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A B S T R A C T

Cancer treatment deserves more research efforts despite intensive conventional treatment modalities for many types of 
malignancies. Metastasis and resistance to chemotherapy and radiotherapy receive a lot of global research efforts. The 
current advances in cancer biology may improve targeting the critical metabolic differences that distinguish cancer cells 
from normal cells. Cancer cells are highly glycolytic for energy production, exhibit the Warburg effect, establish aggressive 
acidic microenvironment, maintain cancer stem cells, exhibit resistance to chemotherapy, have low antioxidant systems 
but different Δψm (delta psi, mitochondrial transmembrane potential), express P‑glycoprotein for multidrug resistance, 
upregulate glucose transporters and monocarboxylate transporters and are under high steady‑state reactive oxygen species 
conditions. Normal cells differ in all these aspects. Lactate produced through the Warburg effect helps cancer metastasis. 
Targeting glycolysis reactions for energy production in cancer cells seems promising in decreasing the proliferation and 
metastasis of cancer cells. 3‑bromopyruvate makes use of cancer biology in treating cancer cells, cancer stem cells and 
preventing metastasis in human cancer as discussed in this review. Updated advances are analyzed here, which include 
research analysis of background, experience, readings in the field of cancer biology, oncology and biochemistry.
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INTRODUCTION

Many forms of cancer are still beyond curative treatment. 
Diagnostic procedures for various types of tumors have 
improved dramatically, which has helped in the early 
detection of cancer. Even with aggressive treatment 
modalities using advanced surgical techniques combined 
with chemotherapy and radiotherapy, cancer recurrence 
is still a big concern with an unfavorable prognosis in 

some cases. Mortality rates due to cancer are still high. 
Chemotherapy and adjuvant radiotherapy are known to 
harm	normal	cells.	Metastasis	influences	the	survival	rate	
of cancer patients.

In this review article, major biochemical differences 
between the metabolisms in normal cells versus cancer 
cells with regard to energy pathways are highlighted. 
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Advances in targeting energy pathways of cancer cells 
are also analyzed.

MITOCHONDRIAL DEFECTS DRIVE CANCER 
CELLS TO UTILIZE GLYCOLYSIS

The major source of energy in normal cells comes from 
mitochondrial oxidative phosphorylation reactions. 
Krebs cycle also occurs in the mitochondria. Glycolysis 
pathway occurs in the cytoplasm and seems less 
important with regard to energy production in normal 
cells. However, the situation is reversed in cancer cells, 
i.e., the glycolysis pathway becomes the most important, 
whereas the mitochondrial pathways seem less important 
based on the presence of defects in mitochondrial 
respiration.[1,2]

The mitochondrial defect theory versus the somatic 
mutation theory may determine the cause of carcinogenesis. 
Therefore, it has to be questioned whether mitochondrial 
defects cause carcinogenesis or emerge as a direct 
result of genetic mutations due to the transformation of 
normal cells to malignant cells under the effect of viruses, 
chemicals, radiation, or any other causes. Before the 
discovery of DNA and cloning of the human genome, 
the mitochondrial defect theory was accepted to a large 
extent. However, the current prevailing view is that 
cancer is primarily a genetic disease involving nuclear 
mutations in oncogenes (gain of function) and tumor 
suppressor genes (loss of functions), the so-called “driver 
gene” mutations that regulate the tumorigenic phenotype, 
including the induction of hypoxia with consequent 
alterations in the patterns of metabolism. Polymerase 
chain reaction (PCR), reverse transcription-PCR, DNA 
microarray, and many other molecular techniques 
revolutionized cancer research and clinical oncology by 
guiding researchers toward the presence of upregulated 
mutant oncogenes and the downregulated mutant tumor 
suppressor genes. This resulted in an evidence-based 
targeted therapy in clinical oncology. In cancer cells, 
survival pathways are activated, for example, Akt survival 
pathway due to mitochondrial defects leading to the 
dependency of cancer cells on glycolysis.[1]

