following three questions: 
how does the virus enter platelets, what is the possible causal 
effect of the presence of virus in platelets in COVID-19 
pathology, and which type of treatment might prevent these 
effects.

As we found MKs, the platelet precursors, actively 
infected in the bone marrow and the lung in fatal forms 
of the disease, SARS-CoV-2 might likely associate with 
platelets during thrombopoiesis, in a process we and oth-
ers demonstrated for HIV [22, 63], Dengue and Influenza 
virus [21, 23]. Alternatively, platelets could endocytose the 
virus in the circulation as they express SARS-CoV-2 recep-
tors such as ACE2 [64] and DC-SIGN that participate in 
virus endocytosis, as we have shown in vitro [18, 65, 66]. It 
is, however, unlikely as free SARS-CoV-2 in platelet-poor 
plasma is not infectious and as platelets could not internalize 
SARS-CoV-2 in vitro.

Small MKs that reach the peripheral circulation after 
fragmentation from bone marrow and lung MKs [37, 38, 
67], especially in inflammatory lung diseases [41], are pre-
sent at low levels in PBMCs. Circulating small MKs can 
thus serve as surrogates in the analysis of human lung MKs, 
the access of which is challenging. Some of these circulating 
MKs harbor immunomodulatory functions in healthy donors 
[41, 68, 69]. Similarly, we found in the blood from COVID-
19 non-survivors a significant increase of circulating 
MKs with a specific gene signature. These MKs carry type 
I IFN and inflammatory genes and show an upregulation of 
genes conditioned by NFKB1, characteristics of a response 
to viral infection including that to SARS-CoV-2 [70]. The 
expression of inflammatory genes typically involved in 
MK anti-viral response, such as IFITM1 and IFTIM3 [21], 
together with the non-classical MK differentiation pathway 
that we observed support the development of an emergency 
megakaryopoiesis in severe COVID-19, avoiding the MEP 
commitment [71]. Such shortened pathway might result in 
an increase in MK number and size, as we observed in bone 
marrow and lung tissues in COVID-19, compared to non-
COVID-19 autopsies. Furthermore, we found in the lung 
of non-survivors an increase of CCL5, IL-1beta and IL6, 
cytokines inducing the production of thrombopoietin (TPO) 
that in turn speed megakaryopoiesis up, through the direct 
non-classical pathway [71]. Additionally, such increased 
CCL5, known to stimulate MK ploidy [71] and in turn speed 
megakaryopoiesis, could explain the increase in MK nucleus 
size we found in COVID-19 compared with non-COVID-19 
lung autopsies.
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Altogether, in line with the emergency myelopoiesis that 
we reported earlier [72], these results point to a MK response 
to pathogenic stimuli, i.e., infection by SARS-CoV-2 of MKs 
in the bone marrow, before entry in the circulation. Infected 
MKs would then migrate from bone marrow to the lung 
and produce platelets containing SARS-CoV-2 at both sites 
as we specifically detected in non-survivors. This finding 
are likely connected to COVID-19 fatal immunothrombosis.

However, no  appearance of thrombocytopenia or signifi-
cant variation in platelets counts were detected in both survi-
vors and non survivors when patient platelet counts of both 
patient sets were monitored during the following 15 days or 
until discharge for the non-survivors (Figure S1A). Of note, 
the increase in megakaryocyte numbers observed in autopsy 
tissues from COVID-19 versus non COVID-19 patients was 
not accompanied by an increase in platelet numbers during 
deadly COVID-19. This observation suggests either an inef-
ficient thrombopoiesis due to shortened megakaryopoiesis; 
or alternatively, a retention of megakaryocytes in the lung 
of patients with an inefficient platelet production. Further-
more, as megakaryocytes are known to contain high amounts 
of growth factors and cytokines [73], they could in turn par-
ticipate to a local cytokine storm.

MKs might also exert immunological functions by using 
the set of histone-associated genes that we found specifically 
increased in non-survivor inflammatory MKs. This may gen-
erate extra-nuclear histones that serve as damage-associated 
molecular patterns (DAMP) [74, 75], and participate in 
severing systemic inflammation and immunothrombosis in 
COVID-19 as it has been shown in sepsis [76, 77].

