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A B S T R A C T

The study of adsorbent behaviour in laboratory conditions helps to predict the adsorption process in a large
industrial scale. In this study, orange and lemon peels-derived activated carbon (OLPAC) was successfully syn-
thesized and activated using phosphoric acid. Characterization was performed on the OLPAC and the material was
used for the removal of methyl orange (MO) and methylene (MB) dyes from wastewater. The results of the
scanning electron microscope and N2 adsorption/desorption examination affirmed that the prepared nano-
composite is permeable, which is an advantage for the efficient removal of contaminants. Optimal conditions for
the batch removal process were investigated using a one-factor time approach in different conditions of
adsorption (Dye concentration 50–200 mg L�1, pH 2–10, adsorbent mass 0.010–0.8, and contact time 5–180 min.
The adsorption isotherm equilibrium data were examined by Langmuir, Freundlich, and Temkin, isotherm model.
As shown by the correlation coefficient (R2), the data were best described by Langmuir isotherms with maximum
adsorption capacities of 33 and 38 mg g─1 for methyl orange and methylene blue, respectively. Adsorption kinetic
data were described using the pseudo-second-order model which suggests that adsorption of MO and MB was by
chemisorption mechanism. The method was applicable to real wastewater samples, with satisfactory removal
percentages of OM and MB (96 and 98 %). The results of this study show that OLPAC is an inexpensive biosorbent
that is successfully utilized in removing methyl orange and methylene blue dyes from wastewater.
1. Introduction

The release of large amounts of pollutants into the environment due
to the rapid increase in industrial and agricultural activities is one of the
key challenges globally (Ahmadi and Ganjidoust, 2021). Dyes are a type
of pollutant that must be extricated from wastewater before being
released into the natural habitat due to toxicity and negative effects on
photosynthetic activity (Çatlıo�glu et al., 2021; Wong et al., 2018).

Dye effluents discharged into the aquatic environment increase the
color saturation of the receiving water and prevent sunlight from
entering the water. As a result, these will harm aquatic life (Cheng et al.,
2022). The most widely used dye in the textile industry is methylene
blue, which is used for dyeing and finishing fabrics. In any case, too
much exposure to methylene blue is harmful to people and oceanic life
as it can cause skin sensitivities, sensory system issues, and at last
cardiovascular harm (Parlayıcı and Pehlivan, 2021). Malachite green is
another type of dye commonly used in the textile and leather industries
mutshatsha-Makhwedzha).
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that can cause harm to the human respiratory tract and may potentially
be capable of causing liver tumors (Hijab et al., 2021; Kooravand et al.,
2021). Its release into the water stream must be strictly managed to
prevent it from causing many significant environmental problems and
harmful hazards.

Wastewater treatment techniques, for example, membrane filtration,
ion exchange, coagulation, advanced oxidation processes, and adsorp-
tion, were used for the removal of dyes (Ahmadi and Ganjidoust, 2021;
Çatlıo�glu et al., 2021).

Amidst these techniques, adsorption has great decontamination po-
tential due to its tunability, versatility, and a wide variety of available
sorbents (Dimpe and Nomngongo, 2017; Mashile et al., 2021). The effi-
ciency of the adsorption technique is strongly reliant on the character-
istics of the analyte, type of the adsorbent, and wastewater matrix
composition (Mashile et al., 2021). Recent research has focused on
finding cost-effective, efficient, and environmentally friendly adsorbents
for the removal of dyes as well as optimizing the adsorption process
022
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(Ngah et al., 2011; Olivera et al., 2016; Singh et al., 2018; Tan et al.,
2012; Wong et al., 2018; Yagub et al., 2014).

The most generally utilized adsorbent material is activated carbon,
but its frequently expensive to produce and includes the utilization of
activating agents which can leach into solution and cause secondary
pollution (Çatlıo�glu et al., 2021). Lately, numerous scientists have
explored the use of activated carbon derived from natural and low-cost
agricultural wastes such as banana peels, orange peels, lemon peels,
peanut shells, bamboo shoots, and coconut shells for the removal of dye
contaminants from water (Ahmadi and Ganjidoust, 2021; Hashem et al.,
2020; Jiang et al., 2021; Wong et al., 2018).

