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Abstract

Motivation: Bioinformatic analysis of single-cell gene expression data is a rapidly evolving field. Hundreds of
bespoke methods have been developed in the past few years to deal with various aspects of single-cell analysis and
consensus on the most appropriate methods to use under different settings is still emerging. Benchmarking the
many methods is therefore of critical importance and since analysis of single-cell data usually involves multi-step
pipelines, effective evaluation of pipelines involving different combinations of methods is required. Current bench-
marks of single-cell methods are mostly implemented with ad-hoc code that is often difficult to reproduce or extend,
and exhaustive manual coding of many combinations is infeasible in most instances. Therefore, new software is
needed to manage pipeline benchmarking.

Results: The CellBench R software facilitates method comparisons in either a task-centric or combinatorial way to
allow pipelines of methods to be evaluated in an effective manner. CellBench automatically runs combinations of
methods, provides facilities for measuring running time and delivers output in tabular form which is highly compat-
ible with tidyverse R packages for summary and visualization. Our software has enabled comprehensive benchmark-
ing of single-cell RNA-seq normalization, imputation, clustering, trajectory analysis and data integration methods
using various performance metrics obtained from data with available ground truth. CellBench is also amenable to
benchmarking other bioinformatics analysis tasks.

Availability and implementation: Available from https://bioconductor.org/packages/CellBench.

Contact: su.s@wehi.edu.au or mritchie@wehi.edu.au

1 Introduction

Single-cell transcriptome profiling offers researchers a powerful
method for studying gene regulation at unprecedented resolution.
Over the past 5 years, there has been a proliferation of specialized
analysis algorithms for single-cell RNA-sequencing (scRNA-seq)
data, including methods to deal with quality control, normalization,
imputation, dimension reduction, clustering and trajectory analysis
(Zappia et al., 2018).

A typical scRNA-seq analysis workflow involves multiple inter-
dependent steps, therefore it is important to benchmark not only in-
dividual methods, but also combinations of methods that form
analysis pipelines to determine best practice in different settings.
Subsequently, it is important that code written for benchmarking be

extensible in order to be able to assess new tools or updates to exist-
ing methods that are frequently being released.

The R/Bioconductor (R Core Team, 2019; Huber et al., 2015)
community has developed important infrastructure for single-cell
data analysis. This includes the SingleCellExperiment object
(Lun and Risso, 2019) for storing data and numerous packaged
methods that are compatible with these objects for different types of
scRNA-seq analysis. These packages form a comprehensive ecosys-
tem for investigating various aspects of single-cell biology
(Amezquita et al., 2019).

Current scRNA-seq benchmarking efforts tend to focus on a par-
ticular analysis task, such as differential expression (Soneson and
Robinson, 2018) or trajectory analysis (Saelens et al., 2019).
Existing packages within Bioconductor that focus on methods com-
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parisons are similarly task-centric and generally tailored for bulk
RNA-seq, such as iCOBRA (Soneson and Robinson, 2016) for com-
paring differential expression analysis methods, and rnaseqcomp
(Teng et al., 2016) for transcript quantification, while more general
benchmarking software such as SummarizedBenchmark (Kimes and
Reyes, 2019) does not facilitate efficient testing of combinations of
methods. This led us to develop the CellBench software, which pro-
vides a framework to write structured benchmarking scripts, facili-
tates testing of combinations of methods and allows simple addition
or removal of methods from pipeline steps.

2 Approach

CellBench was developed to be simple to use and its design focussed
on workflows with multiple steps, where each step has multiple

candidate methods that may be applied, as shown in Figure 1A. This
approach differs from existing Bioconductor methods by provid-
ing a generalised framework rather than focusing on specific ana-
lysis tasks, such as differential expression or clustering. The
modular organisation of methods and automatic generation of
combinations through chaining syntax allows for clear and re-
usable code (Fig. 1A).

The fundamental object in the CellBench framework is the tibble
(Müller and Wickham, 2019), an extension of the standard R
data.frame object with pretty printing features that makes it more
compact and informative when displayed. Columns of the tibble
identify the dataset and specific method run at each step, with the
final column storing computational results from the specified com-
bination. To extend the pipeline with additional steps, sets of meth-
ods are applied successively to the working tibble using the
apply_methods function. This expands the number of rows to re-
flect new combinations, and updates the results column to contain
new computational results. Under this framework, performance
metrics used to compare the results from different algorithms are
treated as a type of method to be applied to previous computational
results. Examples of metrics include silhouette width, adjusted Rand
index and number of clusters detected which can be compared to the
ground truth available.

