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AbstrAct
Background and Purpose
To improve quality and personalization of oncology health care, decision aid tools 

are needed to advise physicians and patients. The aim of this work is to demonstrate 
the clinical relevance of a survival prediction model as a first step to multi institutional 
rapid learning and compare this to a clinical trial dataset. 

Materials and Methods
Data extraction and mining tools were used to collect uncurated input parameters 

from Illawarra Cancer Care Centre’s (clinical cohort) oncology information system. 
Prognosis categories previously established from the Maastricht Radiation Oncology 
(training cohort) dataset, were applied to the clinical cohort and the radiotherapy 
only arm of the RTOG-9111 (trial cohort). 

Results
Data mining identified 125 laryngeal carcinoma patients, ending up with 52 

patients in the clinical cohort who were eligible to be evaluated by the model to 
predict 2-year survival and 177 for the trial cohort. The model was able to classify 
patients and predict survival in the clinical cohort, but for the trial cohort it failed to 
do so.

Conclusions
The technical infrastructure and model is able to support the prognosis prediction 

of laryngeal carcinoma patients in a clinical cohort. The model does not perform well 
for the highly selective patient population in the trial cohort.

IntroductIon

Laryngeal carcinoma has a recorded incidence 
of 606 (2009) with 255 reported mortalities (2010) in 
Australia [1]. In Europe the recorded incidence (2012) was 

39,900 [2] and the USA reported an incidence of 12,630 
(2014) with an estimated number of deaths of 3,610 
[3]. Treatment options for patients with early localized 
laryngeal carcinoma include surgery or radiotherapy, 
having equal outcome [4, 5]. For advanced laryngeal 
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cancer, surgery therapy using total laryngectomy has been 
the standard of care for decades [6], however nowadays 
laryngeal preservation strategies using primary radiation 
or chemoradiation have been adopted [7, 8].

New developments to further improve outcome in 
patients treated with radiotherapy, include the application 
of dose-escalation [9] and the use of more advanced 
radiotherapy technologies such as IMRT [10] and 
proton irradiation [11, 12], to reduce side effects while 
maintaining local control.

Clinical Decision Support Systems (DSS) are a way 
to support the choice between the increasing number of 
radiotherapy techniques and technology options [13-15] 
both in terms of clinical benefit in the individual patient 
and in assigning resources to patient groups that benefit 
most from the new technology to address the concerns of 
keeping cancer care affordable [16]. To construct a DSS, 
predictive models need to be learned and validated.

Rapid learning health care is a way to learn 
predictive models. In rapid learning it is postulated that 
data routinely generated through patient care and clinical 
research feed into an ever-growing set of coordinated 
databases [17]. These coordinated datasets could then 
be used to learn and validate the model. In this study 
we present a first rapid learning approach that combines 
learning a predictive model from one clinical center 
(“training cohort”) and validating it in both another 
clinical center (“clinical cohort”) and a clinical trial dataset 
(“trial cohort”). A comprehensive technical infrastructure 
is proposed in which databases were coordinated 
spanning institutions and continents (Maastricht Radiation 
Oncology (MAASTRO) in Europe, the Radiation Therapy 
Oncology Group (RTOG) in North-America and Illawarra 
Cancer Care Centre (ICCC) in Australia). 

The hypothesis of this study is that it is possible to 
implement an automated data extraction infrastructure 
for rapid learning that uses a model to predict survival in 
laryngeal carcinoma without any human evaluation of the 
data to show that routine clinical data is a valuable source 
of information that can be used to complement the current 
evidence base consisting mainly of clinical trial data. The 
model was learned in one institution (MAASTRO) and 
applied in a patient care-driven regional cancer service 
(ICCC) and evaluated for a research-driven clinical trial 
collaborative group (RTOG).

