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Polycomb repressive complex 2 (PRC2) is the epigenetic regulator that induces histone H3
lysine 27 methylation (H3K27me3) and silences specific gene transcription. Enhancer of
zeste homolog 2 (EZH2) is an enzymatic subunit of PRC2, and evidence shows that EZH2
plays an essential role in cancer initiation, development, progression, metastasis, and drug
resistance. EZH2 expression is indeed regulated by various oncogenic transcription factors,
tumor suppressor miRNAs, and cancer-associated non-coding RNA. EZH2 activity is also
controlled by post-translational modifications, which are deregulated in cancer. The canon-
ical role of EZH2 is gene silencing through H3K27me3, but accumulating evidence shows
that EZH2 methlyates substrates other than histone and has methylase-independent
functions. These non-canonical functions of EZH2 are shown to play a role in cancer
progression. In this review, we summarize current information on the regulation and roles
of EZH2 in cancer. We also discuss various therapeutic approaches to targeting EZH2.
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Introduction

gene silencing. Two major polycomb repressive complexes,
Polycomb repressive complex (PRC) 1 and PRC2, control
gene silencing through post-translational modifications of hi-

Polycomb group proteins are initially identified as regula-
tors controlling the establishment of body segmentation by
silencing hox genes expression in Drosophila. Later, they
were foun to be epigenetic regulators that are critical for mul-
tiple cellular functions, including stem cell maintenance and
differentiation [1]. Polycomb group proteins are well con-
served between Drosophila and humans and are involved in
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stone proteins [2]. PRC1 consists of Bmil, Ring1b, CBX4, and
PHC subunits and induces histone 2A lysine 119 ubiquitina-
tion (H2AK119ub1). In contrast, PRC2 consists primarily of
enhancer of zeste homolog 2 (EZH2), EED, SUZ12, and
RbAp48 and catalyzes the methylation of histone H3 lysine
27 (H3K27) to generate trimethyl-H3K27 (H3K27me3) [3].
PRC1 enhances the effects of PRC2 by recognizing
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H3K27me3 and interacting with it, but these complexes can
also repress gene expression independently [2]. EZH?2 is the
catalytic subunit of PRC2, and growing evidence demon-
strates that EZH?2 is essential for cancer initiation, develop-
ment, progression, metastasis, and drug resistance.
Therefore, EZH2 is currently considered a promising drug
target, and multiple inhibitors of EZH2 have been developed,
some of which are in clinical trials. In this review, we intro-
duce current information regarding the molecular mecha-
nisms by which EZH2 expression/activity is regulated as
well as the role of EZH2 in oncogenic signaling pathways.
Moreover, we focus on the therapeutic potential of EZH2 and
discuss possible approaches to targeting EZH2.

Regulation of EZH2 Expression and Activity
in Cancer

EZH?2 is frequently overexpressed in many cancer types
and is critical for cancer cell proliferation and survival. In-
deed, the regulators of EZH2 expression are also critical for
cell proliferation, tumorigenesis, and stem cell maintenance
(Fig. 1). For example, Myc binds to EZH2 promoter and
directly activates its transcription, and EZH?2 expression is
correlated with Myc expression in prostate cancer [4]. Myc
also upregulates EZH2 expression by downregulating
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-137, -138, -144, -214, -let7)
ANCCA, STATS3, ETS, EIK-1, HIF-1
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EZH2 gene

miRNA 101 (miR-101), miR-26a, and miR-26b [4-7]. In con-
trast, c-Myc expression is also positively regulated by EZH2
in glioblastoma, although the underlying mechanism is
uncertain [8]. In addition to Myc, another cell cycle regulator,
E2F, positively controls EZH2 transcription, and EZH2 is
critical for the regulation of pRB-E2F pathway [9]. ANCCA,
a co-activator of androgen receptor (AR) and binding protein
of E2F, can enhance E2F-mediated EZH2 transcription in
prostate cancer cells [10,11]. In Ewing tumors, EWS-FLI1
fusion oncoprotein directly regulates EZH?2 gene expression
[12]. SOX4, one of the key regulators of stem cells, directly
regulates the expression of EZH2 mRNA, which is critical for
SOX4-mediated epithelial-mesenchymal transition (EMT)
[13]. Moreover, NF-Y, STAT3, and ETS transcription factors
directly regulate EZH2 transcription in epithelial ovarian,
colorectal, and prostate cancer cells, respectively [14-16].
Both Elk-1 and HIF1 directly regulates EZH2 transcription
that is associated with aggressive breast cancer [17,18].