One of the possible low-cost adsorbents is orange/citrus peel. In
addition, fruit peels or skins generally consist of lignin, cellulose, hemi-
cellulose, carboxyl, hydroxyl, pectin substances, and amide surface
functional groups which enhances the adsorbent-adsorbate interactions
(Pandiarajan et al., 2018). World citrus production was almost 140
million tons and growing, and orange production was reported to be 70
million tons in 2015 (Gunay Gurer et al., 2021). Both lemon and orange
peel are no longer useful after the juice extraction and is free of charge
from the processing industry, therefore, it is a preferred sorbent that has
been studied by many researchers (Ahmed et al., 2020; Bukhari et al.,
2022; Eddy et al., 2022; Zhang et al., 2022). Citrus peels as market waste
cause disposal problems in terms of environmental impact.

As a results, carbon-rich agricultural residues will contribute to the
negative environmental impacts when landfilled due to leachate that
could lead to greenhouse gas emissions. Hence of, the manufacture of AC
from waste materials, particularly agricultural residues would add eco-
nomic value, reduce the cost and waste, and provide an economical
alternative to commercial ACs.

In this study, orange and lemon peels/skins were selected as precursors
to prepare porous activated carbon to get rid of methylene blue (MB) and
methyl orange (MO) dyes from wastewater. The conversion of biowaste to
highly orange lemon peel activated carbon (OLPAC) using H3PO4 is cost-
effective and eco-friendlier as compared to the use of other commercially
available carbon adsorbents. All adsorption experiments were performed
using ultrasonic irradiation. When ultrasonic irradiation is applied, the
interaction between the solute and the adsorbent is promoted, and mass
transfer on the surface of the material is promoted, thus improving the
adsorption efficiency (Çatlıo�glu et al., 2021; Mashile et al., 2021). In the
literature, the effects of ultrasonic irradiation on the adsorption of various
contaminants from aqueous solutions have been documented (Geaneth
Pertunia et al., 2020; Gugushe et al., 2021; Madimetja and Nomngongo,
2019; Mpupa et al., 2020; Ramutshatsha-Makhwedzha et al., 2019).

Activated carbon made from both lemon and orange peels (1:1) is
applied for the first time in batch adsorption of MB and MO dye with
phosphoric acid as an activating agent. The effect of various conditions
such as pH, adsorbent mass, and contact time on the performance of the
method was evaluated and the optimal conditions were used to evaluate
the method of isotherms and kinetics models.

2. Experimental

2.1. Materials and reagents

Orthophosphoric acid, 98 %, nitric acid (HNO3), sodium nitrate
(NaNO3), and sodium hydroxide (NaOH) were purchased from Ace,
Arkema and Merck (Johannesburg, South Africa), respectively. Methyl
orange (Rochelle Chemicals, Johannesburg, South Africa) and methylene
blue (Ace, Johannesburg, South Africa) are analytical grades. 1000 mg
L�1 of dye stock solution was made with redistilled water and diluted as
needed to make a working solution.

2.2. Instrumentation

The adsorbent was characterized using Fourier Transform Infrared
(FTIR) spectroscopy (Perkin Elmer Spectrum 100 spectrometer) and
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identified functional groups. The specific surface area and material
pore distribution of the Brunauer-Emmett-Teller (BET) were analyzed
using ASAP2020 V3. 00H Micromeritics Instrument (Norcross, Geor-
gia, USA). A scanning electron microscope linked to energy-dispersive
X-ray spectroscopy (SEM, JSM-6360LVSEM, JEOL Co., Japan) exam-
ined morphology and nanostructure synthetic materials. X-ray
diffraction (XRD) studies were performed using PANalytical X'Pert
Xray Diffractometer to evaluate the crystallinity of the adsorbent.
Charge (pHpzc) of OLPAC was examined using a method modified in
the literature (Akawa et al., 2021b).

