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ABSTRACT
Statistical interactions between markers of genetic variation, or gene-gene interactions, are believed to play

an important role in the etiology of many multifactorial diseases and other complex phenotypes. Unfor-

tunately, detecting gene-gene interactions is extremely challenging due to the large number of potential

interactions and ambiguity regarding marker coding and interaction scale. For many data sets, there is

insufficient statistical power to evaluate all candidate gene-gene interactions. In these cases, a global test

for gene-gene interactions may be the best option. Global tests have much greater power relative to multiple

individual interaction tests and can be used on subsets of the markers as an initial filter prior to testing for

specific interactions. In this paper, we describe a novel global test for gene-gene interactions, the global

epistasis test (GET), that is based on results from random matrix theory. As we show via simulation studies

based on previously proposed models for common diseases including rheumatoid arthritis, type 2 diabetes,

and breast cancer, our proposed GET method has superior performance characteristics relative to existing

global gene-gene interaction tests. A glaucoma GWAS data set is used to demonstrate the practical utility

of the GET method.
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1 INTRODUCTION

Interactions between markers of genetic variation, or gene-

gene (G×G) interactions, are thought to have an important

biological role in many polygenic diseases and other complex

phenotypes (Moore, 2003; Cordell, 2009; Taylor & Ehren-

reich, 2015; Mackay, 2014). Although such interactions can

be defined as either statistical interactions relative to a spe-

cific model or as qualitative, biological associations, we focus

solely on the former type of interaction in this paper (see Sec-

tion 2.1.5 below for the exact statistical model). Knowledge of

biologically valid gene-gene interactions has the potential to

improve our understanding of the genetic regulation of cellu-

lar processes, explain a greater proportion of the known her-

itability of human diseases, and identify new candidate tar-

gets for therapeutic drugs (Mackay & Moore, 2014; Moore

& Williams, 2009; Wei, Hemani, & Haley, 2014). Although

a few remarkable epistatic interactions, such as the Bom-

bay phenotype (Kelly et al., 1994), have been described in
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the medical genetics literature, researchers have had few suc-

cesses to date finding novel human gene-gene interactions

from modern array or sequencing studies of meaningful effect

size that can be replicated across multiple data sets (Hemani

et al., 2014).

The general lack of success identifying and replicating

gene-gene interactions can be attributed to a number of fac-

tors including poor power, ambiguity regarding marker cod-

ing and interaction scale, confounding, measurement error,

and population stratification (Aschard et al., 2012a; Cordell,

2009). Of these factors, poor power is likely the most signifi-

cant. For a genome-wide association study (GWAS) measur-

ing one million markers, a total of ( 1×1062 ) or ∼ 5 × 1011 two-

way interactions are possible. If a separate statistical test is

performed for each of these candidate interactions, an enor-

mous penalty on statistical power will be incurred due to mul-

tiple hypothesis correction (MHC). Even if the set of mark-

ers is significantly filtered prior to interaction testing (Greene,

Penrod, Kiralis, & Moore, 2009), for example, by evaluating
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only single nucleotide polymorphisms (SNPs) with signifi-

cant main effects, the impact of MHC on power can still be

substantial.

For cases where gene-gene interaction detection power is

unacceptably low, even after marker filtering, a global inter-

action test may be a feasible analysis alternative. Although

global tests provide just a general indication of the presence

of interactions, they do offer much greater statistical power

due to the lack of MHC and, importantly, can be utilized

in a hierarchical analysis (Yekutieli, 2008) to test subsets of

the markers or different endpoints prior to individual inter-

action tests. Although the use of global gene-gene interac-

tion tests has been previously explored (Dai et al., 2012a),

the approaches taken in prior research have been limited to

two-stage methods in which separate tests are first performed

for each potential interaction and then the interaction-level

P-values are jointly tested, using a test like Fisher’s method

(Won, Morris, Lu, & Elston, 2009), against the null that all

P-values are insignificant, that is, have a standard uniform

distribution. Although such a two-stage approach can be suc-

cessful, it has several important drawbacks: it is computation-

ally expensive, the results are dependent on the form of the

interaction-level tests, and the test is subject to an inflated type

I error rate if the interaction P-values are correlated and that

correlation is not accurately modeled and accounted for in the

joint P-value test.

To improve upon the existing two-stage approach for

global gene-gene interaction testing, we have developed a

novel, parametric global test, the global epistasis test (GET),

that is based on an important recent result from random

matrix theory concerning the distribution of the largest eigen-

value of certain functions of two sample covariance matri-

ces (Johnstone, 2009). Our GET method supports the detec-

tion of gene-gene interactions on a log-odds scale relative

to a binary phenotype or dichotomized quantitative trait by

first estimating sample correlation matrices for the cases

and the controls and then using a scaled and centered ver-

sion of the largest eigenvalue of a function of these sam-

ple correlation matrices to test the null hypothesis that the

population correlation matrix for cases is equal to the pop-

ulation correlation matrix for controls. As we demonstrate

using simulation studies, the GET method provides supe-

rior type I error control and power as compared to the stan-

dard two-stage global gene-gene interaction test. To show the

practical utility of the GET method, we analyzed the glau-

coma GWAS data from the Glaucoma Gene Environment

(GLAUGEN) study, a part of GENEVA consortium (Cornelis

et al., 2010).

The remainder of this paper is organized as follows: Section

2 outlines our data assumptions, the statistical details of the

GET method, and the framework used for evaluation, Section

3 contains the results from simulation studies and the analy-

sis of the GLAUGEN GWAS data set, and a discussion and

summary is included in Section 4.

2 METHODS

2.1 Data assumptions and interaction model

We assume that detection of gene-gene interactions is per-

formed on a collection of genetic markers, a binary phenotype

or dichotomized quantitative trait, and clinical covariates cap-

tured for multiple independent subjects as part of a GWAS.

2.1.1 Genetic markers

We assume there are 𝑝 genetic markers, 𝐆1,… ,𝐆𝑝, measured

on all 𝑛 subjects. Specifically, it will be assumed that these are

SNPs specified using additive coding. The measured values

can be stored in an 𝑛 × 𝑝matrix,𝐆, where each element equals

0, 1, or 2 according to the number of variant alleles at marker 𝑗

for subject 𝑖. Let the 𝑝 × 𝑝 matrices 𝚺 and 𝐏 represent the pop-

ulation covariance and correlation matrices for the 𝑝 markers.

If 𝐌 is the mean-centered and standardized version of 𝐆, then

the unbiased estimate of the sample correlation matrix can

be defined by the matrix 𝐒 = 1∕(𝑛 − 1)𝐌𝑇𝐌 whose elements

are the Pearson correlation coefficients between markers 𝑖 and

𝑗. Because the elements of 𝐒 are the Pearson correlation coef-

ficients between the genetic markers, that is, SNPs, they rep-

resent the genotypic linkage disequilibrium (LD) measure Δ̂
between each pair of SNPs (Wellek & Ziegler, 2009; Ziegler

& König, 2010).