The Akt pathway (phosphatidylinositol 3-kinase 
[PI3K]-Akt pathway) is a signal transduction pathway 
that utilizes PI3K and Akt or protein kinase B to promote 
cellular survival and growth in response to extracellular 
signals.[3] Activated Akt mediates cell survival, growth, 
proliferation, cell migration and angiogenesis. This 
occurs through phosphorylating a range of intracellular 

proteins. Abnormal Akt activation is usually associated 
with malignancy[4]	where	Akt	gene	amplification	activates	
glycolysis enzymes[5] that causes an increase in glucose 
metabolism via increasing the translocation of glucose 
transporters 1 and 4 (GLUT-1 and GLUT-4) to the 
plasma membrane and increasing the hexokinase (HK) 
expression.[6]

Glycolytic phenotype induces a new environment 
suitable for cancer cells only (cancer microenvironment) 
and harmful for normal cells.[7] The cancer 
microenvironment is characterized by hypoxia and 
acidosis due to acid extrusion, for example, lactate. 
Acidification	of	 cancer	microenvironment	 is	primarily	
due to the activity of the Na+/H+ exchanger and the H+/
lactate co-transporter. There is a difference between 
intracellular pH (pHi) and extracellular pH (pHe) in 
normal cells and that of cancer cells [Figure 1]. The 
gradient from pHe to pHi is reversed in tumors. The 
origin of this reversal in tumor pH gradient is mainly 
due to oncogene activation.[8] Acidic extracellular 
microenvironment in cancer cells facilitates altered 
energy metabolism in cancer.[9]

PASTEUR EFFECT, CRABTREE EFFECT, AND 
WARBURG EFFECT

The major source of energy supply in normal cells is 
mitochondrial oxidative phosphorylation that can provide 
normal cells with thirty adenosine triphosphate (ATP) 
molecules per one glucose molecule. This occurs in an 
aerobic environment (needs the presence of oxygen). 
Pasteur noticed that when there is no oxygen, normal cells 
get a lower amount of energy through glycolysis (two 
ATP molecules per one glucose molecule) and that 
glycolysis is inhibited in the presence of oxygen.[10] The 
Crabtree effect states that in tumor and transformed 

Figure 1: Cancer cells differ from normal cells as regards pH. 
Intracellular pH is more alkaline in cancer cells. Extracellular pH is 
strongly acidic in cancer cells and much more acidic than normal 
cells.
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cells, oxidative phosphorylation (cellular respiration) 
decreases on exposure to elevated glucose levels.[11]

Unlike normal cells that utilize glucose to produce 
lactate and two ATP molecules in the absence of oxygen 
(anerobic glycolysis), Warburg reported that cancer cells 
use glycolysis as the major energy pathway with the 
production of enormous amounts of lactate even in the 
presence of oxygen (aerobic glycolysis).[12] Oncogene 
activation, for example, Myc results in the upregulation 
of enzymes of glycolysis, for example, lactate 
dehydrogenase (LDH-A).[13] Hypoxia together with Myc 
stabilizes hypoxia-inducible factor resulting in enhanced 
transcription of genes related to glycolysis, for example, 
GLUT-1.[14] Hypoxia in tumors decreases the expression 
of co-stimulatory molecules in monocytes, for example, 
CD80,	 which	 is	 important	 for	 the	 process	 of	 antigen	
presentation by antigen-presenting cells (APCs) to help 
the function of T-helper lymphocytes in antigens and this 
is recognized as an important immunological defense 
step.[15]

WARBURG EFFECT MAINTAINS 
HIGH‑REACTIVE OXYGEN SPECIES CONDITION 
IN CANCER CELLS

The production of enormous amounts of lactate 
characterizes the glycolytic phenotype of cancer cells.[16] 
Glucose oxidation does not stop at the production of 
pyruvate, but proceeds to produce lactate via the activity 
of LDH.[17] Catabolism of glucose in cancer cells ends 
with the production of lactate even in the presence of 
oxygen (unlike normal cells where aerobic glycolysis 
ends with the production of pyruvate). Lactate had no 
H2O2 scavenging effect either in a cell-free system or 
in a cell-based system, while pyruvate scavenged H2O2 
significantly	 in	 a	 dose-dependent	 manner,	 both	 in	 a	
cell-free environment and in a cell-based environment. 
Lactate did not protect glioma cells against cell death 
induced by exogenous H2O2. Pyruvate was a protective 
agent for the experimental glioma cells against cytotoxicity 
mediated by H2O2.