2.3. Preparation of activation carbon adsorbent

The activated carbon was synthesized following a modified method
(Fernandez et al., 2014). Briefly, orange and lemon skins were collected
from a fresh market, thoroughly washed with deionized water, and
separately dried in the oven at 110 �C for 24 h. The dried skins were then
pulverized into small particles, sizes ranging from 200 – 400 μm. Equal
amounts of orange and lemon skins were mixed and properly homoge-
nized before impregnation with an equal volume of 85 % H3PO4. The
excess liquid was removed, and the material was dried for 24 h in the
oven at 110 �C. Thereafter, the carbon was placed in a furnace at 600 �C
for 3 h. The chemically activated carbon was cleansed using distilled
water and dried at 110 �C. The orange-lemon peel-activated carbon is
henceforth referred to as OLPAC.

2.4. Adsorption experiments

A one at a time factor optimization strategy was utilized in deter-
mining the optimal experimental conditions. Briefly, the batch
adsorption experiments were done as follows: A 50 mL of the model
solution containing a 100 mg L─1 concentration of the dyes was added
to a glass vessel and the pH of the solution was adjusted with dilute
HNO3 or NaOH. The pH studied ranged from 2 to 10. Thereafter, a
predetermined amount of the adsorbent (0.010–0.8 g) was mixed to the
solution before sonication at ambient temperature for 5–180 min. The
supernatant was centrifuged at 2000 rpm for 3 min using a UV-vis
spectrophotometer (Aqualytic AL800 Portable Spectrophotometer,
Germany) at λmax of each dye. The results are averages of minimum of
3 experiments.

The adsorbed amount of MO and MB onto the sorbent was calculated
using Eq. (1):

Adsorption capacity qe ¼ðCo � CeÞ
m

ν (1)

Where qe is the amount of the adsorbate that was adsorbed in mg g�1, Co
and Ce are the initial and equilibrium concentrations of dye in water after
removal process (mg L�1), respectively, V is the solution volume (L) and
m is the amount of OLPAC material (g).

The adsorption efficiency (% RE) was used as the analytical response
using Eq. (2).

Adsorption efficiency¼Co � Ce

Co
� 100 (2)

Finally, kinetic and isotherm studies were performed under optimum
conditions for each dye to determine the adsorption reaction charac-
teristics. Kinetic studies were performed by varying the exposure time
from 5 to 180 min, while adsorption isotherms were studied at initial
dye concentrations of 50–200 mg L─1. Tables 1 and 2 shows equations
of these models and they are widely reported from literature (Cheng
et al., 2022; Gugushe et al., 2021; Mashile et al., 2021; Mpupa et al.,
2020).

Adsorbent regeneration was achieved by continuous washing under
ultrasound for 5 min with 3 M HNO3 and deionized water and drying
before the next use.



Table 1. Isotherms models with their parameters.

Isotherms
model

Linear equation Parameters

Langmuir
Isotherm

Ce

qe
¼ 1

qmax
Ce þ

1
KLqmax

The qmax and KL are Langmuir constant relating
the adsorption capacity (mg g�1) and energy of
adsorption (L g�1).

Freundlich
Isotherm

ln qe ¼ ln KF þ
1
n
ln Ce

KF is the Freundlich constant which relates to
adsorption capacity and 1/n is the adsorption
intensity.

Temkin qe ¼ B1 ln KT þ
B1 ln Ce

BT is heat of adsorption (J mol�1). KT is isotherm
constant relating to binding equilibrium (Lg�1)

Table 2. Kinetics models and their parameters.

Kinetics model Linear equation Parameters

Pseudo-1st order lnðqe � qt Þ ¼
lnqe

Where qt is adsorption capacity at time t (mg
g�1), k1

Pseudo-2nd order t
qt

¼ 1
k2qe2

þ
1
qe

t

k2 are the rate constant (g mg min �1)

Intra-particle
diffusion

qt ¼ kdt
1 =2 þ c kd are the rate constant (mg g min �1/2)
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2.5. Application to wastewater

Wastewater samples were collected from laboratory wastewater
based in Pretoria West campus (Gauteng, South Africa). About 500 ml of
wastewater samples were stored in polyethylene bottles and refrigerated
at 4–8 �C. To prevent any possible contamination, polyethylene bottles
were first cleaned and socked in HNO3 (1%) and thereafter cleansed with
distilled water.