2.1.2 Phenotype

We assume that a phenotype, 𝐘, is measured on all 𝑛 sub-

jects. We specifically assume that 𝐘 is a binary phenotype,

for example, indicator of disease case/control status, or a con-

tinuous phenotype discretized as a binary variable. The term

phenotype will be used in this paper to describe both standard

phenotypes as well as variables often described as endophe-

notypes (Gottesman & Gould, 2003). Measured values of the

phenotype can be stored in an 𝑛 × 1 vector, 𝐲, where element

𝑦𝑖 represents the value of the phenotype for subject 𝑖.

2.1.3 Covariates

We assume that 𝑘 covariates, 𝐂1,… ,𝐂𝑘, are measured on all

𝑛 subjects. Measured values can be stored in a single 𝑛 × 𝑘

matrix 𝐂.

2.1.4 Phenotype-based partitioning

To formulate our global gene-gene interaction test, it is nec-

essary to partition the genetic marker data based on the value

of the binary phenotype or dichotomized continuous vari-

able and, based on this data split, define partitioned ver-

sions of the population and sample covariance and correlation

matrices. The genetic marker matrix𝐆 and the mean-centered

and standardized marker matrix 𝐌 and the covariate matrix

𝐂 can all be split into two submatrices according to the value

of the binary phenotype 𝐘.

Let 𝑑 represent the number of subjects whose measured

value of phenotype 𝐘 is 1, that is, 𝑑 =
∑𝑛

𝑖=1 𝑦𝑖. The parti-
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tioned genetic marker matrices can then be defined as the

𝑑 × 𝑝 matrix 𝐆𝐘=1 or 𝐆1 and the (𝑛 − 𝑑) × 𝑝 matrix 𝐆𝐘=0

or 𝐆0, where 𝐆1 contains the 𝑑 rows of 𝐆 corresponding

to subjects whose 𝐘 phenotype value is 1 and 𝐆0 contains

the 𝑛 − 𝑑 rows of 𝐆 not in 𝐆1. As a concrete example, if

the phenotype variable 𝐘 represents disease case/control sta-

tus, then 𝐆1 holds the genetic marker data for cases and 𝐆0

holds the genetic marker data for controls. The partitioned

covariate matrices, 𝐂1 and 𝐂0, can be defined analogously to

𝐆1 and 𝐆0. The partitioned mean-centered and standardized

genetic marker matrices, 𝐌1 and 𝐌0, are computed by mean

centering and standardizing the partitioned marker matrices

𝐆1 and 𝐆0, respectively.

Let the population correlation relationships among the

genetic markers, 𝐆1,… ,𝐆𝑝, within the subpopulations

defined by the phenotype variable 𝐘 be defined by the

matrices:

𝐏𝐘=1 = 𝐏1,𝐏𝐘=0 = 𝐏0.

Let the sample correlation relationships among the genetic

markers within the subpopulations be defined by

𝐒𝐘=1 = 𝐒1 = 1
𝑑 − 1

(𝐌1)𝑇𝐌1

𝐒𝐘=0 = 𝐒0 = 1
𝑛 − 𝑑 − 1

(𝐌0)𝑇𝐌0. (1)

If interaction detection is being performed while control-

ling for a nonzero number of covariates, 𝐶𝑘, it is assumed

that 𝐏0,𝐏1,𝐒0, and 𝐒1 represent the population and sample

partial correlation matrices whose elements contain the cor-

relation between each pair of genetic markers conditional on

the values of the covariates, 𝐶𝑘.

2.1.5 Gene-gene interaction model

The proposed GET method is concerned with identifying sta-

tistical two-way interactions between genetic markers relative

to the phenotype 𝐘. For binary phenotypes, we assume in the

remainder of this paper that interactions represent a depar-

ture from additivity on log-odds scale although the method

also applies to interaction detection on an absolute risk scale.

Such interactions can be statistically tested in the case of a

two-way interaction between markers 𝐆𝑎 and 𝐆𝑏 relative to

binary phenotype 𝑌 using a logistic regression model of the

following form:

𝑙𝑜𝑔𝑖𝑡(𝑃 (𝑌 = 1|𝐺𝑎,𝐺𝑏, 𝐶) = 𝛽0 +
𝑘∑

𝑖=1
𝛽𝐶𝑖

𝐶𝑖 + 𝛽𝐺𝑎
𝐺𝑎

+𝛽𝐺𝑏
𝐺𝑏 + 𝛽𝐺𝑎𝐺𝑏

𝐺𝑎𝐺𝑏. (2)

Given this model, the null hypothesis of no interaction

between 𝐆𝑎 and 𝐆𝑏 can be specified as 𝐻0 ∶ 𝛽𝐺𝑎𝐺𝑏
= 0.

T A B L E 1 Partitioned sample correlation matrices for data simulated

with five SNPs and an interaction between SNPs 1 and 2, that is, marker

variables 𝐺1 and 𝐺2

Average 𝐒𝟏 (cases) Average 𝐒𝟎 (controls)

𝑮𝟏 𝑮𝟐 𝑮𝟑 𝑮𝟒 𝑮𝟓 𝑮𝟏 𝑮𝟐 𝑮𝟑 𝑮𝟒 𝑮𝟓

𝐺1 1 − − − − 𝐺1 1 − − − −

𝐺2 −0.15 1 − − − 𝐺2 0.16 1 − − −

𝐺3 0.05 0.04 1 − − 𝐺3 0.06 0.09 1 − −

𝐺4 0.06 0.05 0.07 1 − 𝐺4 0.07 0.07 0.07 1 −

𝐺5 0.06 0.05 0.05 0.09 1 𝐺5 0.06 0.08 0.09 0.06 1

The mean case and control correlation coefficients for the first two SNPs are

in bold.

2.2 GET Method

Our proposed GET method for detecting interactions com-

pares the sample correlation matrix for cases, 𝐒1, with the

sample correlation matrix for controls, 𝐒0, with hypothesis

testing based on an important theoretical result from random

matrix theory concerning the test of the equivalence of two

covariance matrices (Johnstone, 2009). An R (R Core Team,

2015) implementation of the GET method and a simple exam-

ple equivalent to the analysis shown in Table 1 are available

at http://www.dartmouth.edu/~hrfrost/GET.

