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|ABSTRACT
Motivation: The generation of time series transcriptomic datasets
collected under multiple experimental conditions has proven to
be a powerful approach for disentangling complex biological
processes, allowing for the reverse engineering of gene regulatory
networks (GRNs). Most methods for reverse engineering GRNs
from multiple datasets assume that each of the time series were
generated from networks with identical topology. In this study, we
outline a hierarchical, non-parametric Bayesian approach for reverse
engineering GRNs using multiple time series that can be applied
in a number of novel situations including: (i) where different, but
overlapping sets of transcription factors are expected to bind in the
different experimental conditions; that is, where switching events
could potentially arise under the different treatments and (i) for
inference in evolutionary related species in which orthologous GRNs
exist. More generally, the method can be used to identify context-
specific regulation by leveraging time series gene expression data
alongside methods that can identify putative lists of transcription
factors or transcription factor targets.
Results: The hierarchical inference outperforms related (but non-
hierarchical) approaches when the networks used to generate the
data were identical, and performs comparably even when the
networks used to generate data were independent. The method was
subsequently used alongside yeast one hybrid and microarray time
series data to infer potential transcriptional switches in Arabidopsis
thaliana response to stress. The results confirm previous biological
studies and allow for additional insights into gene regulation under
arious abiotic stresses.
Availability: The methods outlined in this article have been
implemented in Matlab and are available on request.
Contact: [d.Lwild@warwick.ac.ukl
Supplementary Information: Supplementary data is available for
this article.

1 INTRODUCTION

The generation and analysis of highly resolved time series datasets
measuring transcriptional change has become an increasingly
common and powerful approach for disentangling complex
biological processes, with several consortia having generated
detailed time series under different experimental conditions/
perturbations, for example, the AtGenExpress consortium (Goda

Mmrm&pm.dﬁm&hmld.bu@m&&ed

et all, Kili or PRESTA consortiuml|} (Breeze
et alf, ) A major goal in the analysis of such data is the
identffication of regulatory relationships by reverse engineering gene
regulatory networks (GRNSs).

Rdcent approaches for the reverse engineering of GRNs from
time | series data make use of nonparametric Bayesian learning
stratggies that have proven competitive with other state-of-the-art
appréaches, particularly when learning from multiple datasets (Aijo
and Lahdesmiki, 2008; [Penfold and Wild, 2011).
To b¢ computationally manageable, these methods assume that the
numbper of transcription factor (TF) proteins binding the promoter
region of a given gene at any given time are limited, corresponding
to a thn-in restriction. Recent studies using yeast one-hybrid screens
of Afjabidopsis thaliana TFs, however, suggest that large numbers
of TIFs have the potential to bind any given gene m
m,m, ). Additionally, in order for these nonparametric
methpds to learn from multiple datasets, it was assumed that the
indiviidual time series were generated from networks with identical
topology. In light of the number of TF-binding promoter regions,
it is|likely that most organisms use a series of transcriptional
switdhes to cope with the variety of stresses and environmental
challpnges they face, with the TFs binding under a given condition
not rlecessarily the same as those binding in another condition or
in different tissues. In these situations, the number of TFs binding
unde} any given condition is likely to be fewer than the total number
that fan possibly bind. Consequently, it is of interest to identify
which subsets of TFs are binding under different conditions, by
iden%:ying treatment-specific GRNs which may, or may not share

4, >

somd common structure. In this regard, identifying context-specific
regulatory networks represents a useful way of combining time
seriep gene expression data with methods that can identify putative
transfriptional regulators, including yeast one-hybrid ,
Rood) and multiple ChIP-chip/Seq experiments (m
Alfernatively, the GRNs of evolutionarily related species might
be ekpected to share some common structure by virtue of a
shargd ancestral network. Time series data generated in the
two fpecies could therefore be informative of one another. In
thesg cases, it might be of interest to identify the similarities
and [differences in the GRNs of the two species (Baumbach
et al, Ez;:ia, |i :;;; Ez ZZ], E:; |). Such an approach could prove
immg¢nsely useful for leveraging information from simpler, but
bettef understood model systems, into more complex organisms,
allowing for useful biological insights, such as addressing why

'Plan} response to environmental stress in Arabidopsis thaliana (PRESTA)
homebpage: |http://www2.warwick.ac.uk/fac/sci/lifesci/research/prestal
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some plants are capable of nodulation while others are not (see e.g.
[http://www?2.warwick.ac.uk/fac/sci/lifesci/research/systemsdevy)).
Rather than treating different datasets independently, or assuming
identical network topologies in the different conditions/species,
a more principled strategy is to adopt a hierarchical modelling
framework such as that used by [Werhli and Husmeied (2008),
in which a separate network structure is inferred from each
individual dataset, albeit with the network topology constrained
via a hypernetwork, as a means of leveraging multiple sources
of prior information. The work of [Werhli and Husmeiet (IZDQS),
however, deals with steady state data using Bayesian networks,
and consequently is not applicable to time series data. In this
study, we combine such a hierarchical framework with the non-
parametric causal structure identification (CSI) algorithm (m

[2008; IPenfold and Wild, [2011)) to allow for network reconstruction

when multiple sources of (perturbed) time series data exist.

