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ABSTRACT The organization of intermediate-sized filaments (IF) of the cytokeratin type was studied 
in cultures of PtK2 cells in which typical IF structures are maintained during mitosis, using a 
monoclonal antibody (KG 8.13). This antibody reacts, in immunoblotting experiments, with the larger 
of the two major cytokeratin polypeptides present in these cells but, using standard immunofluores- 
cence microscopy procedures, does not react with the cytokeratin filaments abundant in interphase 
cells, in striking contrast to various antisera and other monoclonal cytokeratin antibodies. In the same 
cell cultures, however, the antibody does react with cytokeratin filaments of mitotic and early 
postmitotic cells. The specific reaction with cytokeratin filaments of mitotic cells only is due to the 
exposure of the specific immunologic determinant in mitosis and its masking in interphase cells. 
Treatment of interphase cells with both Triton X-100 as well as with methanol and acetone alters the 
cytokeratin filaments and allows them to react with this monoclonal antibody. A similar unmasking 
was noted after treatment with buffer containing 2 M urea or low concentrations of trypsin. We 
conclude that the organization of cytokeratin, albeit still arranged in typical IF, is altered during 
mitosis of PtK2 cells. 

Intermediate-sized filaments (IF) j of vertebrates are cytoplas- 
mic structures that are notoriously stable, both mechanically 
and chemically, and resist extractions in buffers of a broad 
range of ionic strengths and pH values (for reviews, see 
references 1-4). Different types of IF have been distinguished 
by subunit polypeptide composition and by immunological 
criteria and their specific expression has been related to routes 
of cell differentiation (1-3, 5-7). Yet they all share some 
common principles of morphology and homologies of amino 
acid sequence (1-4, 8-10). In spite of their remarkable stabil- 
ity, IF may undergo redistribution of filaments as well as 
rearrangements of subunit proteins in living cells. It has been 
described that arrays of vimentin filaments are reorganized 
during mitosis (11-15) and drug-induced perinuclear aggre- 
gation (11, 16-17) and similar observations have been made 
for cytokeratin IF in mitosis of some epithelial cells (6, 12, 
18, 19). In most cases such re-distributions have been inter- 

J Abbreviations used in this paper: IF, intermediate-sized filaments; 
PIK2, cultured rat kangaroo cells. 
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preted as altered distributions of intact IF that do not involve 
intrafilamentous changes such as disassembly and re-assembly 
of IF subunits, in agreement with electron microscopic obser- 
vations of normaMooking IF in all stages of mitosis of various 
cultured cells of mesenchymal (11, 13, 15) and epithelial (19) 
origin. By contrast, certain epithelial cells exhibit a drastic, 
transient change of IF organization during mitosis in which 
IF are unravelled into different, yet still insoluble and poly- 
meric structures that aggregate into variously sized, spheroidal 
masses containing cytokeratin (20-22). These observations 
suggest that the structural state of at least certain IF is phys- 
iologically regulated. In the present study, we describe obser- 
vations indicating that systematic, though less conspicuous 
changes of cytokeratin IF organization also occur in mitotic 
cells which, at the electron microscopic level, maintain typical 
IF morphology such as cultured rat kangaroo (PtK2) cells. 
These observations have been made possible by the use of a 
monoclonal antibody, I ~  8.13 (23), which recognizes a cy- 
tokeratin determinant, the exposure of which is modulated 
during the cell cycle. 
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MATERIALS AND METHODS 

Cells: PtK2 cells were grown as previously described (19). For enrichment 
of mitotic stages some cell cultures were treated with 10 -6 M colcemid for 12- 
24 h (19). 

Antibodies: The monoclonal murine antibody KG 8.13 (lgG2) has 
recently been described in detail (23). Conventionally prepared antibodies (IgG 
fractions or affinity-purified) obtained from guinea pigs and rabbits immunized 
with epidermal prekeratins from bovine muzzle have previously been described, 
including their reaction with IF of PtK2 cells (3, 6, 18, 20, 24, 25). Guinea pig 
antibodies to vimentin have also been described (6, 24). To control the 
stainability of cytokeratin 1F in all phases of the cell cycle of PtK2 cells, we also 
used other monoclonal antibodies to cytokeratins (20). 

Immunofluorescence Microscopy: PtK2 cells grown on glass 
coverslips to various densities (from 1 d after plating to confluency) were rinsed 
with phosphate-buffered saline at room temperature. The standard fxation 
procedure included dipping for 5 rain in -20"C methanol and then for 1 min 
in -20" acetone, followed by air-drying. Variations of this procedure included 
the following: 