2.2.1 Hypothesis

Given the phenotype-based partitioning of the data and corre-

lation matrices defined in Section 2.1.4, a global test for gene-

gene interactions can be specified using the following null and

alternative hypotheses:

𝐻0 ∶ 𝐏1 = 𝐏0,𝐻𝐴 ∶ 𝐏1 ≠ 𝐏0. (3)

This null hypothesis asserts that the population correlation

structure for the 𝑝 genetic markers is identical for both sub-

populations according to the phenotype 𝐘. Because the ele-

ments of the sample correlation matrix are equal to the LD

measure Δ̂ (Wellek & Ziegler, 2009; Ziegler & König, 2010),

this null hypothesis equivalently asserts that the LD struc-

ture measured for the markers among cases is equal to the LD

structure measured among controls. It is useful to contrast this

test with the case-only test of gene-environment or gene-gene

interactions (Ziegler & König, 2010). For a single interac-

tion, the case-only test estimates the correlation between two

genetic markers (or between a genetic marker and an envi-

ronmental exposure) within just the cases and tests the null

hypothesis that this case-only correlation is 0. If the two mark-

ers are uncorrelated in the general population, the case-only

test correctly controls the type I error rate and is among the

most powerful of all interaction detection methods (Clarke

& Morris, 2010). By testing the equality of case and control

correlation matrices, the GET method jointly tests the differ-

ence between the case and control correlation coefficients for

all pairs of markers, that is, all potential gene-gene interac-

tions. Importantly, this test does not require the markers to
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be uncorrelated in the general population because the com-

parison is made between case and control sample correlation

matrices.

As a simple illustration, Table 1 contains the average

of 20 partitioned sample correlation matrices, 𝐒1 and 𝐒0,

computed for simulated genotype data with five SNPs and

just a single interaction between the first two SNPs (repre-

sented by variables 𝐺1 and 𝐺2). Each data set was simulated

to contain five SNPs measured on 1,000 independent subjects

with additive coding, a minor allele frequency (MAF) of 0.25,

and inter-SNP correlation of ∼ 0.1 (the SNPs were gener-

ated as correlated binomial variables from a Gaussian copula

with 𝜌 = 0.1). The binary phenotype was generated accord-

ing to the model: logit(𝑃 (𝑌 = 1|𝐺) = −1 + log(1.5)𝐺1 +
log(1.5)𝐺2 + log(3)𝐺1𝐺2. To reflect a case/control design, a

large number of subjects were first simulated and then sub-

sampled to create a data set with 500 cases and 500 controls.

Given this model, the phenotype is associated with only the

first two SNPs via both marginal and interaction effects. As

expected, the difference between the mean case and control

correlation coefficients is much larger (by nearly an order of

magnitude: 0.31 vs. 0.019) for the first two SNPs than for

any other marker pair. Importantly, the correlation for SNPs 1

and 2 deviates from the average estimated correlation between

other SNP pairs among both cases and controls.

2.2.2 Statistical significance

The GET method tests the null hypothesis𝐏1 = 𝐏0 against the

alternative 𝐏1 ≠ 𝐏0 using results from random matrix theory

first described by Johnstone in 2009 (Johnstone, 2008, 2009).

As detailed by Johnstone, if there are two random vectors,

𝐩1 and 𝐩2, that have multivariate normal distributions with

associated population covariance matrices 𝚺1 and 𝚺2, the test

of 𝐻0 ∶ 𝚺1 = 𝚺2 versus 𝐻𝐴 ∶ 𝚺1 ≠ 𝚺2 can be based on the

largest eigenvalue of a function of two sample covariance

matrices for samples of 𝑛1 and 𝑛2 independent observations of

the 𝐩1 and 𝐩2 random vectors. If the sample covariance matri-

ces in this case are 𝐒1 and 𝐒2, then the test of this hypothesis,

the so-called greatest root test, is based on the largest eigen-

value, 𝜆1, of (𝑛1𝐒1 + 𝑛2𝐒2)−1𝑛2𝐒2.

As reported by Johnstone (2009), the distribution of 𝜆1
of (𝑛1𝐒1 + 𝑛2𝐒2)−1𝑛2𝐒2 under 𝐻0 ∶ 𝚺1 = 𝚺2 can be well

approximated by the Tracy-Widom law of order 1 distribu-

tion, 𝐹1, after the following transformation, centering, and

scaling:

logit(𝜆1) − 𝜇(𝑝, 𝑛1, 𝑛2)
𝜎(𝑝, 𝑛1, 𝑛2)

𝐷
←←←←←←←←→ 𝐹1, (4)

where the centering and scaling terms 𝜇 and 𝜎 are defined as:

𝜇(𝑝, 𝑛1, 𝑛2) = 2log

(
tan

(
𝜙 + 𝛾

2

))

𝜎(𝑝, 𝑛1, 𝑛2)3 = 16
(𝑛1 + 𝑛2 − 1)2

1
𝑠𝑖𝑛2(𝜙 + 𝛾)𝑠𝑖𝑛 𝜙𝑠𝑖𝑛 𝛾

𝑠𝑖𝑛2
(
𝛾

2

)
=

𝑚𝑖𝑛(𝑝, 𝑛2) − 0.5
𝑛1 + 𝑛2 − 1

,

sin2
(
𝜙

2

)
=

max(𝑝, 𝑛2) − 0.5
𝑛1 + 𝑛2 − 1

.

Johnstone’s development of this Tracy-Widom approxi-

mation to the null distribution of the greatest root statistic

was motivated largely by the very poor type I error control

achieved by the standard distributional approximation, based

on an F distribution (Johnstone, 2009).

For the GET method, the test statistic is based on the prin-

cipal eigenvalue of a similar matrix computed using the parti-

tioned sample correlation matrices, 𝐒1 and 𝐒0: (𝑑𝐒1 + (𝑛 − 𝑑)
𝐒0)−1(𝑛 − 𝑑)𝐒0. To generate a test statistic, 𝑇 , that can be

used for testing the hypothesis specified in (3), the principal

eigenvalue of this function of 𝐒1 and 𝐒0 is computed and then

the transformation, centering, and scaling specified in (4) are

applied with 𝑛1 = 𝑑 and 𝑛2 = 𝑛 − 𝑑:

𝑇 =
logit(𝜆1((𝑑𝐒1 + (𝑛− 𝑑)𝐒0)−1(𝑛− 𝑑)𝐒0) −𝜇(𝑝, 𝑑, 𝑛− 𝑑)

𝜎(𝑝, 𝑑, 𝑛− 𝑑)
.