In addition to transcriptional regulators, multiple miRNAs
have been shown to directly regulate EZH?2 expression, and
many of them are deregulated in cancer. So far, miR-25, -26a,
-30d, -98, -101, -124, -137, -138, -144, -214, -let-7, and -let-7a
have been shown to be able to downregulate EZH2 expres-
sion directly in cancer cells. The downregulation of these
miRNAs and the resulting upregulation of EZH2 seem to be
critical for the aggressive behaviors of various cancers. These
miRNAs include miR-25 and -30d in thyroid cancer [19];
miR-26a in lymphoma, nasopharyngeal carcinoma (NPC),
and breast and prostate cancer [6,7,20,21]; mR-101 in NPC,
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Fig. 1. Regulators of EZH2 expression and DNA targeting in cancer. EZH2 expression is regulated by various oncogenic
transcription factors and tumor suppressor miRNAs. Access to the specific DNA sites is regulated by various transcription

factors and noncoding RNAs (ncRNAs).
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glioblastoma multiforme (GBM), and prostate, bladder,
gastric, head and neck (HN), and non-small cell lung cancer
(NSCLC) [22-27]; miR-138 in HN cancer, GBM, and NSCLC
[28-30]; let-7s in prostate cancer and NPC [31,32]; miR-124 in
hepatocellular carcinoma (HCC) and gastric cancer [33,34];
miR-98 in NPC and gastric cancer [35,36]; miR-137 in
melanoma [37]; miR-144 in bladder cancer [38]; and miR214
in gastric cancer and HCC [35,39]. These miRNAs are tumor
suppressor like miRNA and, interestingly, miR-26a has been
also shown to be regulated by epidermal growth factor
receptor-mediated Ago2 phosphorylation under hypoxia
condition [40].

Interaction Partners That Regulate the
Recruitment of PRC2 to Specific Loci

EZH2, EED, SUZ12, and RbAp48 are core proteins in
PRC2, but their DNA binding activity is weak. Thus, PRC2
requires other factors to recruit it to specific loci. Multiple
transcription factors also interact with PRC2 to recruit it to
specific loci, and some of them have been shown to play a
critical role in cancer. Transcription factor Yin Yang 1 (YY1)
interacts with EZH2 and recruits it to the specific sites to reg-
ulate gene silencing. YY1 and PRC2 are involved in muscle
differentiation [41]. In endometrioid endometrial carcinoma,
EZH2 and YY1 repress tumor suppressor APC and promote
cell growth [42]. Snail forms a complex with EZH? via his-
tone deacetylase (HDAC)1/2 and recruits it to E-cadherin
promoter to suppress E-cadherin expression in NPC [43].
c-Myc interacts with EZH2 and suppresses miR-101 expres-
sion in HCC, whereas MYCN interacts with EZH2 and
inhibits tumor suppressor clusterin in neuroblastoma [5,44].
In addition to oncogenic transcription factor, PRC2 interacts
with tumor suppressor proteins and contributes to tumor
suppressor function. For example, tumor suppressor scaffold
attachment factor B1 (SAFB1) interacts with PRC2 and AR
and represses AR transcription machinery via H3K27me3 in
prostate cancer cells [45]. Hypermethylated in cancer 1
(HIC1), which is a tumor suppressor gene that is frequently
silenced or deleted in various cancers, recruits PRC2 to its
target genes [46]. PER2 can interact with PRC2 and Octl, and
recruit them to Snail Slug and Twist promoters and inhibit
their gene expression, thereby using PRC2 as a tumor
suppressor [47]. Other transcription factors such as E2F6,
Twist-1, RUNX3, and CCCTC binding factor interact with
PRC2 and recruit it to repress specific target genes, but their
roles in cancer are uncertain [48-51].