To use the apply_methods function, methods of the same
pipeline step are stored as lists of functions in R. This creates a
modular block (Fig. 1A) representing a specific step in a pipeline.
The methods within a pipeline step are expected to take a common
input type and produce a common output type, which allows new
methods conforming to the input/output requirements to be added
to the list, promoting collaboration and code reuse. In order to
have methods accept the same type of input and produce the same
type of output, wrapper functions will generally need to be written
to perform some data manipulation before and after applying the
core method. A vignette in the package introduces guidelines for
writing effective wrappers as well as examples of pre-made
wrappers.

CellBench’s load_sc_data function provides access to annotated
single-cell datasets from a recent cross-platform control experiment with
various experimental conditions and known cell-group identity (Tian
et al., 2019). Having access to processed and annotated datasets stream-
lines the benchmarking process to allow researchers to begin testing their
methods more quickly and consistently. Additionally, CellBench offers
convenience functions for sampling (sample_genes and sample_cells) and
filtering (filter_zero_genes) SingleCellExperiment objects. Methods
can be run in parallel to improve efficiency, errors are handled such that
the overall benchmark can continue running even when individual pipe-
line combinations fail with errors and the time_methods function can
be used to measure the running times of pipelines. Sub-sampling a
SingleCellExperiment object using the sample_cells function allows run
time to be measured on datasets of different sizes in a controlled manner.

To demonstrate application of CellBench in a multi-step bench-
mark, an example analysis is provided in a vignette. This analysis
uses 2 datasets from Tian et al. (2019)(1 plate-based and 1 droplet
based) and combines 4 normalization options (no normalization,
Linnorm (Yip et al., 2017), scran (Lun et al., 2016) and TMM
(Robinson and Oshlack, 2010)), 3 imputation options (no imput-
ation, DrImpute (Gong et al., 2018) and KNNSmooth (Wagner,
2017)) and 3 clustering methods (RaceID (Grün et al., 2015), Seurat
(Butler et al., 2018) and TSCAN (Ji and Ji, 2016)) as summarised in
Figure 1A. For each of the 72 dataset � method combinations, the
adjusted Rand index was used to measure the similarity between the
clustering results obtained and the ground-truth available.
Exploring the top four performing method combinations for each
clustering algorithm on the plate-based dataset (Fig. 1B) allows
researchers to compare their relative performance and sensitivity to
upstream methods. A more comprehensive scRNA-seq benchmark-
ing effort that used CellBench to compute 3,913 dataset � method
combinations for tasks ranging from normalization, imputation,
clustering, trajectory analysis and data integration was performed in
Tian et al. (2019)with code available at https://github.com/
LuyiTian/sc_mixology.
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Fig. 1. Schematic of a CellBench analysis. (A) Inputs to a benchmark analysis include

data with known labels and collections of method wrappers that receive input and

produce output in a consistent format. Methods that correspond to the same step in a

pipeline are grouped into blocks, and the CellBench framework implicitly generates

results for all combinations of methods. The code required reflects the diagram model

and supports piping syntax. Results are returned in a tibble structure appropriate for

manipulation with popular tidyverse packages (B) Using the tibble structure, the

adjusted Rand index metric for combinations of normalization, imputation and clus-

tering is filtered to plot results for the top 4 performing pipelines for RaceID, TSCAN

and Seurat using ggplot2 (Wickham, 2016). The bar plot shows the relative perform-

ance of each clustering method and its sensitivity to upstream methods.
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3 Discussion

Ad-hoc benchmarking scripts are error prone, difficult to share and
difficult to extend with new methods. In existing benchmarking
frameworks, individual combinations of methods need to be expli-
citly programmed, limiting the number of pipelines that can be feas-
ibly compared. CellBench facilitates usage inside an interactive R
session, and allows researchers to easily inspect data passing be-
tween pipeline stages. The fundamental objects of tibbles and lists
are easy for a user to observe and manipulate, since they are already
loaded in the environment. The ability to step through the code to
observe intermediate results allows more effective debugging and
faster prototyping compared to scripts that must be run from start
to finish.

We have created a framework for researchers to evaluate the per-
formance of different combinations of scRNA-seq analysis methods
in a pipeline in a way that is reproducible and extensible. It leverages
existing experience researchers have with the R programming lan-
guage, as well as the popular tidyverse packages, facilitating soft-
ware development and code sharing. Our focus on single-cell
analysis has led to the development of a number of utility functions
that are tailored for use with SingleCellExperiment objects.
Although developed with scRNA-seq analysis in mind, CellBench
can be easily used for benchmarking other bioinformatics analysis
tasks. Future work will focus on deferring evaluation of pipelines
such that combinations of pipelines can be set up and filtered down
without being immediately evaluated. We also aim to develop a
website that displays results from a versioned benchmark that will
be updated over time to allow researchers to explore the rankings of
different method combinations more fully.
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