(5)

The P-value associated with hypothesis (3) is therefore

based on the probability that a Tracy-Widom law of order 1

distribution is greater than 𝑇 :

𝑃 𝑟(𝑇 = 𝑡|𝐻0) = 1 − 𝐹1(𝑡). (6)

A potential limitation of using (6) to compute the P-value

is the fact that Tracy-Widom distribution in (4) is asymp-

totic (𝑛 → ∞ and 𝑝 → ∞ with 𝑛∕𝑝 constant) and technically

applies to just multivariate normal data while 𝐒1 and 𝐒0 are

sample correlation matrices for binomial data measured on

a finite number of observations. The centering and scaling

terms 𝜇 and 𝜎 defined by Johnstone are also just approxi-

mations. However, it has been found that the Tracy-Widom

distribution associated with the largest eigenvalue of Wishart

matrices actually hold quite well for non-normal data as well

as for small 𝑛 and small 𝑝 (Patterson, Price, & Reich, 2006;

Soshnikov, 2002). To validate the accuracy of the Tracy-

Widom law of order 1 distribution for characterizing the

statistic 𝐓 defined in (5), we simulated two collections of

2,500 null data sets with each data set containing 500 subjects

and 100 SNPs with MAF of 0.25, no intermarker correlation

and no interactions. In the first collection of 2,500 data sets,

none of the SNPs had marginal or interaction effects while

in the second collection five of the 100 SNPs had a marginal

association. As shown in Figure 1, the null distribution of the

𝐓 statistic is well approximated by the Tracy-Widom law of

order 1 (as generated by the R function dtw in package RMT-

stat (Johnstone, Ma, Perry, & Shahram, 2014)) for both the

case of no marginal or interaction effects and for the case of

just marginal effects. Consistent with the results reported by
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F I G U R E 1 Comparison of the empirical density of the test statistic 𝐓 defined in (5) (solid line) and the Tracy-Widom law of order 1 distribution (dotted

line). In plot (a), the 𝐓 density was computed from 2,500 simulated data sets each containing 100 SNPs without marginal or interaction effects (see text in

Section 2.2.2 for simulation details). In plot (b), the 𝐓 density was computed from 2,500 simulated data sets each containing 100 SNPs with no interaction

effects and a marginal association for the first five SNPs.

Johnstone (2009) for the distributional approximation (4), the

deviation between the empirical density of 𝐓 and the Tracy-

Widom law of order 1 is in the conservative direction.

2.2.3 Handling high-dimensional data

If the number of markers 𝑝 is relatively small (i.e., thou-

sands to tens of thousands) computation of partitioned

sample covariance matrices 𝐒0 and 𝐒1 as defined in (1) and

the matrix (𝑑𝐒1 + (𝑛 − 𝑑)𝐒0)−1(𝑛 − 𝑑)𝐒0 will be straight-

forward. For typical GWAS data sets, however, there will

often be hundreds of thousands to millions of markers and,

for such data sets, two serious challenges are encountered.

First, the computation of the 𝐒0 and 𝐒1 matrices becomes

computationally expensive, and second, the ratio of the num-

ber of samples to the number of markers (𝑛∕𝑝 ) becomes

small, degrading the accuracy of the correlation matrix esti-

mates and of distributional approximation (4). To support

such genome-scale data sets, the set of markers must there-

fore be filtered according to either biological or statistical cri-

teria. Biological filtering can be done at the level of indi-

vidual genes, that is, test for interactions among all mark-

ers proximate to coding regions for a specific gene, or at the

level of entire pathways, that is, test for interactions among

all markers associated with the genes involved in a specific

pathway or other biologically based gene set (e.g., the gene

sets defined in a repository such as MSigDB (Liberzon et al.,

2011)). For statistical filtering, the set of markers is filtered

according to some statistic computed from the data with the

goal of just keeping markers that have a high likelihood of

association with the outcome of interest. This type of filter-

ing, often called screening-testing (Bourgon, Gentleman, &

Huber, 2010), is commonly used during interaction detec-

tion to reduce the burden of MHC (Murcray, Lewinger, &

Gauderman, 2009; Murcray, Lewinger, Conti, Thomas, &

Gauderman, 2011). For screening-testing, the filter statistic

must be independent from the interaction test statistic under

the null hypothesis to ensure type I error control using the

unfiltered markers. For the simulation studies detailed in Sec-

tions 2.3.2 and 2.3.3, the number of markers was set to a size

that could be reasonably achieved via either biological or sta-

tistical filtering. For the real data use case detailed in Sec-

tion 2.3.4, statistical filtering was employed with the marginal

association between each marker and the phenotype as a fil-

ter statistic, that is, the P-value associated with 𝛽𝐺𝑎
in (2). Our

selection is motivated by the fact that the marginal association

filter statistic is asymptotically independent from the gene-

gene interaction test statistic under the null hypothesis of no

interaction (Dai, Kooperberg, Leblanc, & Prentice, 2012b).

2.3 Evaluation design

To evaluate our GET method, we compared the results from

GET for simple simulation (Section 2.3.2), disease-based

simulation (Section 2.3.3), and real data (Section 2.3.4) use

cases against the benchmark approach outlined in Section

2.3.1.

2.3.1 Benchmark global interaction test

For comparative evaluation of the GET method, we used the

best performing global interaction detection method in Dai

et al. (2012a). In Dai et al., a two-stage global test was per-

formed in which a P-value was first computed for each poten-

tial interaction and then the set of interaction P-values were

tested for departure from the 𝑈 (0, 1) distribution expected

under the null hypothesis of no gene-gene interactions. Dai

et al. evaluated multiple methods for performing this com-

bined P-value test and found that Fisher’s method (Kost and

McDermott, 2002; Won et al., 2009) had the best overall

performance.

In Dai et al., the multifactor dimensionality reduc-

tion (MDR) method (Moore, 2010) was used to compute

interaction-level P-values. For the simulation-based eval-

uation of the GET method, we used the case-only trend
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test for association between the two genetic markers to

compute interaction-level P-values. The test is based on the

following linear regression model:

𝐸(𝐺𝑎|𝑌 = 1, 𝐺𝑏, 𝐶) = 𝛽0 +
𝑘∑

𝑖=1
𝛽𝐶𝑖

𝐶𝑖 + 𝛽𝐺𝑏
𝐺𝑏

with the null hypothesis that 𝛽𝐺𝑏
= 0. Statistical significance

can be computed via a Wald test on 𝛽𝐺𝑏
or using a likelihood

ratio test. We selected this test to achieve a competitive power

comparison and to highlight issues with type I error control.

As detailed in Clark et al. (Clarke & Morris, 2010), the case-

only trend test has the best overall power among interaction

detection tests when specific genetic architecture, for exam-

ple, dominance, cannot be assumed. As a case-only test, it can

also generate highly inflated type I error rates when genetic

markers are correlated in the general population.

For the GLAUGEN GWAS analysis detailed in Section

2.3.4, the P-values for individual SNP-SNP interactions were

computed using the case-only version of PLINK’s “fast-

epistasis” test (Chang et al., 2015).

2.3.2 Simple simulation design

The type I error control and power of the GET method were

assessed relative to the benchmark approach using a sim-

ple simulation model based on the framework used in Dai

et al. (2012b). This simple model has the benefits of easy

interpretation and straightforward implementation by other

researchers.