In addition to proteins, noncoding RNAs (ncRNAs) inter-

act with EZH2 and play an important role in the recruitment
of EZH2 to several specific loci. In cancer, HOTAIR is one of
the most well described large intervening ncRNAs that
interacts with EZH2 [52]. Overexpression of HOTAIR in
breast cancer cells enhances cancer cell invasion and metas-
tasis that require PRC2, while the loss of HOTAIR reduces
them. HOTAIR plays an oncogenic role in colorectal cancer,
pancreatic cancer, and NSCLC [53-55]. Remarkably, HO-
TAIR can interact with PRC2 and the LSD1/CoREST/REST
repressor complex (which is responsible for the demethyla-
tion of H3K4me2), serving as a scaffold to recruit two distinct
histone modifiers to the same loci [56].

In addition to HOTAIR, several ncRNAs have been shown
to interact with EZH2 and are involved in EZH2-mediated
cancer aggressiveness. These include HEIH in HCC [57],
PCAT-1 in prostate cancer [58], and H19 and linc-UBC1 in
bladder cancer [59,60]. Several other ncRNAs such as Xist,
Six30S, Meg3, ASIDHRS4, and ANCR have been shown to
interact with PRC2 and regulate X-chromosome inactivation,
cell differentiation, and stem cell maintenance [61-65], but
their roles in cancer have not been identified. In addition to
ncRNA, miR-320 directly interacts with EZH2 and arg-
onaute-1 (AGO1) and recruits them to the promoter region
of the cell cycle gene POLR3D and silences it [66]. Moreover,
EZH2 also interacts with multiple intronic RNAs. Among
them, the intronic RNA for SMYD3 (H3K4 methyltrans-
ferase) reduces SMYD3 expression, cell proliferation, and
xenograft tumor growth in human colorectal cancer cells [67].
Interestingly, BRCA1 negatively regulates PRC2 activity by
inhibiting the association between EZH2 and HOTAIR, and
the loss of BRCA1 contributes to an aggressive breast cancer
phenotype [68]. EZH2-HOTAIR or EZH2-Xist interaction is
also regulated by CDK-mediated phosphorylation, as
described in the next section [69]. PRC2 co-factor JARID2 also
mediates the interaction of PRC2 and ncRNAs such as Xist
and Meg3 [65,70].

Post-translational Modification of EZH2

Growing evidence shows that EZH?2 activity and stability
are regulated by post-translational modifications and that
these modifications are critical for the biological function of
PRC2 (Fig. 2). It has been reported that Akt phosphorylates
EZH2 at serine 21 (S21) and inhibits its enzyme activity for
H3K27me3 [71]. Later, this phosphorylation site was shown
to be critical for the H3K27me3-independent function of
EZH?2 [72,73]. JAK2 phosphorylates EZH2 at tyrosine 641
(Y641), which promotes the interaction of EZH2 with B-TrCP
and degradation of EZH2 [74]. Y641 is frequently mutated in

VOLUME 46 NUMBER 3 JuLY 2014 211



Cancer Res Treat. 2014;46(3):209-222

e e s

S21  S75 T345 T372 T416  T487
AKT OGT CDK1/2 p38 CDK1/2

Ubiquitination
Degradation

Y641 S734
B-TrCP
T T Smurf2
JAK2 ATM PRAJA1

Fig. 2. Post-translational modifications of EZH2. EZH2 is phosphorylated at 521, T345, T372, T416, T487, Y641, and 5734 by
the indicated kinases. S75 is glycosylated by O-linked N-acetylglucosamine transferase (OGT). In addition, EZH?2 is ubiqui-
tinated by Smurf2, B-TrCP, and PRAJA1 and undergoes degradation.

B-cell lymphoma, and the stability and activity of the EZH2
Y641 mutant is higher than that of wild-type EZH2. Several
studies have demonstrated that CDK1/2 phosphorylates
EZH?2 at multiple sites, including threonine 345, T416, and
T487 [69,75-78]. The role of CDK-mediated phosphorylation
in EZH?2 function is diverse and may depend on cell types
and conditions. T345 phosphorylation promotes the associ-
ation between EZH2 and HOTAIR, whereas T416 phospho-
rylation induces the binding of NIPP1 to EZH2, and both
T345 and T416 phosphorylation are critical for the recruit-
ment of EZH?2 to specific loci [69,78]. Moreover, NIPP1 main-
tains EZH2 phosphorylation by inhibiting its dephosph-
orylation by PP1 [78]. It has been showed that CDK1 phos-
phorylates EZH2 at T487 and that the phosphorylation in-
duces the dissociation of EZH2 from PRC2, resulting in the
inactivation of EZH2 and a reduction in cancer cell invasion
[77]. In contrast, EZH2 phosphorylation at T345 promotes
cell migration and proliferation [75]. T345 and T487 phos-
phorylation in EZH2 also promotes EZH2 ubiquitination and
degradation [76].

