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Objective: To understand microstructural changes after myocardial infarction (MI), we evaluated myocardial fibers of rhesus 
monkeys during acute or chronic MI, and identified the differences of myocardial fibers between acute and chronic MI.
Materials and Methods: Six fixed hearts of rhesus monkeys with left anterior descending coronary artery ligation for 1 hour 
or 84 days were scanned by diffusion tensor magnetic resonance imaging (MRI) to measure apparent diffusion coefficient 
(ADC), fractional anisotropy (FA) and helix angle (HA).
Results: Comparing with acute MI monkeys (FA: 0.59 ± 0.02; ADC: 5.0 ± 0.6 x 10-4 mm2/s; HA: 94.5 ± 4.4°), chronic MI 
monkeys showed remarkably decreased FA value (0.26 ± 0.03), increased ADC value (7.8 ± 0.8 x 10-4mm2/s), decreased HA 
transmural range (49.5 ± 4.6°) and serious defects on endocardium in infarcted regions. The HA in infarcted regions shifted 
to more components of negative left-handed helix in chronic MI monkeys (-38.3 ± 5.0°–11.2 ± 4.3°) than in acute MI 
monkeys (-41.4 ± 5.1°–53.1 ± 3.7°), but the HA in remote regions shifted to more components of positive right-handed 
helix in chronic MI monkeys (-43.8 ± 2.7°–66.5 ± 4.9°) than in acute MI monkeys (-59.5 ± 3.4°–64.9 ± 4.3°).
Conclusion: Diffusion tensor MRI method helps to quantify differences of mechanical microstructure and water diffusion of 
myocardial fibers between acute and chronic MI monkey’s models.
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INTRODUCTION

Previous studies have confirmed that the deterioration 
of cardiac mechanical function originates from micro-
alterations of myocardial fibers after myocardial infarction 
(MI) (1, 2). Compared with the conventional histological 
method, diffusion tenor magnetic resonance imaging (DT-
MRI) is a highly sensitive approach to evaluate myocardial 
fibers in a 3D manner (3-5). However, in-vivo DT-MRI for 
myocardial fibers is limited by the image distortion that 
is induced by the cardiac motion and the amount of time 
required to complete the operation (6, 7). Alternatively, 
ex-vivo DT-MRI for animal models provides some valuable 
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hypothesized that the diffusion and mechanical differences 
in myocardial fibers between acute and chronic MI could 
be quantified and differentiated using the ex vivo DT-MRI 
method. 

The objective of this study was to quantify the 
characteristics of the myocardial fibers during acute and 
chronic MI, and subsequently identify the differences in 
myocardial fibers between acute and chronic MI in rhesus 
monkeys using the DT-MRI method, in order to understand 
the corresponding changes in patients with acute MI (16).

MATERIALS AND METHODS

Experiments
All experiments were performed in accordance with the 

insights into the evaluation of myocardial fibers after MI 
(8-11).

The ex-vivo DT-MRI method was used to evaluate the 
myocardial fibers of fixed hearts in different mammals 
(10-13). Compared with normal rats, the infarcted regions 
in chronic MI rats had significantly increased apparent 
diffusion coefficients (ADC), reduced fractional anisotropy 
(FA) and noticeably altered arrangements of myocardial 
fibers (12, 13). The structural damage and mechanical 
remodeling events during chronic MI significantly aided 
the understanding of the mechanical basis for and the 
prediction of the risk of arrhythmia and cardiac function 
failure (14, 15). However, the characteristics of myocardial 
fibers during acute MI were essential for the early diagnosis 
of cardiac function deterioration (1). In this study, we 

Fig. 1. Different slices of shot-axial DE-MRI. Hyperenhancement regions in anterior wall (red arrows) indicate infarcted regions. DE-MRI = 
delayed enhancement magnetic resonance imaging
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guidelines set by the U.S. National Institute of Health and 
the regulations for the humane care of laboratory animals 
of our university. The study protocol was approved by the 
Institutional Review Committee on Animal Care of the 
provincial government.