For type I error control assessment, we performed simu-

lations for 20 different groups of parameter settings. Specif-

ically, 1,000 data sets were simulated with 250, 500, 1,000,

2,000, or 4,000 independent subjects, 50 SNPs gener-

ated with additive coding under an assumption of Hardy-

Weinberg equilibrium with a MAF randomly selected from

𝑈 (0.25, 0.75), and a correlation between SNPs of either 0 or

∼ 0.1 (the SNPs were simulated as correlated binomial vari-

ables from a Gaussian copula with 𝜌 = 0 or 𝜌 = 0.1). A single

binary phenotype was generated according to model (2) with

no interaction effects (i.e., 𝛽𝐺𝑖,𝐺𝑗
= 0) and the intercept and

marginal association coefficients set to either: 𝛽0 = −5 and

𝛽𝐺𝑖
= 0 or 𝛽0 = −2 and 𝛽𝐺𝑖

= log(1.15), 𝑖 = 1,… , 10. The

20 simulated parameter settings included all possible com-

binations of the number of subjects, inter-SNP correlation,

and phenotype model coefficient settings. Similar to the sim-

ulation approach used to generate the results in Table 1 and

the simulation support in tools like PLINK 1.9 (Chang et al.,

2015) and GCTA (Yang, Lee, Goddard, & Visscher, 2011), a

large number of subjects were generated that were then sub-

sampled to ensure an even split between cases and controls.

For a comparative assessment of statistical power, we per-

formed simulations for 15 different groups of parameter set-

tings. Similar to the type I error control simulations, 1,000

data sets were simulated for each group of parameter settings

with the number of subjects, number of SNPs, and SNP MAF

taking the same range of values used for the type I error con-

trol simulations. Because the benchmark method is unable to

maintain type I error control in the presence of inter-SNP cor-

relation, all SNPs were independent for the power simulation.

The binary phenotype was also generated according to model

(2) but, in this case, interaction effects were included for five

of the potential SNP-SNP pairs. Specifically, the following

three different model coefficient settings were used:

1. Main effects, interactions among main effect SNPs:

𝛽0 = −3, 𝛽𝐺𝑖
= log(1.15), 𝑖 = 1,… , 10 and 𝛽𝐺𝑖,𝐺𝑗

=
log(2), 𝑖, 𝑗 ∈ (1, 5) (i.e., marginal effects for the first five

SNPs and interactions for five random SNP pairs drawn

from the first five SNPs).

2. Main effects, interactions among nonmain effect SNPs:

𝛽0 = −3 and 𝛽𝐺𝑖
= log(1.15), 𝑖 = 1,… , 10 and 𝛽𝐺𝑖,𝐺𝑗

=
log(2), 𝑖, 𝑗 ∉ (1, 5) (i.e., marginal effects for the first five

SNPs and interactions for five random SNP pairs drawn

from all SNPs not including the first five).

3. No main effects, interactions among nonmain effect SNPs:

𝛽0 = −1 and 𝛽𝐺𝑖
= 0 and 𝛽𝐺𝑖,𝐺𝑗

= log(2) (i.e., no marginal

effects and interactions for five random pairs of SNPs).

The 15 simulated parameter settings included all possible

combinations of the number of subjects and phenotype model

coefficient settings. Power was computed as the proportion of

the 1,000 simulated data sets with a global gene-gene interac-

tion test P-value below 0.05.

2.3.3 Disease-based simulation design

To assess the type I error control and power of GET in a

more realistic scenario, we used the approach of Aschard

et al. (2012a) for simulating gene-gene interactions under

the genetic architectures of breast cancer, type 2 diabetes,

and rheumatoid arthritis. Specifically, we modified Aschard’s

original simulation code to generate disease-based data sets

with or without G×G interactions. For both type I error con-

trol and power evaluation, 1,000 data sets were generated for

each disease with each data set containing either 625, 1,250,

or 2,500 subjects with data for the set of known risk SNPs and

known environmental risk factors, as detailed for each dis-

ease in the Supporting Information for Aschard et al. (2012a),

and a set of 50 additional SNPs with a MAF drawn from

𝑈 (0.05, 0.95) and no association with the outcome. No G×E

interactions were included and no correlation was simulated

between markers, between exposures or between markers and

exposures. The binary outcome variable, reflecting disease

case-control status, was simulated according to the model rep-

resented by Equation (2) in Aschard et al. (2012a). Similar to

the approach used for the simple simulation model, we mim-

icked case-control study data by simulating a large number
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of subjects and then sampling cases and controls to achieve

an equal case/control balance. For type I error control simu-

lation, no G×G interactions were simulated. For power sim-

ulation, five G×G interactions were simulated among ran-

domly selected pairs of the known risk SNPs for each dis-

ease with the interaction effect in the Aschard model set to

±log(2).

2.3.4 GLAUGEN GWAS analysis

To assess the practical utility of the GET method, we analyzed

GWAS data from the GLAUGEN study, a part of GENEVA

consortium (Cornelis et al., 2010) now combined with the

NEIGHBOR (NEI Glaucoma Human genetics collaBORa-

tion) study into the NEIGHBOR consortium (Wiggs et al.,

2013). The GLAUGEN GWAS aims to characterize genetic

markers and gene-environment interactions associated with

primary open-angle glaucoma (POAG), the most common

type of glaucoma worldwide (the prevalence among Cau-

casian individuals over 70 years of age is 6% (Rudnicka, Mt-

Isa, Owen, Cook, & Ashby, 2006)) and a disease with signif-

icant heritability (Sung et al., 2006). POAG is thought to be

caused by a slow exit of aqueous humor through the trabecular

meshwork leading to a progressive buildup of fluid, increased

intraocular pressure (IOP), and damage to the optic nerve

(Llobet, Gasull, & Gual, 2003). The combined NEIGHBOR

consortium contains nearly 3,500 cases and 3,500 controls,

limited to individuals 35 years of age or older with European-

derived or Hispanic Caucasian ethnicity.

For our analysis, we used the subset of the NEIGHBOR

consortium GWAS data that was drawn from the GLAUGEN

study: 1,000 cases and 1,183 controls. In addition to POAG

diagnosis, we considered the following ocular endopheno-

types: VFPA (indicator of paracentral vision loss), VFPE

(indicator of peripheral vision loss), IOP (maximum untreated

interocular pressure), VFPSD (pattern standard deviation),

VCDR (recent vertical cup/disk ratio). For all of the endophe-

notypes, we adopted a simple two eye design in which the

average of the right and left eye measurements was used and,

if one eye measurement was missing, then the nonmissing

value was used (Glynn & Rosner, 2012; Murdoch, Morris,

& Cousens, 1998). If a binary endophenotype had a positive

indicator in just one eye, this was interpreted as a positive

average. For the continuous endophenotypes IOP, VFPSD,

and VCDR, median-based dichotomization of the right and

left eye averages was used to create a binary phenotype (val-

ues equal to the median were treated as cases).