2 CAUSAL STRUCTURE IDENTIFICATION

The CSI algorithm (Klemnl, 2008; [Penfold and Wild, 2011)) and
related approaches (A esmik ,) have previously
been used to reverse engineer GRNs and shown to perform well

against other state-of-the-art algorithms (]A_U_Q_a.nd_Lah_d_Qsma.ki
[2009; [Penfold and Wild, 2011l). The discrete-time version of CSI
assumes that the mRNA expression level of a particular gene in a
larger set, i € G, evolves as a nonlinear dynamical system:

xi(tip1)=f (X'Pa(i)(tj)>a Vieg, (1

where x;(¢) represents the expression level of gene i at time
t, Pa(i)C G represents the genes encoding for TFs binding the
promoter regions of gene i (parents of gene i) with xpg;(#) the
vector expression level of those parents at time ¢, and f (-) represents
some unknown (non-linear) function capturing the dynamics of the
system. If the parents of gene i were known a priori, the non-linear
function in equation (@) could be estimated directly from the data by
assigning the function a Gaussian process (GP) prior and assuming
Gaussian additive white noise, to yield a posterior GP (Rasmussen
and Williams,Ei i; ia) The marginal likelihood of a set of N observed
expression values for gene i, y=(x;(t1), ...,xi(tN))T, given the
matrix of expression levels X at previous time points (where
the column X:,l:()cl(t()),...,xl(tN,l))—r represents the vector of
expression for gene [ at times £ through ¢y _1), is, therefore, jointly
Gaussian:

P(y|X, Pa(i),0) = N(y10,Kg +0,.2T), 2)

where 0 represents a vector of zeros of length N and I represents
an N x N identity matrix. Here, 6 represents the hyperparameters of
the GP prior, the interpretation of which will depend on the choice
of covariance function, Ky. In this case, the functional form of the
covariance function was chosen to be the squared exponential:

~Xpa) = Xp,)
Ko (Xpa(i)’X;?a(i)> =of exp( 22 ’

€)

and the hyperparameters Qz{ag,afz,l} therefore represent the

variance of the observation noise, variance of the process and
characteristic length scale, respectively. Alternatively, related

approaches dAgQ_an_d_Lah_d_Qsma.ki, |2Q0_‘]) make use of a Matérn

covariance function.

Typically, the parents of a given gene are not known a priori but
must additionally be inferred from the data. This may be achieved
using Bayes’ rule, where the probability of a particular set of parents,
Paf(i), is given by:

P(y|X, Pa(i),0)P(Pa(i)P(6)

Y. PIX,pa(i),6p)P(pa(i)P(0)
pa(HeP(T)

P(Pa(i)ly,X,0)=

(C)]

Ideally, the summation in the denominator takes place over all
possible combination of transcription factors, that is, the power set
of T, P(T), where T CG represents the set of all transcription
factors and 6 the set of hyperparameters for the k-th parental set.
For large systems, summation over all possible transcription factor
combinations is unfeasible because the number of combinations
scales factorially with the number of TFs. To overcome this,
the summation may be truncated to include only parental sets
of limited in-degree <c, pa(i)€P.(T), resulting in polynomial
scaling.

The distribution in equation @) will, of course, depend on the
choice of hyperparameters in the covariance function. Rather than
setting these manually, it is preferable to allow the data to determine
their value(s), that is, by maximizing the marginal likelihood
with respect to the individual hyperparameters for each parental
set O Aij6_and Lihdesmikd, ) (see also Supplementary
Section 1.1) or jointly constraining 6] =60 =... and maximizing
the marginal likelihood with respect to these parameters using
expectation maximisation (Klemm, 2008; [Penfold and Wild, 2011)
(CSI-EM; Supplementary Section 1.2). Alternatively, a combined
Gibbs/Metropolis algorithm can be used to sample parental structure
and GP hyperparameters, respectively (CSI-Gibbs; Supplementary
Section 1.3). Finally, a distribution over causal network structures,
P(M), can be assembled from the distribution over individual
parental sets, constituting the CSI algorithm:

19|
P(M)=] [P(Pa(i)X,y,6). @)
i=1

2.1 Hierarchical modelling for CSI

The CSI framework outlined above can readily be extended to the
type of hierarchical learning used byMchlj_and_Husti_Qﬂ (IZQM),
with the notable advantage of being able to correctly deal with time
series data. In this framework, the joint distribution for all model
parameters conditioned on the data is factorised as:

P(Pal(i),...,Pa’ (i), Pa*(i), ®, B|D)=P(®)P(B)P(Pa*(i))
d
[ [B@ 1P (i), 6)B(Pd (DI Pa*(i), B).
j=1
where D= {D1 , ...,Dd} represents the d datasets with D= {Xf , yj }

the input/output mRNA expression level for the jth dataset (defined
as for the standard CSI approach), Pa/(i) the parents of gene
i in dataset j, Pa*(i) the constraining hyperparents of gene i,
@:{91,...,9d} the hyperparameters of the GP priors, and =
{BL,..., 87} an additional hyperparameter controlling the influence
of the individual parents upon the hyperparents and vice versa. The
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Fig. 1. Graphical model representation of the CSI framework for node i. (A) In the hierarchical framework, a network structure, Pa/, is inferred for each of
the D datasets, with each possessing a unique hyperparameter 6/ for the system dynamics, where j={1,...,D}. The structure of the hypernetwork, Pa*, is
also inferred along with a set of hyperparameters 8/ controlling the influence of the individual parents on the hypernetwork. When g =0 the hypernetwork
is independent of the ith network, while 8 >>0 induces a strong coupling between the ith parent and hypernetwork. (B) Inference using the standard CSI
algorithm identifies a parent structure, Pa, for the union of all datasets, as well as the hyperparameter, 6, for the GP model of the system dynamics

hierarchical CSI model can be represented graphically in Figure [[A
(compare with the graphical model for the standard CSI in Fig.[[B).

The conditional distribution IP(D/ |’Pa/ (i),@j ) represents the
probability of the ith gene in the jth dataset, given the parental
set Pa:

B(D [P (i),¢/) = P X/, P (i), &), (6)

and can be calculated using equation @)). The conditional distribution
for the parents of gene i in dataset j given the hyperparent is chosen
to correspond to a Gibbs distribution:

. | . .
P(Pd (i)|Pa*(i), p)= EGXP<—5/||770’(1')—77&*(1')| I), (N

where ||-|| represents the Hamming distance between parental
structures and Z represents a normalizing constant:

29>

exp(—ﬂf ||7>a—Pa*(i)||>, (8)
PacP.(T)

which can be calculated explicitly by summing over all possible
parental sets. The parameter B; represents the inverse temperature

such that B/ =0 allows the parental structure in the jth dataset
to be independent of the hyperparent, while B/>>0 induces a
strong dependence between the hyperparent and parental structure.
Conceptually, the parameter B/ can be interpreted differently
according to the context of the hierarchical modelling. When
looking at different perturbed networks, Pa* can be considered
as the average parents in the network, with g/ representing how
different the network is from the average. Likewise, when inferring
orthologous networks, Pa* can instead be thought of as the parents
in the ancestral network, with g/ representing the evolutionary
distance of the organism in dataset j from that network.

The distributions P(¢/) and IP’(/Sf ) represent prior distributions
over the hyperparameters of the model, and are chosen to correspond
to independent Gamma distributions. For the B parameters,
distributions peaked about zero represent prior expectations that the
network structures are independent, while distributions peaked about
large positive values tend to represent prior expectations that the

networks are strongly similar. Finally, the distribution P(Pa*(i))
represents the prior distribution over hyperparent structures, and
will generally be unknown and thus set to be uniform over all
combinations.

Inference within the hCSI model consists of inferring parental
structure, hyperparent structure, GP hyperparameters and inverse
temperature hyperparameters for each node in the network.
Although exact inference is not possible, samples can be generated
using using Markov chain Monte Carlo (MCMC) via Gibbs
sampling of parents/hyperparents, alongside Metropolis updates
of hyperparameters (hCSI-Gibbs; Supplementary Section 2.1), or
using Metropolis—Hastings update of parents/hyperparents and
Metropolis updates of hyperparameters (hCSI-MH; Supplementary
Section 2.2). Again, a network structure can be assembled from the
parent distributions for each node, with a hypernetwork assembled
from the the distributions over hyperparents:

I
PM' . MM =] TP(Pa* (i)
i=1

d .
[[pPd 1Pa*i). Xy 6)). ©)
j=1

3 RESULTS

Since there is typically no way of knowing a priori how similar
or dissimilar two networks might be, we first benchmark the
hCSI approach using two extreme cases that could feasibly occur
in biological data. In Section 3.1l we gauge the performance of
CSI/hCSI in recovering network structures when data was generated
from identical networks albeit with perturbed dynamics, as might
be encountered when dealing with identical conditions in different
individuals, or when observing identical processes over different
time scales. In Section we benchmark the performance of
the algorithm when data is generated from independent networks.
Finally, in Section B3] we use hCSI and yeast one-hybrid data
alongside a variety of time series gene expression datasets to
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identify potential transcriptional switches in the stress response of
A. thaliana.