Six adult rhesus monkeys (3 males and 3 females, 
aged 3 years) were randomized into the acute MI (n = 
3) or the chronic MI (n = 3) group. All monkeys were 
anesthetized deeply by pentobarbital and underwent 
permanent suture ligation of the left anterior descending 
coronary artery. Monkey’s chests were closed and fed for 
1 hour or 84 days, named as MI-1 hour (n = 3) or MI-84 
day (n = 3), respectively. Delayed enhancement magnetic 
resonance imaging (DE-MRI) was used to confirm infarcted 
regions in the left ventricular in vivo (Fig. 1). After two 
hours of completing DE-MRI, all infarcted monkeys were 
sacrificed and their hearts were excised under deep 
surgical anesthesia. All excised hearts were perfusion-fixed 
by a 4% paraformaldehyde solution and stored in a 1% 
paraformaldehyde solution. 

Before DT-MRI scanning, Fomblin, special lubricating 
oil (per-fluororated poly ethers), was injected into four 
chambers of each excised heart to reduce susceptibility 
artifacts in myocardial margins during DT-MRI scanning, and 
then, each excised heart was sealed in a plastic container 
filled with Fomblin. 

With the heart container in a 7T MR (Bruker BioSpec 
70/30, Chengdu, China) scanner, DT-MRI was performed to 
evaluate the myocardial fibers after MI. The echo-planar 

imaging-based diffusion tensor sequence was applied to 
acquire a single non-weighted (B0) image and diffusion 
images in 30 gradient directions. The scanned parameters 
were listed as follows: repetition time/echo time = 
12000/32 ms, matrix = 100 x 100, field of view = 50 x 50 
mm, slice thickness = 0.8 mm, flip angle = 90°, segment 
= 16, number of excitation = 25 and b value = 1300 ms/
μm2. After DT-MRI, the hearts were sectioned and fixed, and 
infarcted regions and orientations of myocardial fibers were 
observed by Masson staining.

Data Analysis
Before calculating the parameters of DT-MRI, the 

diffusion images in 30 gradient directions were re-aligned 
with the B0 image to correct the movement errors due to 
mild scanner vibration (17-19). This step was taken with 
in-house programs that were encoded using the MATLAB 
platform (MathWorks, Natick, MA, USA). Afterwards, the 
singular value decomposition method was employed 
to calculate three eigenvectors and the corresponding 
eigenvalues of each voxel in the myocardial tissues, which 
were essential for the subsequent analysis of the various 
characteristics of the myocardial fibers.

The FA values and ADC values were calculated by 
voxel-based three eigenvalues to quantify the diffusion 
characteristics of the myocardial fibers. This step 
was performed using the diffusion toolkit package 
(Massachusetts General Hospital, Boston, MA, USA). 

The voxel-based tensors and the helix angle (HA) were 

Table 1. All Parameters in Infarcted Regions and Remote Regions
Group Number FA ADC Range of HA

MI-1 hour (infarcted)

Mean 0.59 ± 0.02 5.0 ± 0.6 x 10-4 mm2/s 94.5 ± 4.4° (-41.4 ± 5.1°–53.1 ± 3.7°)
1 0.61 4.6 x 10-4 mm2/s 98.6° (-42.2°–56.4°)
2 0.59 5.3 x 10-4 mm2/s 95.2° (-46.0°–49.2°)
3 0.58 5.8 x 10-4 mm2/s 89.8° (-36.0°–53.8°)

MI-1 hour (remote)

Mean 0.62 ± 0.03 4.8 ± 0.8 x 10-4 mm2/s 124.4 ± 3.2° (-59.5 ± 3.4°–64.9 ± 4.3°)
1 0.65 3.8 x 10-4 mm2/s 127.7° (-61.6°–66.1°)
2 0.59 5.3 x 10-4 mm2/s 121.4° (-61.3°–60.1°)
3 0.60 5.2 x 10-4 mm2/s 124.0° (-55.5°–68.5°)