Quality control of the SNP data was carried out using

PLINK 1.9 (Chang et al., 2015) and included removing sub-

jects missing more than 5% of the SNPs, removing all nonau-

tosomal SNPs, removing all SNPs with a Hardy-Weinberg

test of equilibrium P-value < 1 × 10−5, removing all SNPs

with MAF of less than 0.01 and removing all SNPs with

any missing measurements. Although very conservative, this

last QC step eliminated the potential bias of an imputation

method and was considered appropriate because the aim of

the analysis was not to maximize the number of significant

findings but instead support the comparative evaluation of

GET with the benchmark method on real GWAS data. After

all of these preprocessing and quality control steps, 2,112 sub-

jects (976 cases and 1,136 controls) and 200,432 SNPs, spec-

ified using additive coding, remained in the data set. Because

of missing endophenotype values, the actual number of sub-

jects available for analysis of each endophenotypes varied

as follows (with case/control in this context referring to the

dichotomized value of the endophenotype): VFPA: 127 cases,

510 controls; VFPE: 357 cases, 175 controls; IOP: 624 cases,

549 controls; VFPSD: 432 cases, 433 controls; VCDR: 678

cases, 606 controls.

Given the large number of SNPs remaining after QC

(200,432), we performed filtering using the marginal asso-

ciation filter statistic, as outlined in Section 2.2.3, prior to

gene-gene interaction detection For continuous phenotypes,

the marginal association filter statistic was computed via lin-

ear regression; for the binary phenotypes, it was computed

using logistic regression. The filter threshold for each phe-

notype was adjusted to retain 100 SNPs for the final analysis

(for an 𝑛∕𝑝 ∼ 20 and
(100

2

)
= 4, 950 potential SNP-SNP inter-

actions).

False discovery rate (FDR) values were computed for

global interaction test P-values and for the specific SNP-SNP

interaction test P-values using the Benjamini and Hochberg

method (Benjamini & Hochberg, 1995). For global inter-

action P-values, the family of hypotheses for FDR compu-

tation comprised the tests associated with the six pheno-

types listed above. For each of these phenotypes, the fam-

ily of hypotheses for FDR computation comprised the gene-

gene interaction tests for all 4,950 potential SNP-SNP inter-

actions. For this analysis, we did not adjust the interaction-

level FDR values to account for global tests. If strict con-

trol of the FDR was desired for the interaction-level tests,

the hierarchical FDR approach of Yekutieli (2008) could be

employed.

3 RESULTS

3.1 Simple simulation results

3.1.1 Type I error control

As shown in Table 2, type I error control for the GET method

was conservative for all tested simulation settings. This result

is consistent with the findings by Johnstone (2009) that the

Tracy-Widom approximation was conservative for all simula-

tions settings shown in his Table 1 except the simulation with

the smallest 𝑛∕𝑝 ratio (𝑛∕𝑝 =∼ 3) for which type I error con-

trol was anticonservative. The type I error rate for GET was
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T A B L E 2 Results for the type I error control simulation as detailed in Section 3.1.

Simulation settings Type I error rate

Marginal assoc. (No. of subjects)/(No. of SNPs) SNP-SNP ∼ 𝝆 GET Benchmark method

✓ 250/50=5 0.0 0.044 0.056

✓ 500/50=10 0.0 0.024 0.044

✓ 1,000/50=20 0.0 0.015 0.046

✓ 2,000/50=40 0.0 0.017 0.049

✓ 4,000/50=80 0.0 0.017 0.052

✓ 250/50=5 0.1 0.033 1.000

✓ 500/50=10 0.1 0.029 1.000

✓ 1,000/50=20 0.1 0.025 1.000

✓ 2,000/50=40 0.1 0.026 1.000

✓ 4,000/50=80 0.1 0.018 1.000

250/50=5 0.0 0.035 0.047

500/50=10 0.0 0.018 0.042

1,000/50=20 0.0 0.027 0.050

2,000/50=40 0.0 0.014 0.044

4,000/50=80 0.0 0.019 0.060

250/50=5 0.1 0.039 1.000

500/50=10 0.1 0.025 1.000

1,000/50=20 0.1 0.023 1.000

2,000/50=40 0.1 0.024 1.000

4,000/50=80 0.1 0.017 1.000

insensitive to the presence of a general correlation between

SNPs or the presence of a marginal association for some of

the SNPs. For the benchmark method, type I error control

was closely associated with the overall correlation between

the simulated SNPs. When the SNPs were simulated without

any correlation, type I error control was excellent, however,

even a small level of correlation between SNPs resulted in a

serious inflation of the type I error rate. Because the individ-

ual interaction P-values were computed using a case-only test

and the joint P-value test assumed P-value independence, this

result was expected.

3.1.2 Power

As seen in Table 3, the GET method had superior power rel-

ative to the benchmark method for almost all of the simula-

tion settings with 𝑛∕𝑝 ≥ 20. As expected, power improved for

both methods as the 𝑛∕𝑝 ratio increased with the relative dif-

ference in power between GET and the benchmark method

becoming substantial for 𝑛∕𝑝 ≥ 40. Neither method was able

to detect the simulated interactions when 𝑛∕𝑝 ≤ 10. Power for

GET was also found to increase as both 𝑛 and 𝑝 increased

with the ratio 𝑛∕𝑝 held constant (results not shown), which

is consistent with the improved quality of the Tracy-Widom

approximation as both n and p increase with the ratio 𝑛∕𝑝
fixed. For GET, performance was similar across all three mod-

els while the benchmark method displayed significant model

sensitivity with significant drops in empirical power between

models 1 and 2 and between models 2 and 3.

3.2 Disease-based simulation results

As seen in Table 4, the GET method had acceptable type

I error control for all three simulated disease architectures

detailed in Section 2.3.3 at each of the tested sample sizes. The

benchmark method, on the other hand, exhibited conservative

type I error control in all evaluated cases. The empirical power

realized by GET was significantly higher than the power for

the benchmark method for all disease architectures and sam-

ple sizes. The benchmark method had only marginal power at

the very largest sample size. As expected, the power for both

methods increased as the number of subjects was increased.

3.3 GLAUGEN results

Table 5 contains the global gene-gene interaction test results

generated by GET and the benchmark method for GLAU-

GEN GWAS data using six different phenotypes, as detailed

in Section 2.3.4. Using the GET method, highly signifi-

cant FDR values were generated for all of the phenotypes

with the exception of paracentral vision loss. Using the

benchmark method, only three of the phenotypes had sig-

nificant global gene-gene interaction test results at a 𝑞 ≤

0.1: peripheral vision loss, pattern standard deviation, and
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T A B L E 3 Results for the power simulation as detailed in Section 2.3.2.

Simulation settings Power

Model no. (No. of subjects)/(No. of SNPs) GET Benchmark method

1 250/50=5 0.039 0.056

1 500/50=10 0.056 0.066

1 1,000/50=20 0.086 0.120

1 2,000/50=40 0.304 0.165

1 4,000/50=80 0.817 0.335

2 250/50=5 0.055 0.060

2 500/50=10 0.052 0.069

2 1,000/50=20 0.094 0.090

2 2,000/50=40 0.344 0.123

2 4,000/50=80 0.921 0.270

3 250/50=5 0.048 0.064

3 500/50=10 0.044 0.057

3 1,000/50=20 0.108 0.055

3 2,000/50=40 0.469 0.089

3 4,000/50=80 0.945 0.121

In the table, model no. refers to one of the numbered simulation models detailed in Section 2.3.2.