MAterIAls And Methods

clinical cohort

After internal review board approval, the data of 
laryngeal carcinoma patients was extracted from the 
Oncology Information System (OIS) of ICCC (MOSAIQ, 
Elekta, Stockholm, Sweden) using a data integration tool 

(Kettle, Pentaho Community Edition 5.0, Orlando, USA). 
To provide an automated infrastructure all model input 
parameters needed to be extracted from the OIS and stored 
in a data warehouse (MSSQL 2008). Patients were selected 
using the International Classification of Diseases (ICD) 
codes version 10. The ICD code for laryngeal carcinoma 
patients is C32 and all subcategories in this classification 
group. Patients treated with radiotherapy alone for a 
primary H&N disease were added to the clinical cohort 
data warehouse. These patients were diagnosed between 
April 1987 and February 2014. Over time more patients 
will be included because it is an automated system in 
which new patients can be included each time the software 
is executed. For patients with missing record and verify 
(R&V) data within the OIS (e.g. due to H&N diagnoses 
that were manually added to the treatment history 
for treatment they received elsewhere) an imputation 
algorithm was added to the data mining script: patients 
with a H&N diagnosis treated with radiotherapy before 
2012 with no recorded delivered dose were assumed to 
be treated with the recorded prescribed dose. Each of 
the model parameters were extracted from the OIS with 
individual data integration programs. Quality assurance of 
the extracted data was undertaken via cross referencing 
with the OIS. 

h&n predictive model

The data warehouse was queried and analyzed 
by a predictive model developed using Matlab 8.2.0 
(The MathWorks Inc., Natick, MA, USA). The software 
applies the laryngeal carcinoma survival model [18] to the 
extracted data and reports the accuracy of the predictions 
created by the model. The model was fitted with 
Univariate Cox regression [18] which uses the following 
factors: age at the time of diagnosis, gender, T-stage, 
N-stage, hemoglobin level before treatment, tumor 
location and the biological equivalent dose in fractions of 
2 Gray. These features and other features were selected by 
a medical specialist to be analyzed by the Univariate Cox 
regression. In the original study [18] it was concluded that 
these features had a statistical relevance when predicting 
survival while others had not (e.g. the Tumor Volume 
computed from the PET scan). This resulted in a model 
with a baseline two-year survival of 0.1404. Table 1 
shows the beta-coefficients of the model and the data input 
formatting that is used. The proportional hazards model 
resulting from this fit was implemented as a nomogram 
in the original study [18] to create an easy to use DSS 
for the physicians. For this study we implemented the 
original proportional hazard model as we are using a 
completely automated digital infrastructure. To evaluate 
the accuracy of the model the survival in months and the 
patient deceased status were also extracted from the OIS. 
To determine the survival of alive patients the last known 
registered contact within the OIS was used.
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Model validation and statistics

A Receiver Operating Characteristic (ROC) curve 
computation module was used to compare the predicted 
survival with the actual survival of each patient population 
[18]. For the training cohort we applied an internal 
validation on the entire dataset. We compared internal 
validation to the external validations on the clinical and 
trial cohort. All validations result in an area-under-the-
curve (AUC) that displays how well the model predicted 
the survival of the patients. An AUC of 0.5 indicates that 
the result is completely random meaning that the model is 
not able to predict outcome and an AUC of 1.0 indicates 
that the result is perfectly matched meaning the model is 
a perfect outcome predictor. Bootstrapping was used to 
determine the uncertainty in the model’s AUC reported 
by the program. Specifically, the AUC was determined 
a thousand times using the bootstrap function provided 
by the Matlab statistics toolbox. All cohorts were 
bootstrapped and in each bootstrap sample the model was 
applied to determine +/- 2 standard deviations of the AUC 
in all cohorts. Additionally, the predicted probability of 
survival was compared to the observed probability of 
survival for each prognosis group to assess the calibration 
of the model for each cohort.