3.1 Modelling of in silico time series from identical
networks

The hCSI algorithm was first benchmarked using the DREAM4
10-gene in silico datasets (Marbach er afl, 2009, 2010; IPrill er afl,

). The datasets consist of five independent networks, each of
which was used to generate five simulated time series under different
initial conditions (hereafter referred to as perturbations), using
stochastic differential equations. Since the true network structure
was known, the ability of hCSI to recover network topologies could
be evaluated using the the receiver operating characteristic curve
(ROC) and the precision-recall (PR) curve as used in Penfold and
Wild ). Specifically, the ROC curve plots the false-positive rate
(FP/FP + TN) versus the true positive rate (TP/TP + FN), whereas
the precision recall curve plots precision/positive predictive value
(TP/TP + FP) versus the true positive rate, where FP, FN, TP and
TN refers to the number of false positives, false negatives, true

positives and true negatives, respectively. The overall performance
of the algorithm could then be gauged using the areas under the
ROC and PR curves. Benchmarking of the algorithms proceeded
as follows. For a given dataset with five perturbation, a separate
GRN was inferred from each of the perturbations using hCSI (hCSI-
Gibbs and hCSI-MH), with constraining hyperparents linking the
five perturbations. Performance was measured against the standard
CSI algorithm [EM ,M), and MCMC implementations]
run individually on each of the five perturbations. The results are
summarized in Table[D

In all experiments, six chains of 100 000 samples were generated
for hCSI-Gibbs and hCSI-MH discarding 10 000 each for burn-in,
with three chains of 200 000 generated for CSI-Gibbs, allowing
20 000 steps for burn-in. MCMC chains were binned into groups
of 10 000 samples, with AUROC/AUPR scores calculated for each
bin, resulting in 54 bootstrapped estimates for the AUROC/AUPR.
Significant differences in AUROC/AUPR scores could then be
gauged using a Wilcoxon rank-sum test.

As expected, the performance of the hierarchal model, in terms
of the area under the ROC (AUROC) curve, and area under the

Table 1. Average AUROC and average AUPR with standard deviation shown in brackets to three decimal places for the 10 gene DREAM4 networks with

and without a hypernetwork constraints

Dataset Pert(s). AUROC AUPR curve
hCSI-Gibbs hCSI-MH CSI-Gibbs hCSI-Gibbs hCSI-MH CSI-Gibbs

1 1 0.70 (0.014) 0.70 (0.019) 0.66 (0.005) 0.46 (0.019) 0.44 (0.036) 0.36 (0.011)
2 0.69 (0.023) 0.69 (0.023) 0.65 (0.006) 0.35 (0.020) 0.34 (0.028) 0.26 (0.004)
3 0.65 (0.010) 0.66 (0.016) 0.64 (0.004) 0.34 (0.011) 0.35 (0.030) 0.27 (0.024)
4 0.58 (0.010) 0.58 (0.020) 0.53 (0.004) 0.21 (0.028) 0.20 (0.031) 0.16 (0.002)
5 0.73 (0.013) 0.73 (0.021) 0.72 (0.005) 0.28 (0.024) 0.30 (0.036) 0.28 (0.009)

2 1 0.72 (0.011) 0.72 (0.019) 0.68 (0.006) 0.44 (0.013) 0.43 (0.022) 0.32 (0.006)
2 0.72 (0.010) 0.72 (0.017) 0.71 (0.003) 0.46 (0.009) 0.46 (0.019) 0.34 (0.016)
3 0.66 (0.010) 0.66 (0.019) 0.62 (0.004) 0.35 (0.014) 0.35 (0.030) 0.26 (0.002)
4 0.73 (0.012)* 0.73 (0.015) 0.74 (0.005) 0.47 (0.011) 0.46 (0.018) 0.43 (0.003)
5 0.67 (0.012) 0.67 (0.018) 0.61 (0.005) 0.33 (0.014) 0.32 (0.024) 0.24 (0.007)

3 1 0.76 (0.012) 0.75 (0.015) 0.70 (0.004) 0.35 (0.027) 0.35 (0.032) 0.29 (0.003)
2 0.76 (0.012) 0.75 (0.019) 0.69 (0.004) 0.42 (0.015) 0.40 (0.022) 0.33 (0.015)
3 0.78 (0.008) 0.76 (0.016) 0.72 (0.004) 0.36 (0.024) 0.36 (0.034) 0.26 (0.004)
4 0.75 (0.012) 0.74 (0.019) 0.69 (0.007) 0.34 (0.013) 0.32 (0.036) 0.27 (0.005)
5 0.73 (0.010) 0.72 (0.014) 0.67 (0.004) 0.45 (0.019) 0.43 (0.025) 0.36 (0.005)

4 1 0.75 (0.009) 0.76 (0.015) 0.71 (0.005) 0.48 (0.014) 0.48 (0.028) 0.46 (0.015)
2 0.74 (0.010) 0.74 (0.018) 0.65 (0.005) 0.45 (0.017) 0.45 (0.029) 0.38 (0.008)
3 0.72 (0.011) 0.72 (0.016) 0.67 (0.005) 0.43 (0.015) 0.42 (0.025) 0.33 (0.005)
4 0.72 (0.009) 0.72 (0.015) 0.64 (0.005) 0.45 (0.013) 0.44 (0.019) 0.37 (0.005)
5 0.80 (0.011) 0.80 (0.020) 0.76 (0.006) 0.52 (0.020) 0.50 (0.037) 0.41 (0.017)