MI-84 days (infarcted)

Mean 0.26 ± 0.03 7.8 ± 0.8 x 10-4 mm2/s 49.5 ± 4.6° (-38.3 ± 5.0°–11.2 ± 4.3°)
1 0.25 8.2 x 10-4 mm2/s 49.0° (-42.5°–6.5°)
2 0.3 6.9 x 10-4 mm2/s 54.4° (-39.6°–14.8°)
3 0.24 8.4 x 10-4 mm2/s 45.2° (-32.8°–12.4°)

MI-84 days (remote)

Mean 0.59 ± 0.02 4.9 ± 0.7 x 10-4 mm2/s 110.3 ± 3.6° (-43.8 ± 2.7°–66.5 ± 4.9°)
1 0.58 5.4 x 10-4 mm2/s 106.3° (-43.2°–63.1°)
2 0.62 4.1 x 10-4 mm2/s 113.5° (-41.4°–72.1°)
3 0.58 5.3 x 10-4 mm2/s 111.1° (-46.7°–64.4°)

ADC = apparent diffusion coefficients, FA = fractional anisotropy, HA = helix angle, MI = myocardial infarction
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calculated by voxel-based primary eigenvectors to quantify 
the mechanical and microstructural characteristics of 
the myocardial fibers. This step was taken with in-house 
programs that were encoded using the MATLAB platform 
(MathWorks, Natick, MA, USA). 

RESULTS

The FA, HA, and ADC values of each monkey and the mean 
values were listed in Table 1. Figure 2 illustrated FA and 
ADC maps of the infarcted slices in the MI-1 hour and MI-84 
day monkeys. In the group of MI-1 hour monkeys, compared 
with the remote regions (FA: 0.62 ± 0.03, ADC: 4.8 ± 0.8 
x 10-4 mm2/s), the MI regions (red arrow) showed slightly 
decreased FA (0.59 ± 0.02) and increased ADC values (5.0 ± 
0.6 x 10-4 mm2/s), which are involved in early intracellular 
edema of the myocytes. In contrast, in the group of MI-

84 days monkeys, compared with the remote regions (FA: 
0.59 ± 0.02, ADC: 4.9 ± 0.7 × 10-4 mm2/s), the MI regions 
(red arrow) showed noticeably decreased FA (0.26 ± 0.03) 
and increased ADC values (7.8 ± 0.8 x 10-4 mm2/s), which 
indicated severity of necrotic myocytes.

Figure 3 is the HA and tensor map of the infarcted slices 
in the MI-1 hour and MI-84 days monkeys. In the group 
of MI-1 hour monkeys, compared with the remote regions 
(HA: 124.4 ± 3.2°), there were mild changes in the HA 
transmural ranges (94.5 ± 4.4°) of the infarcted region 
(black circle) and the primary orientations of the tensor. 
The tensors became slightly thinner in the endocardium but 
not in the epicardium. In contrast, the HA values (remote 
regions: 110.3 ± 3.6°, infarcted regions: 49.5 ± 4.6°) in 
the MI-84 days monkeys were not homogeneous. Extensive 
tissue defects were observed in the endocardium. The 
decreased HA indicated the reduced mechanical function 

Fig. 2. Diffusion maps of myocardial fibers. Regions pointed by red arrows are MI regions. ADC = apparent diffusion coefficients, FA = 
fractional anisotropy, MI = myocardial infarction
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and the increased electrophysiological risk in the infarcted 
regions.