reference cohorts

To compare the effectiveness of the model in the 
clinical cohort we used the trial cohort (the RTOG-91-
11 trial dataset [7]) and the training cohort (MAASTRO 
dataset [18]). With respect to the randomized RTOG-
91-11 trial, only the patients treated with radiation only 
were selected (n = 177). The training and trial cohort 
were added to separate databases with the same data 
structure as the clinical cohort, this enabled the use of 

the same software for analyzing each cohort separately. 
An overview of the patient population of these datasets is 
given in Table 2. To perform a univariate survival analysis, 
the Kaplan Meier method was used. The prognosis groups 
were divided into 3 groups, classifying the 25% lowest 
survival predictions and 25% highest survival predictions 
as the poor and good prognosis group respectively. The 
middle 50% were classified as medium prognosis. The 
training cohort was used to create these thresholds for 
the poor, medium and good prognosis groups. These 
survival prediction thresholds dividing the training cohort 
were also applied to the clinical and trial cohort model 
outcomes. To compare the Kaplan Meier curves between 
cohorts and between prognosis groups the log-rank test 
was used. In all statistical tests p-values of less than 0.05 
were assumed to indicate statistical significance.

results

The data mining of the OIS resulted in an initial 
clinical cohort of 125 patients primarily diagnosed with 
laryngeal carcinoma. From this cohort, patients with 
missing data were then excluded; 13 patients because 
the diagnosis was not older than 2 years and thus it is 
impossible to assess 2-year survival for these patients; 
3 patients due to a lack of treatment dose available in 
the OIS; 57 patients (the largest exclusion group) due to 
a lack of hemoglobin measurements before treatment. 
This resulted in a clinical cohort containing 52 patients 
diagnosed between June 1993 and February 2012 with 
complete datasets suitable for analysis, at the time of 
modelling; in time the set will automatically grow. 

The model predicted prognostic survival groups, 
resulted in the Kaplan Meier curves presented in Figure 
1. The survival prediction thresholds to seperate the poor, 
medium and good prognosis groups were 58% and 82% 
chance of 2-year survival. By definition these thresholds 

Table 1: Model coefficients together with the corresponding features and data format. 
Model Feature Model Input Model beta
Age number 0.0454
Gender is male? 0/1 0.8715
T2 classification 0/1 0.1177
T3 classification 0/1 0.6795
T4 classification 0/1 1.2836
N+ classification 0/1 0.3623
Tumor location is 
non-glottic 0/1 0.2644

Hemoglobin level number* -0.3190
Total radiation dose number -0.0034

*in mmol/l
The 0/1 input is the binary answer to the yes or no question of the model feature.
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meant that the training cohort had 25%, 50% and 25% of 
patients in the poor, medium and good prognosis groups 
respectively. Applying the same thresholds to the clinical 
cohort gave a group distribution of 53%, 36% and 10% 
and for the trial cohort gave 55%, 41% and 4%. The 
Kaplan Meier curves of all groups in the clinical and 
trial cohort were compared with their equivalent in the 
training cohort. The survival prediction of each prognosis 
group in the clinical and trial cohort was not statistically 
different from the corresponding training cohort prognosis 
group (p > 0.2). The clinical cohort’s poor and medium 
prognosis groups were statistically different (p < 0.05) but 
the medium and good prognosis groups were not (p > 0.2). 
The trial cohort comparison showed similar results.

The ROC computation resulted in AUC values of 
0.77, 0.71 and 0.57 for training, clinical and trial cohort 
respectively. Bootstrapping (1000 samples) resulted in 
normally distributed AUC reliability intervals (+/-2SD) of 
0.73 to 0.81, 0.55 to 0.88 and 0.47 to 0.67 for training, 
clinical and trial cohort respectively. The model calibration 
plots are presented in Figure 2. For the training cohort 

the observed 2-year survival is higher than predicted for 
the poor and medium prognosis group. The same can 
be concluded for the clinical cohort as the difference in 
survival for each prognosis group did not reach statistical 
significance (p > 0.2) between the training and clinical 
cohort. No statistical difference could be found between 
the prognosis groups of the trial cohort (p > 0.2) and the 
poor and good prognosis group survival was different 
from the training cohort (p < 0.05).

dIscussIon

We have implemented a survival prediction model 
for laryngeal carcinoma patients treated with primary 
radiation in a clinical cohort from a completely different 
geographical area (Australia vs The Netherlands) and 
evaluated the same model in a trial cohort from North 
America. In previous work this model was validated in 
other curated independent datasets from the Leuven 
Cancer Institute (Belgium), VU University Medical 
Center (Netherlands), Netherlands Cancer Institute-Antoni 

Table 2: Patient population model input parameter values.