T A B L E 4 Estimated type I error rates at empirical power at 𝛼 = 0.05 the disease-based simulation studies detailed in Section 2.3.3.

Disease model No. of subjects Method Type I error rate Power

Breast cancer 625 Benchmark 0.038 0.042

625 GET 0.058 0.466

1,250 Benchmark 0.015 0.060

1,250 GET 0.052 0.893

2,500 Benchmark 0.031 0.225

2,500 GET 0.062 1.000

Type 2 diabetes 625 Benchmark 0.032 0.036

625 GET 0.040 0.202

1,250 Benchmark 0.027 0.048

1,250 GET 0.042 0.400

2,500 Benchmark 0.018 0.143

2,500 GET 0.063 0.806

Rheumatoid arthritis 625 Benchmark 0.028 0.034

625 GET 0.048 0.279

1,250 Benchmark 0.024 0.049

1,250 GET 0.051 0.619

2,500 Benchmark 0.025 0.124

2,500 GET 0.058 0.965

recent vertical cup/disk ratio. Importantly, the benchmark

method failed to detect evidence of gene-gene interactions

relative to either the POAG diagnosis or maximum untreated

IOP, one of the key diagnostic indicators of glaucoma.

Table 6 displays the significant SNP-SNP interactions at

𝑞 ≤ 0.1 for each of phenotypes for which GET generated a

significant global test result at 𝑞 ≤ 0.1. Only four of the five

phenotypes with significant global interaction tests according

to GET had significant SNP-SNP interactions among the 100

SNPs kept after marginal association filtering. In this case,

each of the four phenotypes had just a single significant SNP-

SNP interaction. Although only a small number of significant

interactions were found, this result was consistent with the

limited interaction detection power for this analysis. Specif-

ically, interaction detection power was limited by the strin-

gent filtering of SNPs by marginal association, the relatively

small sample size, the impact of MHC for the family of 4,950

potential interactions after filtering, and other factors such as
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T A B L E 5 Global gene-gene interaction detection results for the GLAUGEN GWAS data using GET and the benchmark method using the procedure

detailed in Section 2.3.4.

Phenotype No. of cases No. of controls GET FDR Benchmark FDR

Primary open-angle glaucoma (POAG) 976 1,136 0.0094 0.175

Paracentral vision loss (VFPA) 127 510 0.414 0.853

Peripheral vision loss (VFPE) 357 175 ∼ 0 0.0073

Maximum untreated intraocular pressure (IOP) 624 549 1.319 × 10−21 0.464

Pattern standard deviation (VFPSD) 432 433 ∼ 0 0.0018

Recent vertical cup/disk ratio (VCDR) 678 606 0.00094 0.0128

T A B L E 6 SNP-SNP interactions at a level-specific FDR 𝑞 ≤ 0.1 according to the interaction testing method detailed in Section 2.3.1.

Phenotype SNP 1 (gene) SNP 2 (gene) FDR

VFPE rs13396549 rs9863361 0.0012

(PARD3B) (∼3 kb from ncRNA LOC105734230)

IOP rs10246477 rs12324434 0.082

(SEMA3E) (DYX1C1)

VFPSD rs2419666 rs7914325 0.021

(∼6 kb from CNV nsv995491) (ABLIM1)

VCDR rs481154 rs11154524 0.029

(DNM3) (SAMD3)

No significant SNP-SNP interactions were found at 𝑞 ≤ 0.1 for the primary open-angle glaucoma (POAG) or paracentral vision loss (VFPA) phenotypes. For

each SNP in the interactions, the rs number and associated gene, if one exists according to dbSNP, are listed. If no gene association exists for the SNP in dbSNP,

the closest gene is indicated.

ambiguity regarding marker coding and interaction scale,

measurement error, and confounding (Aschard et al., 2012b).

As far as we are aware, none of these interactions have been

reported before in the literature. Furthermore, none of the

SNPs in these significant interactions have reported GWAS

associations in the NHGRI-EBI GWAS Catalog (Welter et al.,

2014) and none of the related genes contain markers with sig-

nificant associations to glaucoma-related phenotypes. Based

on previously published associations for the genes linked

to the SNPs, the interactions for IOP, VFPSD, and VCDR

all represent biologically plausible findings for a glaucoma

GWAS study and merit future investigation.

For the rs10246477-rs12324434 interaction, there is exper-

imental support for the association between the two SNP-

associated genes, SEMA3E and DYX1C1, and IOP. SEMA3E

(semaphorin 3E), one of a large family of semaphorin pro-

tein coding genes, uses plexin and neurtrophilin coreceptor

signaling to regulate vascular patterning (Aghajanian et al.,

2014). Of direct relevance to this analysis, SEMA3E has

been identified as an important regulator of vascular net-

work development (Kim, Oh, Gaiano, Yoshida, & Gu, 2011)

and mutations in SEMA3E may be associated with megalo-

cornea (Davidson et al., 2014). It is therefore plausible that

a mutation in SEMA3E could result in alterations of the

retinal vascular network that increase the risk for high IOP

due to poor drainage of the aqueous humor. The DYX1C1

gene has been linked to M(y)-cell-based magnocellular dys-

function (Pammer & Wheatley, 2001). Importantly, M(y)

cells are lost early in glaucoma and M-cell loss has been

found in glaucoma experimentally induced in monkeys by

damaging the trabecular meshwork to increase IOP (Craw-

ford, Harwerth, Smith, Shen, & Carter-Dawson, 2000). For

the rs2419666-rs7914325 interaction, both the gene associ-

ated with rs7914325 (ABLIM1) and the copy number vari-

ant (CNV) adjacent to rs2419666 (nsv995491) are associated

with biological functions linked to POAG. Specifically, the

ABLIM1 gene is related to changes in the actin cytoskele-

ton and is associated with POAG and steroid-induced glau-

coma via cytoskeletal changes in trabecular meshwork cells

(Clark et al., 2013). The CNV adjacent to SNP rs2419666

(nsv995491) is related to a number of skeletal and cranio-

facial phenotypes (dolichecephaly, micrognathia, and pectus

excavatum) that can co-occur with structural defects in the

eye, for example, Marfan’s syndrome is associated with a

number of ocular phenotypes (Latasiewicz, Fontecilla, Millá,

& Sánchez, 2016) including glaucoma (Izquierdo, Traboulsi,

Enger, & Maumenee, 1992). For the rs481154-rs11154524

interaction, both SNP-associated genes, SAMD3 and DNM3,

again have known glaucoma associations. Specifically, an

experiment using SAMD3 knockout mice found that SAMD3

is a required signaling protein for TGF𝛽2 controlled expres-

sion of ECM proteins in tabecular meshwork cells leading
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to increased IOP (McDowell, Tebow, Wordinger, & Clark,

2013). DNM3, a member of the larger family of dynamin

motor proteins, has been found to play a functional role in the

development of megakaryocyte cells (Wang, Gilligan, Sun,

Wu, & Reems, 2011) and it is hypothesized that hematopoi-

etic cells such as megakaryocytes are involved in the vas-

cular events leading to POAG (Knepper & Samples, 2016).