Figure 4 enables the comparison of the tensor map 
with the Masson staining image. The MI-1 hour panel 
showed that the density of the myocardial fibers decreased 
slightly. The tensor map also showed a slightly decreased 
arrangement and density of the tensors in the myocardial 
fibers. The Masson staining image in the MI-84 days panel 
showed an expansive area of blue collagens and myocardial 
fibers in the blue collagens that are sparsely distributed. 
The tensor map showed some defects of the tensors in the 
endocardium.

Figure 5 illustrated the transmural range of HA from the 
epicardium to the endocardium on the anterior and posterior 

walls in the MI-1 hour and MI-84 days monkeys. Compared 
with the MI-1 hour monkeys (infarcted: -41.4 ± 5.1°–53.1 
± 3.7°, remote: -59.5 ± 3.4°–64.9 ± 4.3°), the infarcted 
regions in the MI-84 days monkeys showed a significantly 
decreased HA transmural range and a significant shift of 
the HA transmural range from the double-helix to the left-
handed helix (-38.3 ± 5.0°–11.2 ± 4.3°), but the remote 
regions showed a significant shift of the HA transmural 
range from the double-helix to the right-handed helix (-43.8 
± 2.7°–66.5 ± 4.9°). The changed HA transmural range 
indicated decreased wall torsion in the infarcted regions 
and mechanical compensation in the remote region.

DISCUSSION

In this study, the DT-MRI method was applied successfully 
to quantify the characteristics of myocardial fibers in rhesus 
monkeys with acute and chronic MI. Our results confirmed 
that there were differences in myocardial tensor and 
diffusion between the acute and chronic MI monkey models. 
Moreover, our findings provided a more comprehensive 
understanding of the early changes of myocardial fibers in 
patients with acute MI.

Diffusion Parameters: FA and ADC Values
The FA value is considered as the longitudinal-to-

transverse aspect ratio of the myocytes (6, 20). During the 
MI-1 hour period, many spherical cells such as inflammatory 
cells, swollen myocytes and myofibroblasts began to 
accumulate in the infarcted regions, which slightly reduced 
the FA values in the infarcted regions due to the slight 
reduction of the longitudinal-to-transverse ratio of the 
myocytes. When the time was extended to MI-84 days, the 
myocardial fibers in the scar tissues became disarrayed, and 
extensive collagens replaced the extracellular matrix in the 
infarcted regions, which resulted in the severe reduction 
of the FA values in the infarcted regions. Our findings were 
consistent with those from a previous histological study; 
more severe MI revealed lower FA values in the infarcted 
regions (12, 21). 

The ADC value was used to quantify the balance of free 
water between the intracellular and extracellular space 
volumes (6). During the MI-1 hour, the increased lactic 
acid damaged the protein in the infarcted region, and 
the combined water in the protein became free water; 
subsequently, the elevated osmotic pressures caused by 
the intracellular Na+ accumulation caused the free water 
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Fig. 3. HA and tensor maps. MI-1 hour monkeys show slight 
changes in HA values and primary orientations of tensors in infarcted 
regions (marked by black circles). MI-84 days monkeys show severely 
inhomogeneous HA values, very few positive right-handed HA values 
and irregular primary orientations of tensors in infarcted regions. 
Large area of defects can be seen in endocardium. HA = helix angle, 
MI = myocardial infarction



730

Wang et al.

Korean J Radiol 17(5), Sep/Oct 2016 kjronline.org

to enter into the intracellular space due to dysfunctions of 
the Na+/K+ channels (22, 23). Compared with the remote 
regions, the infarcted region showed a slight increment 
of free water in the intracellular space, which mildly 
increased the ADC values in the infarcted regions. In the 
MI-84 days, the extracellular space in the infarcted regions 
was increased significantly since the aggregations of 

fibroblasts, neutrophils, and macrophages did not fill the 
extracellular space created by the necrotic myocytes after 
MI (6). Accordingly, the significantly increased ADC values 
were attributed to the increased extracellular space in the 
infarcted regions. 