  Training 
cohort

clinical 
cohort trial cohort Training VS

  # % # % # % clinical trial
total  978  52  177    

Age
47-60 years 357 37 15 29 96 54 p > 0.20 p < 0.05
> 60 years 621 63 37 71 81 46 p > 0.20 p < 0.05

Gender
Male 870 89 47 90 136 77 p > 0.20 p < 0.05
Female 108 11 5 10 41 23 p > 0.20 p < 0.05

T-classification

T1 524 54 18 35 0 0 p < 0.05 p < 0.05
T2 260 27 11 21 18 10 p > 0.20 p < 0.05
T3 128 13 14 27 144 81 p < 0.05 p < 0.05
T4 66 7 7 13 15 8 p = 0.07 p > 0.20
Missing 0 0 2 4 0 0 p < 0.05 p > 0.20

N-classification N0 884 90 41 79 92 52 p < 0.05 p < 0.05
 N+ 98 10 11 21 85 48 p < 0.05 p < 0.05
 Missing 2 0 0 0 0 0 p > 0.20 p > 0.20

Tumor location
Glottic 723 74 27 52 49 28 p < 0.05 p < 0.05
Non-Glottic 255 26 25 48 128 72 p < 0.05 p < 0.05

Hemoglobin level
Low1 168 17 24 46 58 33 p < 0.05 p < 0.05
Normal-high 667 68 28 54 116 66 p < 0.05 p > 0.20
Missing 0 0 0 0 3 2 p > 0.20 p < 0.05

Total radiation 
dose

<60Gy 16 2 11 21 5 3 p < 0.05 p > 0.20
60-66Gy 437 45 22 42 1 1 p > 0.20 p < 0.05
>66Gy 541 55 19 37 171 97 p < 0.05 p < 0.05

1Male < 8.5 mmol/l, Female < 7.5 mmol/l)
The clinical and trial cohort are compared to the training cohort to indicate a statistical difference.
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van Leeuwenhoek Hospital (Netherlands) and Christie 
Hospital (UK) [18]. The AUCs reported were 0.68, 0.74, 
0.71 and 0.76 for each mentioned group respectively. 
The uncurated clinical cohort had a comparable accuracy 
(AUC of 0.71). The model is able to predict 2-year 
survival for laryngeal cancer patients for the clinical 
cohort as the AUC is statistically different from 0.5. The 
AUC reliability interval was larger than observed for the 
training cohort which can be explained by the smaller size 
of the clinical cohort. Comparable results were shown for 
the Leuven dataset (AUC 0.50 - 0.82) which is similar in 
size (n = 109). Another important fact is that the applied 
model was learned from the training cohort so it will 
by definition perform better on this cohort. The model 
calibration plots (Figure 2) shows that the model is not 
perfectly calibrated for 2-year survival, underestimating 
survival especially in the poor prognosis group. The likely 
reason is that this proportional hazard model was trained 
in the original study for 5-year survival prediction and 
provides a baseline survival for all time points between 0 
and 5 years. It is not uncommon for these types of models 
to be recalibrated after acquiring more data to improve 
the survival probability [19]. The observed survival 
in the clinical cohort is not statistically different from 
the observed survival in the training cohort as reported 
earlier in the Results section demonstrating that the model 
performance in the clinical cohort is comparable to the 
training cohort. The prognosis distribution of the clinical 
cohort is shifted towards the poor prognosis group; the 
main reason is the difference in patient population. As 
shown in Table 2 the clinical cohort patients have more T3 
and T4 cancers, more often have N1 and N2 disease, more 
non-glottic cancers, receive a lower treatment dose and 
have lower hemoglobin levels. These are all unfavorable 
predictors for survival in the prediction model. The more 
advanced cancers and nodal metastasis might be explained 
by the socioeconomic difference between the Illawarra and 
Maastricht regions, as patients are referred to the ICCC 
at a later stage or wait longer to consult their physician. 
However, the observed survival is not statistically different 
from the training cohort for each prognosis group as 
reported in the results. This indicates that the training 
and clinical cohort are similar and that similar features 
seem to be predictive for survival. The inclusion of the 
clinical cohort patients in a future training cohort may find 
additional features specific to the poorer prognosis group, 
which is the subject of future work. 