Infected MKs themselves would also participate to the 
cytokine storm by upregulation of interferon type I gene, 
as in other viral infections [21, 33, 78], and contribute to 
differential expression of virus-induced lung cytokines 
implicated in hemostasis and inflammation in COVID-19 
non-survivors. Hence, PF4/CXCL4 is synthesized by MK 
and packaged within platelets alpha-granules during platelet 
production [13]. Increase in PF4/CXCL4 in BAL from non-
survivors might reflect both MK destruction in pulmonary 
vessels and platelet activation, shown to occur in COVID-19 
patients [34]. In turn, PF4/CXCL4 could intensify inflam-
mation by polarizing lung tissue macrophages to the M4 
inflammatory subtype [79]. and their secretion of  S100A8, 
thereby fueling inflammation [72, 79]. VEGF-A and PDGF-
BB, secreted in particular by myeloid cells, such as MKs 
and macrophages [80], could represent stress responses to 
pulmonary endothelium damage [81, 82] that we observed 
in pulmonary autopsy tissues. VEGF-A binds to Neuropilin 
1 (NRP1) on endothelial cells contributing to the integrity of 
the vessel wall and to the inhibition of platelet aggregation 
in blood vessels [80, 83]. SARS-CoV-2 spike protein that 
binds also to NRP1 [84, 85], may displace VEGF-A result-
ing in the increased levels of VEGF-A that we detected in 

COVID + BAL. Meanwhile, VEGF-A may facilitate small 
vessel thrombosis by inhibiting endothelial function both 
systemically and in the pulmonary circulation. In sum, the 
uncontrolled cytokine release may contribute to endothe-
lial wall injuries [86]. These damages would allow entrance 
of MKs and platelets to the alveolar parenchyma as we 
observed in lung tissue autopsies and to the alveolar space as 
detected in BAL. This process appears specific to COVID-
19, increased in non-survivors, although remaining limited 
in survivors.

Fully functional SARS-CoV-2 virus found within circu-
lating platelets of non-survivors is infectious as in other viral 
infections [20, 22]. This indicates that SARS-CoV-2 viruses, 
protected by the platelet membrane from degradation by 
assault of antibodies and complement, might disseminate to 
other tissues. Virus would then propagate infection, contrib-
uting to rapid multiple organ failure [87, 88]. Accordingly, 
non-survivors in this study reach a fatal issue within 2 weeks 
after symptom onset (Table 1), when virus is still replicating 
[10]. We demonstrate that platelets harboring SARS-CoV-2 
are capable to propagate infection to macrophages in vitro, a 
process abrogated by the anti-platelet GPIIbIIIa drug abcixi-
mab. We have already shown that blocking platelet GPI-
IbIIIa with abciximab fully prevents platelets internalization 
by macrophages [22], although by a mechanism that is not 
yet demonstrated. We can hypothesize that platelet GPIIbIIIa 
interacts with either macrophage CD40 [89] or the integrin 
Mac1 (αMβ2) in the presence of fibrinogen [90, 91] likely 
associated with platelets in our experimental conditions. 
This interaction would promote an outside-in GPIIbIIIa 
mechanism of activation that in turn triggers platelet uptake 
by macrophages [92] in a β2-mediated phagocytosis process 
[93]. Abciximab would impair such interactions and in turn, 
platelet-induced macrophage infection and/or possibly acti-
vation. This hypothesis remains to be verified.

In COVID-19 patients, lung tissue macrophages that we 
and other have found infected [57–60] may act as a Trojan 
horse: indeed, infected macrophges might transfer SARS-
CoV-2 to nearby lung regions and in turn slowly propagat-
ing SARS-CoV-2 infection and spreading hyperinflamma-
tion across the lung [57–60], as witnessed by the increase 
in lung inflammatory cytokines we reported here. Upon 
phagocytosis by macrophages, SARS-CoV-2-containing 
platelets might transfer infection to macrophages that would 
produce IFN [94]. Incoming viral RNA could also signal 
Pattern Recognition Receptor (PRR) to enhance phagocy-
tosis, increase oxidative burst and release of pro-inflamma-
tory cytokines and chemokines, resulting in inflammation. 
This would promote an influx of monocytes HLA-DR low 
S100A8 + into the lung, sustaining inflammation and tissue 
damage [60]. Furthermore, platelet hyperactivation might 
be induced by virus or viral components within platelets. 
Activated platelets in turn would expose vWF (this study) 
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and P-Selectin [34] triggering platelet aggregation, thereby 
contributing to lung inflammation as in influenza virus infec-
tion [95]. Based on our results, the anti-GPIIbIIIa drug may 
likely prevent these deleterious events. Therefore, therapeu-
tic targeting of the platelet surface protein GPIIbIIIa could 
help blocking the process of viral spread in addition to its 
anti-thrombotic effect.