In neurons, ATM interacts with and phosphorylates EZH2
at 5734, and 5734 phosphorylation of EZH2 reduces PRC2
assembly, EZH2 stability, and cell death in neurons [79].
ATM-mediated phosphorylation of EZH?2 is critical for
neurodegeneration in ataxia-telangiectasia, which is caused
by ATM mutation [79]. Moreover, p38 phosphorylates EZH2
at threonine 372 (T372) and promotes its interaction with
YY1, which is critical for tumor necrosis factor-mediated
Pax7 inhibition and muscle stem cell proliferation [80]. The
role of ATM- or p38-mediated phosphorylation in cancer is
not yet certain.

Recently, EZH2 was shown to interact with O-linked
N-acetylglucosamine (GlcNAc) transferase (OGT) and to be
O-GIcNAcylated at S75 in vivo. Interestingly, OGT upregu-
lates cellular H3K27me3 levels, and S75 to alanine (S75A)
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mutant EZH? is less stable than wild-type EZH2, suggesting
that the O-GlcNAcylation of EZH2 may play a role in EZH2
stability and H3K27me3 [81]. EZH2 is also sumoylated in
vitro and in vivo, but the functional significance of its sumoy-
lation has not been determined [82]. EZH2 ubiquitination is
critical for its protein stability. It has been shown that Smurf2
functions as an E3 ligase for EZH2 in human mesenchymal
stem cells and promotes neuron differentiation [83]. B-TrCP
and PRAJA1 also function as E3 ligases for EZH?2 [74,84].

Function of EZH2 in Cancer

EZH2 is required for cancer cell proliferation, migration,
invasion, and EMT, all of which are associated with cancer
initiation, progression, and metastasis. More importantly,
EZH2 is closely associated with stem cell properties, espe-
cially cancer stem cell properties, and tumor-initiating cell
function [8,17,85].

In diffuse large B-cell lymphoma and follicular lymphoma,
recurrent somatic mutations in the EZH2 gene have been
identified, which changes amino acid tyrosine 641 (Y641) in
EZH2, thereby altering its enzyme activity [86]. These muta-
tions were originally considered a loss-of-function mutation
because it reduces EZH2 methyltransferase activity toward
an unmodified substrate. However, mono- to di- and di- to
trimethylation activity is higher in Y641 mutant EZH2 than
in wild-type EZH2. Y641 mutant EZH?2 actually has higher
activity of mono- to di- and di- to tri-methylation than wild-
type EZH2 [87]. In addition, the Y641 mutation is always a
heterogeneous mutation, and diffuse large B-cell lymphoma
and follicular lymphoma with EZH2 mutation express both
wild-type and Y641 mutant EZH2, resulting in higher
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H3K27me3 in mutant cancer cells than wild-type cells [87].
Thus, the EZH2 Y641 mutation is unique gain-of-function
mutation. The oncogenic role of the Y641 mutation was
further confirmed in an engineered mouse model in which
conditional expression of mutant EZH2 in germinal center
B-cells induced germinal center hyperplasia and promoted
lymphoma formation in the presence of Bcl-2 overepxression
[88]. In addition to Y641 mutation, A687V and A677G muta-
tions have been identified as activating mutations of EZH2
in B-cell lymphoma [89,90]

Recently, a K27M mutation in one of the histone H3 vari-
ants, H3.3, was found in 50% of pediatric high-grade glioma
[91,92]. The cells with H3.3K27M show reduced levels of
global H3K27me3 because H3.3K27M binds to and inhibits
EZH2. Interestingly, H3K27me3 and EZH2 were also shown
to be locally increased in hundreds of genes in cells with the
H3.3K27M mutation [93]. Therefore, alterations in
H3K27me3 are closely associated with glioma.