Although the potential biological mechanisms underlying the

identified interactions are unclear, the fact that all of the SNP-

associated genes have been linked to biological processes

important to the etiology of POAG provides strong motiva-

tion for further experimental exploration.

In terms of a comparative analysis, use of the GET method

in a two-stage analysis enabled the identification of three plau-

sible SNP-SNP interactions for the IOP, VFPSD, and VCDR

phenotypes. The benchmark method, on the other hand, was

only able to identify the SNP-SNP interactions for the VFPSD

and VCDR phenotypes.

4 DISCUSSION

Biologically important statistical interactions between mark-

ers of genetic variation, or gene-gene interactions, are

believed to exist for many complex phenotypes in numer-

ous organisms (Cordell, 2009; Mackay, 2014; Moore, 2003;

Taylor & Ehrenreich, 2015), however, despite the significant

research effort, very few interactions of meaningful effect size

have been discovered and replicated (Hemani et al., 2014).

Although numerous issues impede gene-gene interaction dis-

covery, the greatest challenge is likely poor statistical power

due to the burden of MHC (Aschard et al., 2012a; Cordell,

2009). Although prefiltering of the markers can improve

interaction detection power by limiting the number of tested

hypotheses (Greene et al., 2009), for many data sets, power

remains insufficient to detect individual interactions.

For cases where individual interaction testing is not fea-

sible due to low power, the use of a single global test for

interactions is an attractive alternative. By eliminating MHC,

global tests dramatically improve power relative to single

interaction tests and can be used to enable a multistage or

hierarchical analysis in which multiple phenotypes or marker

subsets are first tested via global tests with individual interac-

tion testing only performed for cases with a significant global

test. Although work on global gene-gene interaction testing

has been explored by previous researchers, for example, Dai

et al. (2012a), approaches have so far been limited to two-

stage methods in which a separate statistical test is first per-

formed for all potential interactions and then the set of inter-

action P-values are jointly tested using a test such as Fisher’s

method against the null that they are all insignificant.

To address the limitations of two-stage global gene-gene

interaction methods, we have developed a novel, parametric

global interaction test, the GET, based on an important result

from random matrix theory. As detailed in Section 2.2, our

GET method partitions the genetic marker data according to

a binary phenotype or dichotomized quantitative trait and tests

the null hypothesis that the population correlation matrix for

cases is equal to the population correlation matrix for con-

trols. This test is accomplished by transforming the largest

eigenvalue of a function of the sample correlation matrix for

cases and the sample correlation matrix for controls to a statis-

tic that has a null distribution well approximated by the Tracy-

Widom law of order 1 (Johnstone, 2009). Because the ele-

ments of the partitioned sample correlation matrices repre-

sent the genotypic LD measure Δ̂ between each pair of mark-

ers (Wellek & Ziegler, 2009; Ziegler & König, 2010), the null

hypothesis can also be viewed as asserting that the LD mea-

sure Δ̂ for each pair of markers is the same among cases and

controls.

As we demonstrated via simple and disease-based sim-

ulation studies (detailed in Sections 2.3.2 and 2.3.3 with

results in Sections 3.1 and 3.2), the GET method has superior

type I error control and power relative to a benchmark two-

stage method based on the best approach tested by Dai et al.

(2012a). Regarding type I error control, the GET method has

the important advantage, relative to the benchmark method, of

general insensitivity to correlation among markers. As seen in

Table 2, two-stage methods can generate highly inflated type I

error rates when markers are correlated. In terms of statistical

power, the GET method was found to be more powerful than

the benchmark method across a wide range of simulation set-

tings (see Tables 3 and 4) with power increasing as the ratio

of subjects (n) to markers (p) increased.

To explore the practical utility of the GET method, we ana-

lyzed the GLAUGEN glaucoma GWAS data (Cornelis et al.,

2010), specifically looking for SNP-SNP interactions relative

to a set of six different measured phenotypes. As detailed in

Section 3.3 and Tables 5 and 6, the GET method returned sig-

nificant global test results for five of the six phenotypes with

four of the five significant phenotypes having a single sig-

nificant SNP-SNP interaction. Importantly, three of the four

significant SNP-SNP interactions are biologically plausible

based on published associations for the related genes and, to

the best of our knowledge, have not been previously reported

in the literature. For glaucoma researchers, these significant

and novel SNP-SNP interactions, and the associated genes,

may offer new insights into the etiology of glaucoma and

possible molecular targets for therapeutic intervention. These

findings are even more impressive given the fact that the

GLAUGEN analysis was structured for a comparative analy-

sis and not to maximize the chance of interesting findings. In

contrast to GET, the benchmark method only returned signifi-

cant global test results for three of the six phenotypes and thus

only detected two of the three biologically plausible interac-

tions found via GET. In the likely scenario that a researcher

started the GLAUGEN analysis by performing a global inter-

action test relative to just the POAG phenotype, use of the
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benchmark method would have failed to find any significant

SNP-SNP interactions, whereas a researcher employing the

GET method may have been motivated to explore other phe-

notypes given the significant global test result, but lack of

individually significant interactions, for POAG.

Some important limitations of the GET method should be

noted. A key limitation of GET is poor statistical power at low

values of 𝑛∕𝑝. Although this lack of power at low 𝑛∕𝑝 is shared

by other available methods, it does necessitate some form of

biological or statistical prefiltering of markers for most realis-

tic data sets. Another important limitation of the GET method

is that it requires a binary phenotype. In the event that a con-

tinuous phenotype is measured, discretization to support GET

will generally result in decreased statistical power. Although

GET can support covariate adjustment, this requires the use

of partial correlation matrices that complicates the computa-

tional process. The fact that GET is a global test must also be

reiterated. Because the null hypothesis for a global test is that

no gene-gene interactions exist, such a test can only provide an

indication of whether any interactions exist within a data set;

global tests cannot identify specific interactions. Directions

for future research on the GET method include a theoretical

investigation of the statistical properties of the test at small

𝑛∕𝑝 values, the use of the 𝐓 statistic defined in (5) to estimate

the proportion of phenotypic variance due to epistasis and the

use of the method to test subsets of markers based on biologi-

cal pathways, for example, test sets of markers associated with

the genes annotated to different biological pathways.

In summary, the GET method represents an important

advance for gene-gene interaction detection. Relative to the

standard two-stage approach for global G×G detection, the

GET method provides superior power across a diverse range

of models and, importantly, maintains type I error control in

the presence of general intermarker correlation. As demon-

strated by the GLAUGEN glaucoma GWAS analysis, the

GET method can be leveraged to make novel and biologically

important G×G findings that would be undetected using cur-

rent techniques.
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