Fig. 4. Comparison between tensor maps and Masson’s staining images. On MI-1 hour panel, orientations of myocardial fibers remain 
consistent. Tensor map also reveals similar arrangements and density of tensors in myocardial fibers. On MI-84 days panel, Masson’s staining 
image shows large area of blue collagens, myocardial fibers in blue collagens are sparsely distributed, and orientation of myocardial fibers 
are inhomogeneous. Tensor map displays some tissue defects of tensors in endocardium and tensors are irregularly arranged. MI = myocardial 
infarction

MI-1 hour MI-84 day

Fig. 5. Remodeling process of HA transmural range from epicardium to endocardium on anterior and posterior walls during MI-1 
hour and MI-84 days monkeys. HA transmural range in infarcted region (anterior) is decreased but shift from double-helix toward left-handed 
helix during chronic MI. However, HA transmural range in remote (posterior) region shows increased shift from double-helix toward right-handed 
helix during chronic MI. HA = helix angle, MI = myocardial infarction
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Mechanical Parameters: Tensors and HA Values
The voxel-based tensors are the important mechanical 

microstructures in the myocardial fibers because the wall 
torsion depends on the movements of the multi-orientation 
tensors (16, 24). In the MI-1 hour, the early stage of 
myocardial ischemia resulted in moderate myocardial edema, 
but the capillary wall retained its structural integrity, and 
the myocytes did not undergo extensive apoptosis. In the 
MI-84 days, injury on the infarcted wall was transmural from 
the endocardium to the epicardium. Some tissue defects of 
the myocardial tensors occurred in the endocardium of the 
infarcted wall. The scar and collagens in the residual wall 
resulted in the irregular arrangements of the tensors, which 
significantly increased the electrophysiological risk (14). 

The transmural range of HA was widely applied to quantify 
the orientations of myocardial fibers from the epicardium 
to the endocardium (25-31). In the MI-1 hour, the change 
in the transmural range of HA was moderate as the 
orientations of the tensors remained essentially unchanged 
in the infarcted region. In the MI-84 days, the transmural 
range of HA was significantly reduced due to tissue defects 
of the tensors on the endocardium. The tissue defects on 
the endocardium resulted in the reduction of the positive 
right-handed helix in the infarcted regions, which revealed 
the shift from the transmural double-helix to the residual 
negative left-handed helix on the epicardium. However, 
the remote regions revealed the shift from the transmural 
double-helix to the reduced negative left-handed helix 
on the epicardium. Our findings in rhesus monkeys were 
consistent with the findings of previous studies that were 
conducted using other animals (6, 12, 32-34). We proposed 
that the HA shifts during MI-84 day were indicative of 
decreased wall torsion and contractile efficiency in the 
infarcted and mechanical compensation in the remote 
region (35).

Moreover, the FA values, ADC values or transmural range 
of HA in the infarcted regions were approximately 0.26, 
0.00078 mm2/s or -38 ± 11° in the MI-84 days monkeys, 
respectively, and the values were close to those in the 
MI patients (0.26, 0.000824 mm2/s or -36 ± 10°) (6, 12, 
21, 32-34). Thus, the mild changes of water diffusion 
and myocardial tensors in the MI-1 hour monkeys could 
contribute to the understanding and evaluation of these 
parameters in patients during the early stage of acute MI.

Limitations
More monkeys should be recruited in our future study. 

Formalin fixation decreased ex-vivo diffusion of myocardium 
(36-38). The effect of temperature on ex-vivo diffusion of 
myocardium might be increased due to the increased coil 
temperature caused by the long scanning period.

In conclusion, our study confirmed that the DT-
MRI method could quantify and identify the acute and 
chronic MI monkey models by comparing the mechanical 
microstructure and water diffusion of myocardial fibers. 
According to the similar changes between monkeys and 
chronic MI patients, the characteristics of myocardial 
fibers in the acute MI monkeys could contribute to the 
understanding and evaluation of these parameters in 
patients during the early stage of acute MI.
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