Overexpression of EZH?2 is frequently observed in multi-
ple cancer types, including prostate, breast, bladder, ovarian,
lung, liver, brain, kidney, gastric, esophageal, and pancreatic
cancer and melanoma [94-104]. In many of these, EZH2
expression is also correlated with higher proliferation and
aggressive behavior of cancer cells as well as poor prognosis.
Indeed, multiple studies have shown that overexpression of
EZH2 promotes cell proliferation, migration, and/or inva-
sion in vitro [26,43,100,105]. Furthermore, overexpression of
wild-type EZH2 in mammary epithelial cells in vivo results
in epithelial hyperplasia and promotes mammary tumor
initiation induced by human epidermal growth factor recep-
tor 2/neu expression [106,107].

In some types of cancer, EZH2 functions as a tumor sup-
pressor. Inactivating mutations of EZH2 are found in
patients with myeloid malignancies including myelodysplas-
tic syndrome and myeloproliferative neoplasms, and such
EZH2 mutations are associated with poor patient survival
[108,109]. Mice with conditional deletions of EZH2 and TET?2
in hematopoietic stem cells, the mutations of which fre-
quently co-exist in myeloid malignancies, develop myelodys-
plastic syndrome and myeloproliferative neoplasms [110]. In
addition to myeloid malignacies, 25% of T-cell leukemia
cases have been shown to have loss-of-function mutations
and deletions of the EZH2 and SUZ12 genes [111]. Indeed,
conditional deletion of EZH2 in bone marrow cells causes
T-cell leukemia, indicating that EZH2 functions as a tumor
suppressor in T-cell leukemia as well [112]. Moreover, mice
with conditional deletion of EZH? in the pancreatic epithe-
lium also exhibit impaired pancreatic regeneration and
acceleration of K-Ras-induced neoplasia [113]. Together,
these results suggest that the role of EZH2 is cell context
dependent, although EZH2 functions as an oncogenic factor
in the majority of solid tumors.

EZH2 Targets in Cancer

So far, many EZH?2 target genes have been identified, and
HOX genes are well-known targets for EZH2 during embry-
onic development. Because EZH?2 frequently functions as an
oncogenic factor in many cancer types, most EZH2 targets
identified in cancer are tumor suppressor genes. The INK4B-
ARF-INK4A tumor suppressor locus is regulated by EZH?2,
PRC1, and PRC2, and the suppression of these genes is also
critical for development of embryo as well as cancer [114-
117]. Another critical target of EZH2 in multiple cancers is
the E-cadherin gene (CHD1), the downregulation of which
is critical for EMT and metastasis [118-121]. EZH2 also inter-
acts with Snail to repress E-cadherin expression [43].

In addition to these proteins, multiple EZH?2 target genes
have been shown to be involved in EZH2-mediated cancer
aggressiveness. These target genes include stathmin and Wnt
antagonists in HCC [122,123]; bone morphogenetic protein
receptor 1B in GBM [85]; p57 in breast and ovarian cancers
[124,125]; DAB2IP, SLIT2, TIMP2/3, and CCN3/NOV in
prostate cancer [126-129]; FOXC1, HOXC10, and RAD51 in
breast cancer [130-132]; CXXC4 in gastric cancer [133]; MyoD
in rhabdomyosarcoma [134]; rapI GAP in HN cancer [25];
CASZ1 in neuroblastoma [135]; and RUNX3 and KLF2 in
multiple cancer types [136,137]. In addition, several mole-
cules such as Bim, TRAIL, and FBXO32 play a role in apop-
tosis induced by the inhibition of EZH2 [138-140]. Vasohibin1
is regulated by EZH2 in tumor-associated endothelial cells,
and this regulation plays a role in tumor angiogenesis [141].
EZH?2 also regulates the expression other epigenetic regula-
tors by silencing multiple miRNAs, which are critical for the
oncogenic function of EZH2 [142,143].