[17] Lactate produced through the 
Warburg	effect	is	a	reflection	of	the	activity	of	LDH	which	
converts pyruvate to lactate. This consumes pyruvate, 
abolishes the antioxidant effect gained from pyruvate 
and causes enhanced steady-state reactive oxygen 
species (ROS) condition in cancer cells. Interestingly, 
LDH is a prognostic marker for cancer progression 
and can predict patient survival.[18] Formation of 
lactate (Warburg effect) in cancer cells seems to maintain 
that increased steady-state ROS condition.[17]

Steady-state ROS status is high in cancer cells versus 
normal cells.[19] Endogenous oxidative stress in cancer 
cells is high in cultured cancer cells and also in tumor 
cells.[20,21] Increased endogenous ROS in cancer cells 
is multifactorial in origin which can be attributed to 
mitochondrial dysfunction, abnormal metabolism, loss 
of functional[22-25] and oncogene activation, for example, 
c-Myc, Ras, and Bcr-Abl, which were reported to induce 
ROS generation.[26,27] Increased persistent ROS may cause 
oxidative damage to DNA, proteins, and lipids in primary 
cancer cells, which may be associated with a decreased 
activity of antioxidant enzymes, for example, superoxide 
dismutase (SOD) and catalase.[28,29] Cancer cells are 
characterized by a poor antioxidant power compared 
with normal cells.[30] Antioxidant molecules for example, 
glutathione peroxidases, SOD and peroxiredoxin may act 
as tumor suppressors.[31,32] Increased ROS status in cancer 
cells causes a rise in mitochondrial dysfunction, oncogene 
activation, aberrant metabolism and antioxidant defects, 
which may lead to a further elevation in steady-state 
ROS conditions.[33] As cancer cells evolve, they undergo 
ROS-mediated selection to select the most aggressive 
malignant cells to survive at the expense of weak cancer 
cells.[34,35] In normal cells, the situation is different where 
pyruvate is the end product of glycolysis in normal cells 
under aerobic conditions. It scavenges ROS and keeps 
normal cells at low steady-state conditions. Exogenous 
lactate preserved the steady-state ROS condition in 
cancer cells, whereas exogenous pyruvate decreased it 
significantly.[17]

HEXOKINASE II AS AN IMPORTANT TARGET 
FOR CANCER THERAPY

Targeting HK II in brain tumors, for example, glioma 
cells may be a promising therapeutic target in invasive 
tumors, for example, glioblastoma multiforme (GBM).[36] 
There are four isoforms of HK enzyme (I–IV).[37] HK 
II is a therapeutic target that marks malignant human 
gliomas.[38] In GBM, there is a metabolic shift from 
oxidative phosphorylation to glycolysis. This causes 
immortalization and resistance to cancer cell death 
leading to metabolic adaptation to the malignant status 
or remodeling in cancer cells, which eventually develop 
resistance to the current conventional therapeutics.[39]

18Fluorodeoxyglucose-positron emission tomography 
(18FDG-PET) is a diagnostic technique that was 
established based on the fact that glycolytic phenotype 
is a major common characteristic among tumors in 
general, in which HK II phosphorylates glucose to 
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glucose-6-phosphate (G6P). 18FDG-PET is widely used 
in the clinical diagnosis and follow-up of cancers to 
determine the effectiveness of treatment and the presence 
or absence of active metabolic lesions. 18FDG is an analog 
of glucose which undergoes no further catabolism in the 
glycolysis pathway.[40] Reduced glucose metabolism in 
pediatric GBM correlates with the clinical improvement.[41]

3‑BROMOPYRUVATE: A SINGLE SIMPLE 
DRUG WITH MULTIPLE TARGETS IN CANCER 
THERAPY

HK II seems to be an important target of 3-bromopyruvate 
(3BP) [Figure 2]. The product of HK II (G6P) seems 
critical for cancer cell metabolism, survival, division, and 
migration. Moreover, HK II has a preventive antioxidant 
activity.[42] Inhibition of HK II sensitized cancer cells to 
oxidative stress therapy.[43] Interestingly, the expression 
of HK II is reported to be very low in normal cells, while 
it is highly expressed in cancer cells. Therefore, HK II is a 
potential marker for cancer cells, for example, malignant 
human gliomas.[38,44]