3. Results and discussion

3.1. Physico-chemical properties of the adsorbents

The functional groups available on the OLPAC were analysed by FTIR
spectroscopy. The spectrum of the OLPAC adsorbent displayed in
Figure 1 shows that the most commonly identified functional group in
OLPAC are: –CH, –OH, –C–O, –COO, and –C¼O. The wide peaks at 3280
cm─1 were ascribed to the O─H groups vibrations of carboxylic acid,
alcohols, and phenols, and the peak of 2869 cm�1 was assigned to the
Figure 1. FTIR spectrum of OLPAC.
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CH2 stretch. Additionally, the 1570 cm�1 and 1387 cm─1 bands were
assigned to the C ¼ O and C ¼ C stretches of the carboxyl and carbonyl
groups, respectively. A faint peak of 1022 cm�1 was assigned to the C–O
stretching vibrations (Akawa et al., 2021a; Dey et al., 2021; Pandiarajan
et al., 2018).

The BET surface area, pore volume, pore size of OLPACs investigated
using N2 adsorption/desorption isotherms are 0.269m3 g─1, 5.18 nm and
168.29 m2, respectively. g─1. The N2 desorption isotherms and pore size
distribution curves of the OLPAC materials are displayed in Figure 2 (a)
and (b). The isotherms show a type IV isotherm with hysteresis ring H1,
specifying the neutral nature of the adsorbent (Hassan et al., 2014;
Nasrullah et al., 2018). As shown in Figure 2 (b), the average pore size of
the material is about 5.18 nm, and most pores represents the mesoporous
structure corresponding to the pore size of the IUPAC classification, that
confirms the mesoporous properties. The mesoporous structure and a
huge specific surface area of OLPAC suggest a high adsorption capacity
towards the targeted adsorbates.

The crystal phase and microstructure of the prepared OLPAC were
confirmed by XRD and the diffractographic pattern from the XRD
(Figure 3(a)) displays two peaks at 2θ ¼ 22.8�and 43.8�. These peaks
were ascribed to the (0 0 2) and (1 0 0) that resembles the disordered
carbon sheet (Li et al., 2016). The wide diffraction peaks indicated that
the synthesized material was amorphous. The surface morphology and
elemental composition of the OLPAC were investigated using SEM-EDS
and the images and spectrum are displayed in Figure 3 (b) – (d). As
seen from the SEM images in Figure 3(b)–(c) a highly porous material,
with surface pores, was successfully synthesized. This porous structure
allows efficient adsorption as it offers adequate free spaces for target
adsorbates (Akawa et al., 2021a). The EDS spectrum of the prepared
material in Figure 3(d) confirmed the availability of mainly C and O. The
presence of P was attributed to the phosphoric acid activation agent.

3.2. Evaluation of the adsorption characteristics of activated carbon

3.2.1. Adsorption experiment studies
The pH of the solution is one of the most significant parameters which

affect the adsorption of dyes because solution pH controls the adsorbent-
adsorbate interactions (Baloo et al., 2021). It is therefore important to
optimize and determine the optimum pH conditions. Figure 4(a) shows
the removal efficiencies of the MO and MB dyes on the OLPAC with
varying pH (2–10). It can be observed from the graphs that the removal
efficiency of MO was highest at pH 2 (94 %) and drastically decreased
with increasing pH from 94 % - 26 %. On the other hand, the opposite
was observed for MB, whose removal efficiency increased with
increasing pH, achieving its highest removal efficiency at pH 5 of 93 %.
This phenomenon can be due to the transfer and removal of protons on
the available functional groups on the outer part of the adsorbent under
various pH conditions, as well as the anionic and cationic nature of the
target dye (Kanani-jazi & Akbari, 2021). The zeta potential (pHpzc) of the
OLPAC was found to be 2.5, these denote that the surface charge of the
adsorbent stays positive below the pHpzc and negative at pH above this
value (Akawa et al., 2021a; Biata et al., 2018). So, because the OLPAC
surfaces are positively charged at low pH, strong electrostatic in-
teractions occurred between the adsorbent and the anionic MO, resulting
in maximum removal efficiency. Moreover, when the pH of the solution
increases to pH above the pHpzc, the adsorbent turns out to be negatively
charged and hence favoring the electrostatic interactions between the
negatively charged OLPAC and the cationic MB dye. Similar results were
obtained by (Baloo et al., 2021; Li et al., 2016). The optimum pH con-
ditions for MO and MB were 2 and 6, respectively and these conditions
were used in subsequent experimental studies.