5 1 0.79 (0.009) 0.80 (0.014) 0.74 (0.003) 0.51 (0.020) 0.51 (0.030) 0.33 (0.015)
2 0.82 (0.006) 0.82 (0.014) 0.79 (0.003) 0.54 (0.013) 0.54 (0.025) 0.42 (0.005)
3 0.84 (0.008) 0.83 (0.014) 0.78 (0.003) 0.43 (0.012) 0.43 (0.028) 0.31 (0.006)
4 0.87 (0.005) 0.88 (0.013) 0.82 (0.004) 0.52 (0.029) 0.53 (0.055) 0.28 (0.005)
5 0.84 (0.010) 0.83 (0.021) 0.75 (0.006) 0.53 (0.012) 0.53 (0.034) 0.37 (0.020)

An independent Gamma prior is placed over each of the Gaussian process hyperparameters 6 ~I'(10,0.1). For inference with hypernetworks, an independent Gamma prior is placed
over the individual temperature parameters, 8 ~I'(1,1). Values in bold indicate the score is both statistically significantly different from that achieved using a standard CSI-Gibbs
(third and sixth columns) algorithm according to a Wilcoxon rank-sum test (P <0.01), and shows improved performance.

4Cases marked indicate scores that were both statistically significantly different and showed worse performance in the hierarchical modelling compared with the standard

implementation.
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PR (AUPR) curve, appears to be generally better than for the
EM or Gibbs implementation of CSI. In 48 out of 50 cases, both
hCSI-Gibbs and hCSI-MH had an AUROC statistically significantly
different from the standard CSI-Gibbs, according to a Wilcoxon
rank-sum test (P <0.01). For hCSI-Gibbs, only 1 of the 49
statistically significantly different scores showed worse performance
than CSI-Gibbs, whereas there were no cases where hCSI-MH
performed worse. Additionally, hCSI-Gibbs has a AUPR score
statistically significantly different from CSI-Gibbs in 49 out of 50
cases, whereas hCSI-MH was statistically significantly different
in all 50 cases. It should be noted that in all cases where there
was a statistically significant difference the mean AUROC/AUPR
was greater in the hierarchical modelling. Although these results
are perhaps not surprising (the hierarchical implementation was
allowed to propagate information between several experimental
perturbations via the hyperparents, whereas the standard EM and
Gibbs implementation of CSI learnt separately form individual
perturbations), they do illustrate that, when the networks used to
generate time series datasets are identical, learning jointly from
multiple perturbations is preferable to learning individually on each
perturbation.

3.2 Modelling of in silico time series from independent
networks

The results in Section B.J] demonstrate that the hCSI framework
can prove useful when the individual datasets are generated from
identical networks, by allowing propagation of information via the
hyperparents. In some situations, however, the generating networks
could be dramatically different in the different perturbations. In
these cases, it is possible that a constraining hypernetwork could
prove detrimental to the accuracy of network reconstruction. A
second set of experiments is designed to test whether the presence
of a constraining hypernetwork would negatively impact on the
accuracy of the algorithm when the generating networks were
independent. In this example, two of the (independent) DREAM4
datasets (each using all five perturbations) were used to infer a
GRN, with a constraining hypernetwork. Again, the performance in
terms of AUROC and AUPR is compared with situations where no
constraining hypernetworks exist (Table B). MCMC samples were
again binned into sets of 1000 samples, allowing the distribution
of the AUROC/AUPR scores to be compared using a Wilcoxon
rank-sum test.

Table 2. Average AUROC and average AUPR with standard deviation shown in brackets to three decimal places for the 10 gene DREAM4 networks with