H3K27me3-Independent Functions of EZH2

Although the primary function of EZH? is gene silencing
through the methylation of H3K27, accumulating evidence
shows that EZH?2 functions independently of H3K27me3 in
various cancers (Fig. 3). Several reports have shown that
EZH?2 functions as a transcription activator. For example,
EZH2 interacts with estrogen receptor (ER) & and B-catenin,
and the complex regulates c-Myc and cyclin D1 expression
in breast cancer cells [144]. Moreover, in a transgenic mouse
model, EZH2 was shown to interact with B-catenin and pro-
mote its nuclear accumulation and activation in mammary
epithelial cells [107]. In colon cancer cells, the DNA repair
protein proliferating cell nuclear antigen (PCNA)-associated
factor interacts with EZH2 and B-catenin and increases B-
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catenin target gene expression [145]. The effect of EZH2 on
PCNA-associated factor-mediated activation of B-catenin
does not require EZH2 methyltransferase activity. EZH2 also
functions as a transcriptional co-activator with AR in castra-
tion-resistant prostate cancer cells [72]. Interestingly, this
functional switch from a transcription silencer to an activator
requires 521 phosphorylation of EZH2 by Akt, and activation
of AR depends on EZH2 methyltransferase activity. In
ER-negative basal-like breast cancer cells, EZH2 interacts
with RelA /RelB and functions as a transcription co-activator
of nuclear factor-kappa B. In contrast, EZH2 interacts with
ER and represses nuclear factor-kappa B target gene expres-
sion by inducing H3K27me3 on their promoters in ER-posi-
tive luminal-like breast cancer cells [146]. In natural
killer / T-cell lymphoma, EZH2, which is upregulated via
Myc-mediated miRNA inhibition, directly activates cyclin D
transcription and promotes cell proliferation independent of
methyltransferase activity [147].

Canonical pathway
Mle3
H3K27

(XX

Transcription silencing
p16/ARF, E-cadherin,

Me

D -

Other substrates

EZH?2 also methylates proteins other than histone H3 and
modulates their functions (Fig. 3). For example, EZH?2 inter-
acts with and methylates STAT3, resulting in increased tyro-
sine phosphorylation and activation of STAT3 [73].
Strikingly, AKT-mediated phosphorylation at 521 in EZH?2
is critical for the interaction of EZH2 with STAT3, and this
AKT-EZH2-STAT3 pathway is critical for the maintenance
of glioblastoma stem cells and tumor progression. EZH2 also
mono-methylates tumor suppressor, retinoic acid-related
orphan nuclear receptor & (ROR) [148]. Mono-methylated
ROR is recognized by the DCAF1/DDB1/CUL4 E3 ubiq-
uitin ligase complex and undergoes ubiquitination and
degradation. EZH?2 also methylates GATA4 and inhibits its
activity by inhibiting its interaction with p300 [149], although
the role of this methylation in cancer has not been estab-
lished.

EZH2 also regulates cellular functions other than transcrip-
tion. Cytosolic EZH?2, the level of which is higher in prostate

Methylation-independent

CyclinD
Whnt target genes
— >

Fig. 3. Various functions of EZH2 in human cancer. EZH?2 silences multiple tumor suppressors such as INK4A /ARF and
E-cadherin via canonical H3K27me3. EZH?2 also methylates substrates other than H3K27, such as STAT3 and RORa.
Furthermore, EZH2 has a methylase-independent function.
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cancer cells than in normal prostate cells, regulates actin
polymerization [150,151]. However, the underlying molecu-
lar mechanism has not yet been identified. In addition, PRC2
is recruited to sites of DNA damage in a poly(ADP-ribose)
polymerase-dependent manner and is involved in DNA
damage repair [152]. EZH2 knockdown reduces DNA dou-
ble-strand break repair and sensitizes cells to ionizing radia-
tion. Interestingly, EZH2 and BRCA1 regulate each other and
are involved in several cellular functions. Knockdown of
EZH?2 upregulates BRCA1 protein, which is important for
the downregulation of proliferation induced by the inhibi-
tion of EZH2 in ER-negative breast cancer [153]. Consis-
tently, EZH2 induces BRCA1 nuclear exclusion and inhibits
its activity, which contributes to chromosome instability in
breast cancer [154]. In contrast, BRCA1 also regulates EZH2
activity. BRCA1 inhibits EZH2-HOTAIR interaction as
previously described herein [68]. Moreover BRCA1-deficient
cells have higher EZH2 expression and are thereby more sen-
sitive to EZH2 inhibition than BRCA1-proficient cells [155].
Thus, EZH2-BRCAL1 interaction is complicated, and further
studies may be necessary.