3BP targets many points in the glycolysis pathway, 
for example, at the beginning (HK II step), middle 
(glyceraldehyde-3-phosphate dehydrogenase [GAPDH] 

step) and at the end of glycolysis (LDH) steps.[45-47] 
This grants 3BP superiority over many well-known 
anti-glycolytics which target only one point in glycolysis. 
HK II may be regarded as an anti-apoptotic protein, that 
facilitates malignancy.[48] HK II is tightly attached to the 
mitochondrial voltage-dependent anion channels that 
links the mitochondrial pathway for ATP production to 
the cytoplasmic glycolysis pathway which seems critical 
for phosphorylating glucose to G6P [Figure 3].[49]

3BP disrupts the link between mitochondrial and cytoplasmic 
power plants for energy production by targeting the entry of 
pyruvate to Krebs cycle. 3BP inhibits pyruvate dehydrogenase 
which synthesizes acetyl coenzyme A (CoA) from pyruvate 
through oxidative decarboxylation, leading to decreased 
tissue levels of acetyl CoA.[50,51] Acetyl CoA is a critical 
energy molecule in many energy pathways [Figure 4]. A new 
mechanism of action was attributed to 3BP which is H2O2 
production. Concomitant treatment of glioma cells using 
3BP with antioxidants, for example, N-acetyl-L-cysteine, 
reduced glutathione, or pyruvate was protective to glioma 
cells against 3BP-induced cancer cell death.[43]

3BP	was	reported	to	cause	a	significant	dose-dependent	
depletion of energy reserves in glioma cells.[43] It induces 

Figure 2: Hexokinase II catalyzes a critical metabolic step for cancer cells. ATP: Adenosine triphosphate, NAD+: Oxidized nicotinamide 
adenine dinucleotide, NADH: Reduced nicotinamide adenine dinucleotide, G6P: Glucose-6-phosphate, R5P: Ribose-5-phosphate, 
GAPDH: Glyceraldehyde-3-phosphate dehydrogenase, GAP: Glyceraldehyde-3-phosphate, HK II: Hexokinase II, NADPH: Reduced nicotinamide 
adenine dinucleotide phosphate.
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two different modes of cell death: Necrosis and apoptosis. 
This may give 3BP the superiority over chemotherapeutics 
inducing apoptotic cell death as necrosis is stronger than 
apoptosis and helps prevent the recurrence of tumors.[43,52]

3‑BROMOPYRUVATE IS PROTECTIVE AND LESS 
TOXIC TO NORMAL CELLS

Compared to cancer cells, normal cells are not 
significantly	harmed	during	glycolysis	inhibition	as	they	
have intact mitochondria and may make use of other 
energy substrates, for example, pyruvate, lipids, and 
proteins to synthesize ATP.[53] Serial doses of 3BP affected 
cancer cells selectively, i.e., 3BP was less toxic to normal 
hepatocytes.	On	the	other	hand,	3BP	efficiently	depleted	
ATP in hepatocellular carcinoma (HCC) cells[54,55] and 
decreased the viability of that highly metastatic cell line 
in vitro[54] and it eradicated xenograft tumors of HCC 
in all tested animals.[54] Interestingly, 3BP was reported 
to be nontoxic to neurons.[56] Moreover, serial doses 
of 3BP protected the neurons of hippocampus against 
excitotoxicity exerted by kainic acid.[56] Pathologic 
examination of all tissue samples of mice receiving 
systemic	injection	of	3BP	confirmed	the	safety	of	3BP	in	
a wide dosage range (5–25 mg/kg). All tissue samples 
investigated appeared healthy. There were no reported 
corrosive effects of 3BP.[57]

LACTATE IS A CRITICAL METABOLITE 
TRANSPORTED THROUGH THE 
MONOCARBOXYLATE TRANSPORTERS

Lactate	represents	the	beneficial	outcome	of	the	Warburg	
effect on cancer cells [Figures 5 and 6]. High levels of 

Figure 3: Reported enzyme targets of 3-bromopyruvate (shown in red boxes). 3-bromopyruvate targets Warburg effect at many points of 
glycolysis pathway. ATP: Adenosine triphosphate, ADP: Adenosine diphosphate, HK II: Hexokinase II, VDAC: Voltage-dependent anion channels, 
IMM: Inner mitochondrial membrane, OMM: Outer mitochondrial membrane, ANC: Adenine nucleotide carrier, PIC: Inorganic phosphate 
carrier, GAP: Glyceraldehyde-3-phosphate, GAPDH: Glyceraldehyde-3-phosphate dehydrogenase, PC: Pyruvate carboxylase, PDH: Pyruvate 
dehydrogenase, 1,3DPG: 1,3 diphosphoglycerate.