Another important parameter for dye removal is a mass of adsorbent
and its effect on the removal efficiencies of the MO and MB dyes on
OLPACwas evaluated by measuring the adsorbent mass (0.01 g–0.8 g/50
mL), contact time: 30 min, and dye concentration: 100 mg L─1 and op-
timum pH conditions for each dye. The results are shown in Figure 4(b)



Figure 2. (a) BET isotherms and (b) pore size distribution curves of OLPAC.

Figure 3. (a) XRD spectrum, (b)–(c) SEM image and (d) EDS of OLPAC.
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shows a drastic increase in removal efficiency as the mass of adsorbent is
varied from 0.01 g to 0.1 g. This can be attributed to the increase in
surface area and available adsorption sites on the adsorbent (Zhao et al.,
2022). Equilibrium andmaximum adsorption efficiency were obtained at
0.2 g for both dyes and hence the optimum mass of adsorbent condition
of 0.2 g was used in subsequent studies.

One more significant parameter in the wastewater treatment process
is the equilibrium time. In this study, the relationship between the
4

removal efficiency of MO and MB and contact time was explored and the
results are can be seen in Figure 4(c). Figure 4(c) shows that adsorption
efficiency increased with increasing contact time and gain equilibrium
after 20min and 40min for MB andMO, respectively. The fast adsorption
at first contact time was because of more available pores on the OLPAC
structure which resulted in the quicker mass transfer of the dyes from the
solution onto the OLPAC. Therefore, this indicates good accessibility to
the binding sites for the dyes on the adsorbent which is advantageous in



Figure 4. Effect of (a) sample pH, (b) adsorbent mass, and (c) contact time.

Figure 5. Adsorption isotherm of Methyl orange and Methylene blue on AC,
(Experimental conditions: Contact time: 60 min, adsorbent mass: 0.2 g, equi-
librium concentration 50–200 mg L�1 and pH 2 and 6 for MO and MB.

D. Ramutshatsha-Makhwedzha et al. Heliyon 8 (2022) e09930
the real world as it reduces residence time (Hashemian et al., 2013; Zhao
et al., 2022). The optimum conditions for contact time were 20 min and
40 min for MB and MO, respectively.

3.2.2. Isotherms data analysis
An equilibrium study was conducted to investigate the adsorption

mechanisms that took place between the MO and MB dyes and the
OLPAC adsorbent interaction using an adsorption isotherm model
(Figure 5). The adsorption isotherm elaborate data concerning the
adsorption efficiency of the adsorbent. Freundlich, Langmuir and Temkin
isotherm models were used to assess the equilibrium data for the
adsorption of MO and MB dyes obtained using the procedure indicated in
Section 2.4.

The Langmuir isotherm adsorption model describes a monolayer
retention of adsorbent atoms (molecules, ions) on a uniform surface. The
Freundlich isotherm model is utilized to depict multi-facet adsorption on
an adsorbent with a heterogeneous surface and the Temkin isotherm
model is utilized to make sense of the direct connection between surface
inclusion and adsorption heat (Cheng et al., 2021a, 2021b).

The acquired data was evaluated by the R2 coefficient derived from
the linear plots of the isotherm models. The representative graphs of
Langmuir isotherm model are shown in Figure 6. The findings in Table 3
show that the Langmuir isotherm model fits the data well, with R2 ¼
0.9837 and 0.9949 for MO and MB, respectively. This indicates that the
adsorption of MO and MB on the surface of the adsorbent is uniform, and
the coverage of the dye monolayer is dominant (Geaneth Pertunia et al.,
2020; Nasrullah et al., 2018). MO and MB had the maximum adsorption
capacities of 38 mg g─1 and 33 mg g─1, respectively. The separation
factor (RL) computed from the Langmuir isotherms for each dye, on the
5

other hand, was utilized to assess if the adsorption was favorable or not.
The RL value (Table 3) obtained with both dyes is less than 1, indicating
good adsorption of the dye to the adsorbent (Akawa et al., 2021a; Gea-
neth Pertunia et al., 2020).