The following features we observed in non-survivors, 
namely increased phagocytosis of virus-containing plate-
lets, endothelial cell wall injury, and the infection of MKs 
themselves, also occurring in other viral infection [21, 33, 
78], may likely result in exacerbated macrophage-depend-
ent cytokine production. As a result, thrombotic risk and 
complications [86], a hallmark of severe COVID-19, may 
increase. These deleterious effects of platelets harboring 
SARS-CoV-2 are summarized and schematized altogether 
in Fig. 5. Drugs targeting specifically the platelet receptor 

GPIIbIIIa may offer an alternative to scantily efficient anti-
coagulant treatment [6, 96]. Indeed, their direct and indi-
rect anti-thrombotic effects, their prevention of macrophage 
infection and activation limiting their contribution to the 
cytokine storm, in addition to impairing the spread of infec-
tion to other tissue represent a valuable therapeutic recourse. 
Accordingly, a clinical trial using an anti-GPIIbIIIa drug in 
critically ill patients with COVID-19 has shown a beneficial 
effect on respiratory functions and clinical outcome [97]. In 
any case, the strategy of modifying platelet behavior needs 
careful consideration in the light of the results presented 
here. Indeed, we show that platelets from severe COVID-19 
patients bear a dual prothrombotic effect: first via virally 
induced platelet activation and second,  via decrease in 
endothelial functions caused by the virus blocking the effect 
of VEGF-A at the NRP1 receptor which may be considered 
as an appropriate therapeutical target.

Fig. 5   Scheme: Platelets harboring SARS-CoV-2 offer a convergent therapeutical target in severe COVID-19 with multiple manifestations. 1- 
SARS-CoV-2 favors emergency inflammatory megakaryopoiesis. SARS-CoV-2 infected MKs in the bone marrow (containing both viruses and 
replicating SARS-CoV-2 (-) RNA) migrate to the lungs where they contribute to thrombopoiesis and produce SARS-CoV-2-containing platelets 
in the pulmonary circulation. 2- These infectious platelets will then spread the virus and contribute to the systemic inflammatory component of 
severe COVID-19. As platelets sheltering SARS-CoV-2 are coated with von Willebrand Factor, indicating their highly activated status, they will 
also contribute to thrombus formation typical of COVID-19 complications. 3- Increase in lung VEGF-A and PDGF-BB participates to alveolar 
endothelial destruction and effraction allowing platelets carrying SARS-CoV-2 to reach and infect alveolar macrophages. 4- Increased lung PF4/
CXCL4 released by platelets and S100A8 likely contribute to the maintenance of a highly inflammatory environment, macrophage activation, 
and cytokine storm. These four platelet-mediated components of severe COVID-19 suggest that targeting platelets, with the use of anti-platelet 
drugs like anti-GPIIbIIIa, might be an efficient strategy to block viral spread, thrombus formation and exacerbated inflammation at once, increas-
ing the chance of survival
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The present study may likely apply to patients infected 
with various SARS-CoV-2 variants. Our study was per-
formed in France during the first wave of COVID-19 
between April and June 2020 with samples from patients 
infected by the ancestral Wuhan virus SARS-CoV-2 before 
the appearance of the following variants [98]. SARS-CoV-2 
variants still use ACE2/TMPRSS2 for infection, although 
with different affinities [99]. Thus, variants might likely 
infect megakaryocytes resulting in the production of plate-
lets containing SARS-CoV-2 that would likewise transfer 
infection to macrophages. We cannot rule out the possibility 
that infection by different variants would not affect mega-
karyocyte transcriptome and in turn the genes transferred 
to platelets during thrombopoiesis and downstream effects.

The scarce availability of platelet samples and the rela-
tive low frequency of virus-containing platelets, hindering 
detection by traditional techniques such as plaque assay is a 
limitation of this study. Hence, we applied the more sensitive 
single-cell FISH-flow technique [22] to approach infectious 
SARS-CoV-2. Importantly, the estimated quantity of infec-
tious virus sheltered by platelets is non-negligible, being 
of 35 [CI 19–50] SARS-CoV-2 PFU per million platelets. 
Severe COVID-19 patients with fatal outcome appears to 
harbor 3.7–3.9 log10 platelet-associated SARS-CoV-2 PFU 
per ml of blood in the circulation. In addition, the contribu-
tion of the lung, the main site affected in severe COVID-19, 
has recently been estimated to half of the total platelet pro-
duction with the lung producing 10 million platelets per hour 
[37]. This would translate into a lung production of around 2 
log10 platelet-associated SARS-CoV-2 PFU/hour.

In sum, the presence of infectious SARS-CoV-2 in plate-
lets combined with the intricate relationship between hemo-
stasis, inflammation and the spread of infection has major 
consequences on COVID-19 pathogenesis and can turn out 
fatal. Anti-platelet drugs might be explored to develop anti-
inflammatory coupled to anti-thrombotic treatment against 
severe SARS-CoV-2.
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