Therapeutic Implications of EZH2

Because EZH2 is a central regulator of proliferation,
migration, invasion and stem cell properties of cancer cells,
it is considered a potential drug target. 3-Deazaneplanocin
A (DZNep), which is an inhibitor of S-adenosylhomocysteine
hydrolase, downregulates PRC2 proteins including EZH2
and inhibits PRC2 activity [139]. DZNep treatment indeed
induces the downregulation of H3K27me3, reactivates PRC2
target genes, and effectively induces apoptosis in cancer cells
but not in normal cells [139]. This compound has been widely
used in preclinical and in vitro studies to investigate the
function of EZH2 in cancer and has been shown to effectively
inhibit cell proliferation and tumor growth in various cancers
[156-159]. Remarkably, the killing effect of DZNep is about
20-fold greater in BRCA1-deficient cells than in BRCA1-pro-
ficient mammary tumor cells although the underlying mech-
anism is not known [155]. DZNep was recently shown to
induce erythroid differentiation independent of EZH2,
suggesting that the effects of DZNep may be partially inde-
pendent of EZH? inhibition [160]. However, because DZNep
downregulates EZH?2 protein levels, it is expected to inhibit
the methylation-independent functions of EZH?2 [147].

Recently, several highly selective small molecule inhibitors
against EZH2, such as GSK126, EPZ005687, EI1, and EPZ-
6438, have been developed [161-164]. These inhibitors exhibit
higher effects against the lymphoma with Y641 activation

mutation of EZH2 than the one with wild-type EZH2. Cur-
rently, EPZ-6438 is being tested in clinical trials of patients
with B-cell lymphoma and advanced solid tumors.

In addition to specific EZH2 inhibitors, several other drugs
and compounds have been reported to be able to downreg-
ulate EZH2, and the downregulation of EZH2 is critical for
their anti-cancer activity. These include curcumin [165,166],
omega-3 polyunsaturated fatty acids [167], and sorafenib
[168]. Moreover, inhibition of EZH2 also sensitizes cancer
cells to various other anti-cancer drugs, such as HDAC
inhibitors, imatinib, gemcitabine, paclitaxel, and cisplatin
[27,98,140,169-174].

Conclusion

EZH2 is a critical regulator of cell proliferation, migra-
tion/invasion, and stemness in cancer and functions as an
oncogenic factor in most solid tumors. Indeed, EZH2
inhibitors have shown promising anti-cancer activity against
EZH2-active or -overexpressing cancer cells in multiple
preclinical studies, and EPZ-6438 is currently under clinical
trials. Inhibition of EZH2 also enhances several existing anti-
cancer drugs, suggesting the potential for combination ther-
apy using EZH2 inhibitors. Moreover, EZH2 is frequently
overexpressed in multiple cancer types and is associated
with poor prognosis. Therefore, EZH2 may serve as a valu-
able prognostic marker. In the future, additional studies will
be required to establish effective combination treatment
strategies and identify appropriate biomarkers in various
cancer types to predict sensitivity to EZH2 inhibitors.

Herein, we introduced multiple mechanisms of EZH2
regulation, including transcriptional regulation, mRNA
regulation by miRNAs, accessibility to DNA via DNA bind-
ing proteins and ncRNAs, and post-translational modifica-
tions. Because these upstream regulators of EZH2 most likely
control multiple targets other than EZH2, the inhibition of
these mechanisms may be an alternative approach to target-
ing EZH2 and even more effective than EZH2 inhibitors
alone. For instance, the kinases that phosphorylate EZH2 also
phosphorylate many substrates and activate other signaling
pathways. Indeed, CDK inhibitors have shown anti-tumor
activity in preclinical studies and are currently being tested
in clinical trials. The effects of CDK inhibitors may be
achieved partially through the attenuation of EZH2 activity,
and EZH2 may serve as a biomarker for these drugs. Thus,
the identification of upstream regulators of EZH2 may lead
to effective therapeutic strategies for various cancers.
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