and without a hypernetwork constraints

Dataset Pert(s). AUROC AUPR curve
hCSI-Gibbs hCSI-MH CSI-Gibbs hCSI-Gibbs hCSI-MH CSI-Gibbs
1&2 1— 0.77 (0.009) 0.77 (0.014)2 0.78 (0.006) 0.55 (0.008) 0.55 (0.013) 0.55 (0.006)
1— 0.77 0.009) 0.77 (0.015)* 0.78 (0.008) 0.60 (0.005) 0.60 (0.011) 0.60 (0.007)
1&3 1-5 0.77 (0.009) 0.77 (0.015) 0.78 (0.006) 0.54 (0.006)* 0.55 (0.011) 0.55 (0.006)
1-5 0.71 (0.009) 0.72 (0.019) 0.70 (0.004) 0.52 (0.006)* 0.52 (0.010)* 0.53 (0.003)
1&4 1-5 0.78 (0.011) 0.78 (0.018) 0.78 (0.006) 0.55 (0.007) 0.55 (0.012) 0.55 (0.006)
1-5 0.76 (0.013) 0.76 (0.020) 0.76 (0.008) 0.62 (0.016) 0.62 (0.035) 0.62 (0.008)
1&5 1-5 0.78 (0.011) 0.77 (0.015) 0.78 (0.006) 0.55 (0.008) 0.55 (0.012) 0.55 (0.006)
1-5 0.87 (0.012) 0.87 (0.017)* 0.88 (0.008) 0.71 (0.018) 0.72 (0.022) 0.72 (0.019)
2&3 1-5 0.78 (0.008) 0.78 (0.015) 0.78 (0.008) 0.60 (0.006) 0.60 (0.011) 0.60 (0.007)
1-5 0.71 (0.008) 0.71 (0.016) 0.70 (0.004) 0.53 (0.005) 0.52 (0.011) 0.53 (0.003)
2&4 1— 0.78 (0.009) 0.78 (0.018) 0.78 (0.008) 0.60 (0.007) 0.60 (0.013) 0.60 (0.007)
1— 0.76 (0.013) 0.76 (0.022) 0.76 (0.008) 0.62 (0.013) 0.62 (0.036) 0.62 (0.008)
2&5 1— 0.78 (0.010) 0.78 (0.017) 0.78 (0.008) 0.60 (0.006) 0.60 (0.010) 0.60 (0.007)
1— 0.87 (0.013) 0.87 (0.014)* 0.88 (0.008) 0.71 (0.017) 0.72 (0.021) 0.72 (0.019)
3&4 1— 0.71 (0.010) 0.72 (0.013) 0.70 (0.004) 0.53 (0.008) 0.52 (0.013)* 0.53 (0.003)
1— 0.77 (0.014) 0.76 (0.019) 0.76 (0.008) 0.62 (0.015) 0.62 (0.028) 0.62 (0.008)
3&5 1— 0.70 (0.010) 0.71 (0.015) 0.70 (0.004) 0.53 (0.006) 0.52 (0.013) 0.53 (0.003)
1— 0.87 (0.010) 0.87 (0.014) 0.88 (0.008) 0.71 (0.015) 0.72 (0.021) 0.72 (0.019)
4&5 1-5 0.76 (0.014) 0.75 (0.018)* 0.76 (0.008) 0.62 (0.015) 0.62 (0.028) 0.62 (0.008)
1-5 0.88 (0.013) 0.87 (0.012) 0.88 (0.008) 0.72 (0.016) 0.72 (0.019) 0.72 (0.019)

An independent Gamma prior is placed over each of the Gaussian process hyperparameters 6 ~I"(10,0.1). For inference with hypernetworks, an independent Gamma prior is
placed over the individual temperature parameters, S ~I'(1, 1). Values in bold indicate the score is both statistically significantly different from than that achieved using a standard
CSI-Gibbs algorithm (third and sixth columns) according to a Wilcoxon rank-sum test (P <0.01), and shows improved performance.

4Cases marked indicate scores that were both statistically significantly different and showed worse performance in the hierarchical modelling compared with the standard

implementation.
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When networks are independent, the hierarchical modelling
still appeared to perform well in reconstructing the network
topology, with AUROC/AUPR scores better than expected for
randomly generated networks, and with performance competitive
with standard CSI approaches using the individual network datasets.
In 14 out of 20 cases, the AUROC scores using independent hCSI-
Gibbs runs were not statistically significantly different from that
achieved using CSI-Gibbs according to a standard Wilcoxon rank-
sum test (P <0.01). Of the remaining six cases, three performed
marginally better in the hierarchical model and three appeared to be
statistically significantly different only due to an increased variance
or altered skewness. For hCSI-Gibbs, the AUPR was not statistically
different from CSI-Gibbs in 15 cases. In the five remaining cases,
the AUPR was worse in the hierarchical modelling in two cases
and possessed the same mean value in three, albeit with greater
variance. In situations where the distributions were statistically
different, the absolute differences tended to be very small. A similar
observation seen when comparing CSI-Gibbs with hCSI-Gibbs,
where AUROC/AUPR are statistically significantly different in 7
and 13 cases, respectively.

3.3 Combining hierarchical modelling and yeast
one-hybrid to identify transcriptional switches in
A. thaliana

Yeast one-hybrid (Y1H) screens can be used to identify which TFs
in a library are capable of binding the promoter region of a particular
gene m&, M). However, Y1H only identifies which TFs
are capable of binding in yeast, and not necessarily those that are
binding in a particular condition. Additionally, TFs may be missing
from the library, which, combined with false negatives, means that
identification of potential upstream TFs is likely to be incomplete.
Conversely, false positives will result in spurious connections. In
these cases, combining Y1H screens along with time series gene
expression data might help determine which particular genes are
binding in a given experiment. Since the CSI algorithm infers the
upstream connections of a particular gene on a node-by-node basis,
we have previously suggested that the method would make an ideal
partner to Y1H experiments (Penfold and Wild, RO11l).