Uncurated clinical data has been demonstrated to 
be sufficient to produce and validate useful models and 
DSS, however the work also indicates that prospective 
consistent data recording can improve opportunities to 
learn from clinical data. Increasing the numbers of patient 
records eligible to be entered into the modelling process 
can enable the addition of more model parameters and 
strengthen model performance. For this study the data 
quality was very high in comparison to similar studies [20] 

where less than 5 percent of the treated patient records 
were usable after data mining while in this study over 30 
percent of the treated patient records have been included. 
This can be explained by a previous retrospective study 
in this patient group. The original data for these patients 
was complimented with great detail, something that is not 
standard in a radiotherapy clinic. 

The largest gap in data was caused by the poorly 
recorded hemoglobin level measurements before the 
start of radiotherapy. Because hemoglobin level is one 
of the input parameters with the strongest weight in the 
model a separate analysis was undertaken where the 
hemoglobin level was imputed with a low (7.0mmol/l), 
high (11.0mmol/l) and the training set median (9.1mmol/l) 
value. This imputation resulted in an enlarged clinical 
cohort of 109 patients. This resulted in an AUC interval 
increase of 0.60 to 0.83, 0.61 to 0.84, and 0.62 to 0.85 
for the mentioned imputations respectively, intervals 
which are somewhat tighter than for the non-imputed 
clinical cohort which is likely caused by the increase in 
patient numbers. The different imputation methods for the 
hemoglobin level resulted in a very different distribution 
of the patients across survival groups as shown in the 
Kaplan Meier curves (Figure 3). This shows that the model 
is very sensitive to the hemoglobin level and that one has 
to take great care in choosing an appropriate imputation 
method but it also shows that the clinical cohort contains 
more information that could be utilized. In future work 
smarter ways of imputing missing values could be 
explored. An example of a smarter solution is a Bayesian 
Network model where for example the hemoglobin level 
could be derived by considering all other patient properties 
available instead a of simple median calculation [21]. 

In both the previous study [18] and in this study the 
model is able to predict survival for the clinical cohorts. 
However, in this study we show that the model is not able 
to predict 2-year survival for laryngeal cancer patients 
for the trial cohort: The AUC shows that the prediction 
is not different from random and the calibration plot 
shows that the observed survival is statistically the 
same for each prognosis group in the trial cohort. The 
comparison between the trial cohort prognosis groups 
as reported in the results confirms this. The most likely 
cause of this poor performance and calibration is that 
the trial patient population is different from the training 
and clinical cohort. Table 2 shows cohort properties 
which are statistically different between training and 
trial cohort. The trial cohort consists of younger patients, 
more females, almost exclusively T3 staged cancers, more 
nodal involvement, more non-glottic cancers and almost 
exclusively high radiation dosages. This patient-type is 
under represented in the training cohort. Although data 
quality is extremely high in a clinical trial, the patients 
in the trial cohort are highly selected being relatively 
young patients with advanced cancers that were treated 
perhaps with a higher quality level or with different 
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Figure 1: Kaplan Meier Curves for each cohort. The survival prediction thresholds to create the poor, medium and good prognosis 
groups were 57% and 81% chance of 2-year survival. This resulted in a group distribution of 53%, 36% and 10% and 53%, 42% and 5% 
for the poor, medium and good prognosis group for the clinical cohort and trial cohort respectively, while (by definition) the training cohort 
had 25%, 50% and 25% distribution.