Figure 4: Origin and fate of acetyl coenzyme A. Acetyl coenzyme A 
is a critical intermediate for energy-generating pathways. Catabolism 
of proteins, lipids, and carbohydrates gives rise to pyruvate and then 
acetyl coenzyme A. Acetyl coenzyme A is utilized for different synthetic 
pathways, among which ketogenesis, Krebs, and lipogenesis are the 
most important energy pathways.
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Figure 6: Fate of pyruvate in cancer cells versus normal cells. Pyruvate 
is the end product of aerobic glycolysis in normal cells and fuels Krebs. 
Lactate is the end product of glycolysis in cancer cells (Warburg effect) 
and helps in establishing cancer microenvironment.

lactate in tumors may support the occurrence of tumor 
metastasis, resistance to treatment, recurrence and reduced 
survival rate in patients having different types of cancer.[58] 
Lactate proved to have an angiogenic stimulatory effect on 
tumor	cells.	Influx	of	tumor-derived	 lactate	through	the	
endothelial cell monocarboxylate transporter 1 (MCT1) 
supports a nuclear factor-κB/interleukin (IL)-8 pathway 
that stimulates tumor angiogenesis.[59] Angiogenesis 
is vital to feed cancer cells in primary and metastatic 
tumors and to support survival, growth and metastasis of 

tumors. Tumor angiogenesis can predict patient survival. 
Taking GBM as an example, an increased survival 
rate was reported in patients who responded well to 
anti-angiogenesis treatment.[60]

Lactate	 carries	 a	 lot	 of	 benefits	 for	 cancer	 cells	 at	 the	
expense of normal cells. Lactate is continuously produced 
in the cytoplasm of cancer cells and is extruded to the 
outside via the abundant MCT. This helps the establishment 
of the hostile microenvironment that is suitable for cancer 
cell survival and progression. Tumor cells use a chemical 
reduction of the last product of glycolysis (pyruvate) into 
lactate through LDH activity to oxidize the reducing 
equivalent reduced nicotinamide adenine dinucleotide to 
oxidized nicotinamide adenine dinucleotide (NAD+) to 
keep continuous glycolysis (NAD+ acts as a coenzyme for 
GAPDH). 

These chemical reactions allow tumor cells to survive in 
this aggressive microenvironment and enhance tumor 
metastasis to distant anatomical sites.[61-64] Increased 
lactate production from glycolysis upregulation participates 
in microenvironmental acidosis that leads to somatic 
evolution that selects the most malignant phenotypes which 
are resistant to acid-induced toxicity.[65] Such evolution 
occurs at the expense of normal cells and weak cancer 
cells that cannot afford this acidic microenvironment. 
Lactate	 is	a	proinflammatory	mediator	that	 is	secreted	by	
tumor cells to facilitate the antigen-dependent secretion of 

Figure 5: Importance of Warburg effect to cancer cells. Lactate is a key metabolic intermediate for cancer cells. VEGF: Vascular endothelial 
growth factor, HIF-1α: hypoxia-inducible factor 1α
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proinflammatory	 cytokines,	 for	 example,	 IL-17.	 Lactate	
activates	 the	 IL-23/IL-17	 proinflammatory	 pathway	 that	
helps in the establishment of a cancer microenvironment.[66]

Cancer cells can escape from attack by the immune system 
through many mechanisms, for example, tumor-derived 
lactate (produced through Warburg effect) decreases cellular 
immunity performed through the action of T-lymphocytes. 
Endogenous lactate produced from different tumor cell 
lines impairs the differentiation of dendritic cells that act as 
APCs.[67]	Lactate	significantly	reduces	the	cytotoxic	effects	
exerted by human T cytotoxic lymphocytes (CTLs) by about 
50%	by	suppressing	their	proliferation	and	decreasing	the	
production of cytokines. Cytokines produced by CTLs 
were	 reduced	 by	 about	 95%.[68] Lactate produced by 
melanoma spheroids (three-dimensional) was higher than 
lactate produced by monolayer culture (two-dimensional) 
and exerted an inhibitory effect on human CTLs (through 
the inhibition of recognition of tumor-associated antigens) 
in spheroid co-cultures. High lactate levels in tumors are 
correlated with their metastatic potential and they are good 
prognostic factors to predict metastasis, recurrence of 
tumors and the short expected patient survival in human 
cancer.[69,70]