Figure 6. Langmuir isotherms plots for MB and MO using OLPAC.

Table 3. Adsorption isotherms parameters.

Isotherms Parameters MO MB

Langmuir qmax (mg g�1) 38.0 33.0

KL (L mg�1) 0.28 1.00

RL 0.004 0.01

R2 0.984 0.995

Freundlich KF 26.15 31.56

n 3.69 6.57

R2 0.976 0.648

Temkin KT (L/g) 3.22 � 10�13 178

BT (J/mol) 7.032 3.829

R2 0.8997 0.8486

Figure 7. Adsorption kinetic of Methylene blue and Methyl orange on AC,
(Experimental conditions: Initial concentration 100 mg L�1, contact time 0–180
min and pH 2 and 6 for MO and MB.

Table 4. Kinetics parameters for pseudo-1st order, pseudo-2nd order, and Intra-
particle diffusion.

MO MB

Qe exp 24.67 24.99

Pseudo 1st order k1 (min─1) 0.106 0.086

qe (mg g─1) 12.86 0.03

R2 0.673 0.447

Pseudo 2nd order k2 (g mg─1 min─1) 0.01 0.093

qe (mg g─1) 25.06 25.062

R2 0.997 0.999

h (mg g─1min─1) 6.28 58.41

t1/2 (min) 3.99 0.43

Intraparticle diffusion kid1 (g mg─1 min─1) 1.718 1.275

C (mg g─1) 8.41 13.191

R2 0.618 0.437

D. Ramutshatsha-Makhwedzha et al. Heliyon 8 (2022) e09930
In addition, Temkin adsorption isotherm model was utilized to assess
the adsorption possibilities of OLPAC adsorbent material associations
and the parameters are shown in Table 3. These outcomes recommended
that ßT values in adsorption processes of OLPAC material involved
physical interaction (Nandiyanto et al., 2020).

3.2.3. Adsorption kinetics studies
A kinetic model was used to examine the adsorption mechanisms and

their possible rate-determining steps (Figure 7). While the pseudo-first
order depends on solid capacitance, the pseudo-second order model is
successfully utilised on the sorption of analytes from aqueous solutions
where chemisorption, including valence forces, occurs. This includes
electron sharing or exchange between forces and adsorbents and adsor-
bents (Ramutshatsha-Makhwedzha et al., 2022). Table 4 shows kinetics
parameters for pseudo-1st order, pseudo-2nd order, and Intra-particle
diffusion the pseudo-second-order equation fits optimally for both MO
and MB with an R2 coefficient of 0.997 and 0.999, respectively.

The representative graphs for pseudo-second order equation are dis-
played in Figure 8. The results indicates that binding mechanism of
pseudo-second-order prevails and adsorption of MO and MB dyes on
OLPAC adsorbent is by the chemisorption step. Which has the involve-
ment of valence force by electron exchange between the dyes and
adsorbent. In addition, the half-adsorption time (t1/2) is the required time
to remove 50 % of the analyte of interest in equilibrium (Ramutshat-
sha-Makhwedzha et al., 2019). Moreover, the affinity between the
adsorbent and the dye is high. This is reflected in the short
half-adsorption time achieved with most dyes removed.

The intraparticle diffusion diagram of the adsorption of dyes by the
adsorbent shows the regression line that failed to undergo the origin
because C is not zero. This then counselled that each film and intra-
particle diffusion affect the adsorption process.
6

3.2.4. Application for real wastewater samples
The collected wastewater samples from the laboratory were used to

assess the applicability of the optimization method. The prepared OLPAC
material was used to remove MO and MB from real wastewater samples.
Results show that the initial concentration on real wastewater was found
to be 8.8 and 12 mg L�1 on MO and MB respectively. Table 5 shows that



Figure 8. Pseudo-second order plots for MB and MO using OLPAC.

Table 5. Application of OLPAC on the removal of MO and MB.

Analytes In Con. mg L�1 Final Con. mg L�1 %Re

MO 6 0.099 98.4

MB 2 0.078 96.1

Table 6. Summary of adsorption of dyes by activated carbon sorbents.