Figure 2: Calibration curve for each cohort showing the observed survival in relation to the predicted survival for the 
poor, medium and good prognosis groups. The bar graph shows the survivor and non-survivor distribution per predicted survival 
probability bin.

Figure 3: Kaplan Meier survival curves clinical cohort using a low, high, and training median imputation value 
demonstrating the effect of assuming hemoglobin values for the 57 patients in the clinical cohort that were missing a 
hemoglobin level measurement before treatment.
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treatments than standard practice or that were different 
by another unknown confounding factor. After training 
new model coefficients on the trial cohort and using the 
same data for validation the AUC was only 0.58. Even 
when using an optimistic overestimating validation, the 
model performs poorly, this means that the data does not 
contain the knowledge we need to predict survival for 
this specific cohort supporting our earlier statement that 
there might be another unknown factor that is of great 
influence on the survival for these patients. This difference 
between clinical routine and trial cohorts is one of the 
arguments against using solely evidence from clinical 
trials as the source of clinical guidelines in radiation 
oncology [22, 23]. For rapid learning, if a training cohort 
is different from a validation cohort and/or the patients 
in the validation cohort are underrepresented in the 
training cohort, a poor performance of the model can be 
expected. To increase model performance more patients 
with different characteristics should be included in the 
training set during model learning. Including trial patients 
can have a negative effect on model performance; it has 
been reported that it can result in a biased model towards 
this population. As an example, the predicted survival (i.e. 
the calibration of the model) will be much higher than can 
be obtained in routine clinical practice as routine quality is 
expected to be lower than in clinical trials, which is known 
to affect survival [24]. The poor performance in the trial 
cohort also underlines the need of model commissioning. 
Before using any prediction model, it is important to 
verify if this model does indeed perform well in a specific 
population. Commissioning of hardware and software 
is a well-known process in radiotherapy and decision 
aid tools should undergo the same quality assurance 
procedures. A better modelling approach would be multi 
center rapid learning systems that can enable the model 
learning algorithm to learn from data present in multiple 
centers, using different machine learning approaches, 
such as Bayesian Networks, which can explicitly account 
for biased datasets. This could include the integration of 
large scale observational studies such as DAHANCA [25] 
and the integration of clinical routine and clinical trial 
cohorts as suggested by others [13, 26]. In ongoing work 
on the rapid learning infrastructure, we use Semantic Web 
technology and ontologies such as the Radiation Oncology 
Ontology [https://bioportal.bioontology.org/ontologies/
ROO] to create well defined semantically interoperable 
data stores and secure messaging systems to facilitate 
multi institutional rapid learning.

In clinical practice TNM staging is used to estimate 
the prognosis for larynx patients and there is some 
evidence of additional single variable prognosis predictors 
[27, 28]. To our knowledge there are no models to predict 
survival in laryngeal cancer patients. Some survival 
prediction models exist for other head and neck cancer 
patients [29, 30]. The study [30] with a similar approach, 
large training and external validation cohorts found 

comparable results in model performance. 

conclusIons

We were able to use a data mining system to 
automate the collection of model parameters in a totally 
different clinical cohort in a different country and 
healthcare system and predict 2-year survival for their 
patient population using uncurated clinical data. The 
study shows that routine clinical data contains valuable 
information that could be harvested to improve and 
personalize patient care and even more so if recorded in a 
detailed, structured manner. The results demonstrate that 
further investigations into the difference between clinical 
trial cohorts and clinical cohorts is necessary with the 
potential for rapid learning systems to provide evidence 
for patients who do not fit clinical trial criteria.
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