Metabolism in tumors is different from metabolism in 
normal	 cells	 where	 tumor	 metabolism	 is	 influenced	 by	
hypoxia, oncogene activation and tumor suppressor genes 
inhibition. Upregulated Myc oncogene in human cancers 
leads to the upregulation of glycolytic enzymes such as 
LDH-A.[13,71] Moreover, cancer cells are characterized 
by frequent mutations that lead to genetic changes as a 
loss of tumor suppressor genes resulting in the decreased 
utilization of oxygen and enhanced synthesis of lactate.[72]

3‑BROMOPYRUVATE: AS A FUNCTIONAL AND 
STRUCTURAL ANTAGONIST OF BOTH PYRUVIC 
AND LACTIC ACIDS

3BP is a structural analog of pyruvate and is transported 
through the same cellular transporters (MCT) as 
pyruvate.[73] 3BP targets glycolytic enzymes’ upstream of 
pyruvate formation step as it targets HK, GAPDH and 
LDH steps in glycolysis.[45-47,54,74] Antagonizing effects 
of pyruvate abolish the antioxidant effect of pyruvate in 
cancer cells, which may enhance the steady-state ROS 
condition. Interestingly, adding exogenous pyruvate as 
a	 treatment	 to	 glioma	 cells	 scavenged	 significantly	 the	
3BP-induced H2O2 production (antioxidant effect), 
while adding exogenous lactate did not.[17] Exogenous 
pyruvate protected glioma cells against 3BP-induced ATP 
depletion.[17] Moreover, exogenous pyruvate enhanced 

the migratory power of glioma cells and exerted a 
dose-dependent protection against 3BP-induced cell 
death of glioma cells.[17] All the protective effects of 
pyruvate against 3BP-induced effects on glioma were 
overcome on treating glioma cells with gradually 
increasing doses of 3BP.[17]

Pyruvic acid can be reversibly converted to lactate via 
LDH. Within the same tumor, cancer cells were reported 
to take lactate extruded from anaerobic regions to be 
given to aerobic regions of the same tumor, in which 
lactate is converted to pyruvate to start the Krebs cycle.[75] 
Hyperglycolytic tumors that produce enormous amounts 
of pyruvate to be converted to lactate seem to be more 
sensitive to the pyruvate’s antagonizing effect induced 
by 3BP.[43] Normal cells, in which pyruvate and energy 
production have alternative pathways, seem less sensitive 
to the effects of 3BP.[43]

THERAPEUTIC BENEFITS OF GLYCOLYSIS 
INHIBITION IN CLINICAL ONCOLOGY

Among	 the	 most	 attractive	 therapeutic	 benefits	 of	
glycolysis inhibition using 3BP is the inhibition of 
angiogenesis.[76] Numerous studies reported that 3BP 
induced the reversal of cancer cells chemoresistance, where 
3BP	was	reported	to	inhibit	the	efflux	of	chemotherapy	
through the ATP-binding cassette transporters and to 
antagonize	the	P-glycoprotein-mediated	efflux	in	MCF-7/
ADR drug-resistant breast cancer cells.[53,77,78] Multidrug 
resistance reversal using 3BP might take place through 
decreasing ATP content in cancer cells, decreasing HK 
II activity, inhibiting ATPase activity, and reducing the 
expression of P-glycoprotein in chemoresistant cancer 
cells.[77-79] Importantly, 3BP kills cancer stem cells, 
prevents cancer recurrence, and reduces chemoresistance 
and radioresistance that are commonly encountered in 
clinical oncology.[79]

3BP was reported to dramatically improve the 
therapeutic	 outcome	 of	 a	 patient	 having	 fibrolamellar	
hepatic carcinoma and another patient having 
metastatic melanoma.[80,81] The dramatic improvements 
faced in these Stage IV patients strongly suggest the 
introduction of glycolysis inhibition treatment in the 
clinical	field.