Dyes Source of
Activated carbon

Adsorption
capacity (mg
g�1)

Removal
Efficiency
(%Re)

Ref.

MO Dates pits 434 - (Mahmoudi et al.,
2015)MB 555

MO Commercial
activated carbon

113.63 90 (Khattabi et al.,
2021)

MB Orange peels 98.9 99% (Gunay Gurer
et al., 2021)

MB Bamboo chip 305.3 86.0 (Jawad and
Abdulhameed,
2020)

Acid red
18 (AR 18)

Walnut
Poplar woods

30.3 >90 (Heibati et al.,
2015)3.93 >80

MB Nano activated
carbon

28.09 - (Shokry et al.,
2019)

MO Prosopis juliflora
bark

10.29 >90 (Kumar and
Tamilarasan,
2013)

Azo
tartrazine

commercial
granular
activated carbon
(GAC)

3.32 99.8 (Khader et al.,
2021)

MO OLPAC 33 98.0 This work

MB 38 96.0

Figure 9. Regeneration capabilities of OLPAC.
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the synthesized OLPAC adsorbent was able to remove MO and MB (%Re
>96 %) on real wastewater samples.

Table 6 shows the summary of the removal of MO and MB by various
agricultural precursors. In the literature study, it can be seen that ACs
from different agricultural precursor have a wide scope of dye adsorption
limit. For instance, Table 6 shows maximum adsorption capacities that
ranges from 434–10.29 for MO and 555-28 mg g�1 for MB, respectively.
Therefore the investigated OLPAC material was comparable with the
literature (Gunay Gurer et al., 2021; Heibati et al., 2015; Jawad and
Abdulhameed, 2020; Khader et al., 2021; Khattabi et al., 2021; Kumar
and Tamilarasan, 2013; Mahmoudi et al., 2015; Shokry et al., 2019).
7

OLPAC is a good, promising and efficient material for both MO and MB
dyes from wastewater.

3.2.5. Recyclability studies of the adsorbent
Regeneration is one of the crucial factors that examines how long the

adsorbents can be used. In other words, the maximum number of times
an adsorbent can be used in adsorption while retaining its initial
adsorption capability. The OLPAC adsorbent's reusability and stability
were determined by tracking variations in % removal over time using
retention–elution cycles and the results are displayed in Figure 9. The
OLPAC adsorbent has been found to have consistent performance, with
identical adsorption capacities up to 5 cycles and over 95 % removal
efficiencies. According to the findings, the adsorbent is steady and has
the potential to be used repeatedly without losing its affinity on the
selected analytes.

4. Conclusions and future work

The application of OLPAC adsorbent was examined for the removal of
MO and MB dyes from synthetic water samples. The pH and adsorbent
mass were the most influential parameters on the sorption of MO and MB
dye. Isotherms and kinetics results on the sorption of MO and MB dye
were best described by the Langmuir isotherms and pseudo-second order
reaction rate model. The obtained adsorption capacity for MO and MB
was 33 and 38 mg g�1, respectively. As a result, the electrostatic
attraction was the mechanism involved between OLPAC adsorbent and
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MO together with MB. While pseudo-second order suggests the chemi-
sorption adsorption mechanism of dyes onto the OLPAC adsorbents The
OLPAC material can be recovered until the fifth cycle to reuse its
adsorption capacity. These could be referred to as a good cleaning
technology for MO and MB adsorption. The maximum removal effi-
ciencies of MO and MB dyes in wastewater samples ranged from 96 % to
98.4 %. Furthermore, the outcomes received shows that OLPAC nano-
composite could be a possible adsorbent for the adsorption process of MO
and MB dyes.

In order to obtain basic engineering data on adsorbents for field
operation, fixed-bed continuous operation is required. Further studies
should focus on the application of activated carbonmaterial derived from
orange and lemon peels on continuous adsorption study using fixed-bed
packed column. It is a good technology that has been previously applied
in the removal of various pollutants such as methyl green and tartrazine
dyes using nanocomposite material (Alardhi et al., 2020; Ali et al., 2022).
Studies shows that the packed bed column offers more efficient use ab-
sorption capacity, resulting in better water quality to be treated.
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