In this study we use hCSI to identify the role played by the
gene RD29A and upstream TFs in abiotic stress responses. RD29A
contains both a dehydration-responsive element (DRE) and an
ABA-responsive element (ABRE), and has previously shown to be
differentially expressed in response to dehydration, low temperature

and high %ammm_smmmm (1994). Y1H
screens by “m) have identified nine proteins capable

of binding the promoter region of RD29A, whereas non-Y 1H studies
bymﬂ ) further suggest that a DREB-family protein,
CEJ1/DEARI1, might also be upstream of RD29A. Using hCSI-MH,
we infer which genes were upstream of RD29A using time series
gene expression data from a variety of experimental conditions,
including:

(1) Time series containing six time points (0, 2, 5 15, 30
and 60 min) and two biological replicates detailing A.
thaliana response to gravity stimulation via rotation at 135°

(Kimbrough et all, 2004),

(2) The AtGenExpress abiotic datasets, containing nine small
timeseries (6—7 time points, 2 replicates, 2 tissue types) in

detailing plant responses to cold, drought, wounding, osmotic
stress, salt stress, genotoxic and oxidative stress heat stress,
and UV-B exposure (Kilian er all 2007).

(3) An AtGenExpress biotic dataset detailing A.thaliana response
to Golvinomyces orontii (8 time points, 3 replicates) available
from |http://atfymetrix.arabidopsis.info] (NASCARRAYS-
169).

In total six chains of 50000 samples were generated using hCSI-
MH, with 10000 samples discarded for burn-in in each run. In
all cases, the hyperparents were fixed, corresponding to the set
containing all 9 TFs (CEJ1, DREB1A, DREB1B, DREB1D, HRD,
OBP2, At4G16750, At1G71450, At5G52020), representing a prior
in which all prospective parents were upstream simultaneously in all
datasets. The marginal probabilities of a given parent being upstream
of RD29A in a given experiment could be represented in the form
of a heat map (Figure PIA).

RD29A appeared to be expressed above baseline in all datasets
except for the gravity stimulation and G orontii infection datasets,
where expression was flat. Since these datasets were therefore
uninformative, we would expect the distribution over parental sets
to correspond to the prior distribution, that is, with all parents
simultaneously upstream in those two datasets. This was indeed
observed, with all prospective TFs showing high probabilities of
being upstream in the gravity stimulation and G orontii datasets
(vertical red/orange columns in the colour map). Indeed, for these
datasets, the posterior distribution over the temperature parameter
appears to be similar to that of the prior distribution over the
temperature parameter (Figure 2IB).

Of the remaining nine datasets, six showed dynamic RD29A
expression in that the expression varied over time (non-flat profiles),
but not with respect to the appropriate control experiments (not
differentially expressed). Again, for the majority of these conditions,
the posterior distribution over the temperature parameter appeared
to be similar to that of the prior, suggesting relatively uninformative
datasets for that subset of genes. Here, dynamic expression profiles
were determined by fitting an independent GP to the expression data
and identifying the times at which the gradient was significantly
non-zero, that is, the zero point was more than 2 SDs from the
posterior GP derivative m, m), whereas differential
expression was gauged using the GP two-sample method of Stegle
et al. 010). Finally, three datasets, cold, osmotic and salt stress,
demonstrated both dynamic behaviour and differential expression
of RD29A compared with control. For the cold and osmotic stress
datasets, the distribution over the temperature parameter appears to
be shifted towards the origin, suggesting that the datasets contain
information that differs from the prior hypernetwork.

Under cold stress, RD29A appeared to be primarily influenced
by CEJ1/DEARI1 and DREBI1A, with lower probabilities of other
DREB TFs binding (DREB1B/D), and relatively little evidence
of other TFs influencing expression. This observation appears
consistent with the network model of] ), in which
freezing tolerance is dependent on RD29A acting downstream of
CEJ1 and DREB1 TFs (Figure2IC). It is interesting to note that CEJ1
appears to be less influential in the osmotic stress dataset, with other
DREB-family proteins, AT4G16750, DREB1A and HRD, appearing
to be drive RD29A expression. Potentially, this group of genes
might play an important role in distinguishing between cold and
osmotic stress with both common (e.g. RD29A) and stress-specific
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CEJ1
DREB1D
DREB1B

AT4G16750
HRD
AT1G71450
AT5G52020
OBP2
DREB1A

Temperature

DREB1A
DREB1B
DREB1D

Osmotic stress

Y
Osmotic stress response| | Freezing tolerance

Fig. 2. (A). Heat map indicating the probability of TFs influencing RD29A expression. Here, dark blue indicates a low probability of that TF being influential
in the time series expression dataset, whereas dark red indicates a high probability of the TF being influential. (B). Inferred temperature parameters for each
of the experiments compared with samples generated from the prior distribution of temperature. (C). Unsigned stress signalling network adapted from Tsutsui
et al. ). Here question marks indicate speculative or indirect links that have not been verified via Y1H
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targets downstream of CEJ1 and AT4G16750/HRD, respectively
(Figure 2IC).