3‑BROMOPYRUVATE MAKES USE OF CANCER 
BIOLOGY TO TARGET CANCER CELLS

The antitumor agent 3BP was reported to have a short 
half-life under physiological conditions, which will 
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decrease its side effects on normal cells and allow for 
rapid recovery of normal tissues, for example, liver and 
kidneys from its pharmacological effects.[82]	 Affinity	
of 3BP transport across cancer cells was reported to 
increase	 at	 pH	 6.0	 (the	 extracellular	 milieu	 of	 cancer	
cells) and was better than that at the pH of normal cells 
(pH	7.4).[83]

MCTs,	for	example,	MCT1	and	MCT4	facilitate	the	efflux	
of lactate and were reported to be upregulated in cancer 
cells. MCTs mediate the entry of chemotherapeutic 
agents, for example, 3BP into the cells that selectively 
kills cancer cells. Based on this, MCT expression may 
be used as a molecular marker to predict the response 
to chemotherapy.[83] Moreover, uptake of 3BP decreased 
with MCTs inhibitors. There was a higher sensitivity 
of cancer cells for 3BP upon increasing the level of 
expression of MCT4 and this may also explain its safety 
to normal cells.[83]

Compared to normal cells, cancer cells differ 
in Δψm (termed delta psi and refers to the 
mitochondrial transmembrane potential). Δψm is 
used as an indicator for cell death. ΔΨm is lost early 
during caspase-independent cell death. During the 
degradation phase of apoptosis, there is a release of 
catabolic hydrolases and caspase activators from the 
mitochondria. Those catabolic enzymes together with 
impairment of the bioenergetic and redox functions of 
mitochondria	finally	cause	cell	death.	Upon	apoptosis	
induction, there is a dissipation of ΔΨm,	 efflux	 of	
proteins and eventually cell death.[84]

Recently, gold nanoparticles attached to 3BP were 
reported to target the mitochondrial membrane potential 
more selectively and precisely than nontargeted construct 
or free 3BP, which is expected to enhance their effect 
on cancer cells rather than normal cells. Therapeutic 
effects may be better enhanced upon laser irradiation. 
Interestingly, gold nanoparticles were reported to 
preferentially kill cancer cells.[85,86]

In endometrial cancer cells, upregulation of the GLUT6 
was closely associated with the cancer phenotype while 
GLUT6 suppression (using small interfering RNA) 
inhibited both glycolysis and survival of endometrial 
carcinoma cells that underwent necrosis. GLUT6 
promotes glycolysis and survival of endometrial cancer 
cells in spite of the expression of other GLUTs. The 
effect of 3BP to decrease the expression level of GLUT6 
has not yet been investigated and deserves more research 

efforts. 3BP was reported to inhibit lipogenesis through 
pyruvylation of acetyl CoA (precursor of de novo 
synthesis of fatty acids) and to decrease cancer cellular 
level of acetyl CoA.[87]

Recently, treatment with 3BP was effective for treating 
breast	 cancer.	 P-glycoprotein	 mediates	 the	 efflux	 of	
chemotherapeutics as one of the main mechanisms 
for multidrug resistance in many cancer types where 
multidrug-resistant	 breast	 cancer	 cells	 can	 efflux	 the	
chemotherapeutics used in treatment. 3BP was reported 
to increase the sensitivity of resistant breast cancer cells to 
doxorubicin (283-fold), paclitaxel (85-fold), daunorubicin 
(201-fold)	 and	 epirubicin.	 The	 main	 mechanisms	
reported to achieve this chemosensitization effect are the 
ability	of	3BP	to	reverse	P-glycoprotein-mediated	efflux	
in multidrug-resistant breast cancer cells. Moreover, 3BP 
decreased the ATPase activity, P-glycoprotein expression 
and the intracellular level of ATP and HK II.[69]

CLINICAL IMPLICATIONS

Being antagonized by reduced glutathione and 
N-acetyl cysteine, 3BP can be considered as a safe 
chemotherapeutic agent. When signs of overdosage, 
toxicity, or undesirable side effects develop after 3BP 
administration, reduced glutathione or N-acetyl cysteine 
can be given immediately as a rescue therapy.

CONCLUSION

Energy metabolism is altered in cancer cells and differs from 
normal cells.[9] 3BP showed a potent action against cancer 
cells. It interferes with many of their biological pathways 
which make it an attractive candidate for the management 
of	cancer	patients.	3BP	was	reported	to	be	efficient,	safe,	
less toxic and well tolerated compared to many anticancer 
agents and further clinical trials are needed to explore its 
full potential as a clinical anticancer agent.
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