4 DISCUSSION

Recent approaches for reverse engineering GRNs make use of

nongarametrle Bayesian methods (IA_],]Q_a.ud_Lah_d_Qsma.ki |21)D_q

M) and have proven competitive with other approaches
, 2009; [Penfold and Wild, 2011). A key
advantage of these nonparametric approaches is their ability to learn
from multiple experimental perturbations. To do so, however, these
methods must make assumptions about the number of TFs that can
bind any given gene, and further assume that each of the time series
(perturbations) were generated from an identical network. These
assumptions do not appear to hold in vivo, where large numbers
of TFs can bind, albeit with different subsets likely acting under
different perturbations/conditions. To address these limitations, we
have used a hierarchical modelling framework that that should be
applicable to a variety of novel situations including:

(1) Modelling GRNs under different experimental conditions,
different tissues or ecotypes, where different but overlapping
sets of transcription factors are expected to bind in the
different treatments, with a limited number of TFs binding
under any given condition/tissue/ecotype.

(2) Modelling of orthologous networks in evolutionary-related
species, where orthologous genes are expected to form
similar (but non-identical) networks. In these situations, the
hyperparent can be interpreted as the network structure of a
common ancestor, with the individual temperature parameters
representing evolutionary distance from the common ancestor.

(3) For leveraging multiple sources of (potentially contradictory)
prior information, such as competing network structures,

similar to the use in [Werhli and Husmeietl (2007).

(4) Finally, a particularly promising extension of such
hierarchical modelling is to include multiple sources of
data besides standard time series microarary expression data.
Notable examples could include leveraging next-generation
sequencing time series alongside microarray data, or the
inclusion of protein/metabolite abundance. Additionally,
given appropriate statistical models, this type of learning
could readily incorporate promoter sequence information
into the network inference.

Benchmarking of the hierarchical method on in silico datasets
demonstrates that the method generally outperforms the standard
CSI algorithm, by allowing propagation of information via the
hypernetwork. Additionally, experiments using data generated
from independent networks have shown the hierarchical approach
performs no worse than the standard CSI run on the independent
datasets, suggesting the temperature hyperparameters correctly
distinguish between datasets with similar structure, and those with
independent structures. These findings suggest that hierarchical
modelling is particularly useful in biological systems where it is
not known ahead of time if networks in different conditions/species
are identical, and which would previously have to have been treated
as independent.

A major limitation with the standard CSI approach lies in
its computational scaling, requiring the evaluation of a GP
model for each of the parental set combinations, the number
of which scales either factorially or polynomially (with fan-in
restrictions) with the number of prospective transcription factors.
The Gibbs implementation of CSI and Gibbs implementation of
hCSI unfortunately inherit these same scaling issues, making them
useful for small systems of genes, but less so for much larger
systems. To tackle these issues of continuously evaluating GP
models for unlikely parental sets, we have additionally implemented
a Metropolis—Hastings version of hCSI, that should allow for
hierarchical inference in larger systems involving hundreds or
thousands of genes. For the small 10 gene DREAM4 networks,
inference using the standard CSI-EM approach typically takes
less than a minute, whereas 100000 samples using CSI-Gibbs,
hCSI-Gibbs and hCSI-MH takes several hours per node.

Another key benefit of the CSI approach lies in its ability to infer
upstream interactions on a node-by-node basis, making it an ideal
theoretical method for leveraging Y1H screens. The hierarchical
implementation of CSI is similarly amenable to incorporating the
results from Y1H screens, and in particular could be of great
use in identifying under which conditions a particular TF binds.
In this study, we have used a simple A. thaliana stress response
network to investigate this possibility. Our results show agreement
with literature-based results in identifying genes important for
cold tolerance, and have suggested additional genes that might
be involved in other abiotic response (with CEJ1 and RD29A at
the core). Besides Y1H, a number of experimental approaches
exist for identifying prospective relationships between transcription
factors and promoter sequences, including ChIP-chip/Se
M) and bacterial one-hybrid (B1H) systems m) |ﬁ3) and
indirect approaches such as gene knockouts or overexpression.
Additionally, TF databases and computational methods can also
be used to identify putative TF binding sites , ;
|M.a.t¥s_€_LaL|, [2003; [Roth er all, hﬂ%). In light of the increasing
availability of such sets of data, the combination of putative
TF/promoter interactions and time series gene expression data within
a hierarchical modelling framework should prove to be a powerful
approach for generating novel biological predictions and hypotheses
regarding transcriptional networks, facilitating greater insight into
biological responses and more targeted interventions.
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