(a) Extended (2 or 5 rain) or repeated (6 x 1 rain) incubations in acetone. 
(b) Use of ethanol instead of methanol. (c) Rinsing in PBS, followed by 
incubation for 5 min in 10 mM Tris-HCl buffer (pH 7.2) containing 140 mM 
NaCI and 0, 1, or 5 mM MgCI2 (cf. reference 26) before application of methanol 
and acetone. (d) The same as c, except methanol and acetone were at 0*C or 
at room temperature. (e) Rinsed cells incubated in Tris-buffer containing 140 
mM NaCI and 1% Triton X-100 (with or without 1 mM MgCI2) for various 
periods of time (1, 2, 3, 4, 5, and 10 min), followed by an additional wash (5 
min) in Tris-buffer, prior to application of first antibody (cf. reference 26). ( f)  
The same as in e, except with fixation in -20"C methanol and -20"C acetone 
before application of first antibody. (g) The same as e, except with additional 
wash (5 min) in PBS. (h) As done in f, except methanol and acetone were at 
4"C. (i) The same as in f, except incubation in methanol and acetone were 
both at room temperature. (j) After treatment with buffer containing Triton 
X-100 (as above) cells were incubated in high salt buffer (10 mM Tris-HCl, 
140 mM NaCI, 1.5 M KCI, pH 7.2) for 5 min or 30 min, then rinsed in PBS 
containing 1 mM MgCI2, prior to direct application of first antibody. (k) The 
same as in j, except after rinsing in PBS the specimens were incubated in 
methanol and acetone of various temperatures (-20"C, 4"C, room temperature). 
(1) The same as in f, except 1% Nonidet P-40 was used instead of Triton X- 
100. (m) After standard treatment with methanol and acetone cells were dipped 
into PBS containing 2 M urea (ultrapure) for a few seconds, followed by washes 
in PBS. (n) Cells treated with methanol and acetone were dipped into PBS 
containing trypsin (~20 #g/ml), followed by washes in PBS. 

Incubation with the respective first antibody was for 45 min at room 
temperature, followed by several washes in PBS, and incubation with second 
antibody. In the case of the murine antibodies second antibodies were either 
fluorescein- or rhodamine-labeled rabbit anti-mouse IgG (freshly prepared or 
purchased from Miles-Yeda, Rehovot, Israel) or rhodamine-labeled goat anti- 
bodies to mouse (Cappel Laboratories, Cochranville, PA). When guinea pig 
antibodies were used in the first place they were visualized with rhodamine- or 
fiuorescein-conjugated goat or rabbit antibodies to guinea pig IgG (freshly 
prepared or purchased from Miles-Yeda or Cappel Laboratories). After incu- 
bation with the specific second antibodies specimens were rinsed twice in PBS, 
air-dried and mounted in Mowiol (Hoechst, Frankfurt, Federal Republic of 
Germany). 

Photomicrographs were taken with a Zeiss photomicroscope III (Zeiss, 
Oberkochen, Federal Republic of Germany). For double label immunofluores- 
cence, both the murine and the guinea pig antibodies were applied at the same 
time (of. reference 27). Controls for specificity of the second antibodies used in 
double immunofluorescence were routinely included. 

Electron Microscopy: Cells grown on cover slips were fixed and 
processed for electron microscopy of ultrathin sections as previously described 
(19). For immunoelectron microscopy cells were treated in the specific way 
used for immunofluorescence microscopy, then were incubated with the first 
antibody for I h at room temperature. After washing three times with PBS, 
goat antibodies to mouse IgG that had been coupled to 5 nm colloidal gold 
particles (Janssen Chemicals, Beerse, Belgium) were added in PBS and incu- 
bated for 2 h. After three washes with PBS, specimens were fixed with 2.5% 
glutaraldehyde for 15 min, followed by OsO4-fixation, and processed for ultra- 
thin sectioning as described (28). 

Gel Electrophoresis and Detection of Antigens: Polypeptides 
of whole PtK2 cells and cytoskeletons made therefrom (29) were separated by 
gel electrophoresis, transferred on nitrocellulose paper sheets and examined by 
the immunoblotting technique as previously described (23). 

R ES U LTS 

The monoclonal antibody K~ 8.13 recognizes, in epithelia of 
man and cow, a determinant present in almost all members 
of the "basic subfamily" of cytokeratin polypeptides as well 
as in cytokeratin D (No. 18 of the human catalog; cf. reference 
30) of man and cow (23). In cytoskeletons of PtK: cells, two 
major cytokeratin polypeptides have been identified, in ad- 
dition to vimentin (3, 29, 31). One has an apparent Mr value 
of 54,000 and is related to cytokeratin "A" of other species, 
the other is more acidic, has an electrophoretic mobility 
similar to that ofactin and appears to be related to component 
"D" of higher mammalian species (3, 23, 29). Of these, 
antibody K~ 8.13 reacts only with the larger cytokeratin 
(Fig. 1). 

Immunofluorescence microscopy of PtK2 cells in interphase 
with conventional cytokeratin antibodies of rabbits guinea 
pigs reveals an intricate meshwork of wavy cytokeratin fibrils 
characteristic of this cell type (not shown; cf. references 3, 6, 
7, 12, 18, 20, 31, 32). The same fibrillar meshwork is also 
seen with various monoclonal murine antibodies (not shown; 
cf. references 20, 32, 33). In mitotic PtK2 cells this meshwork 
is altered but fibriUar structures are still well discerned, in 
agreement with previous reports (12, 19, 20). By contrast, 
antibody KG 8.13 does not stain interphase PtK2 cells but 
reacts only with mitotic stages (Fig. 2). This specific reaction 
in mitotic PtK2 cells only is illustrated by double immunoflu- 
orescence microscopy in Fig. 3, a-d which also demonstrate 
that this reaction is not restricted to prophase-telophase stages 
of mitosis (Fig. 3, a and b), but extends to postmitotic stages 
of early G1 phase of both daughter cells (Fig. 3, c and d). This 
specific reaction of antibody K~ 8.13 with cytokeratin struc- 
tures of perimitotic but not interphase PtK2 ceils is not 
restricted to mitoses that have rounded off but is also seen in 
mitotic cells that have remained fiat, thus demonstrating that 
it is related to the mitosis as such but not the morphological 
shape change. It is further evident that this change in antigenic 
reaction with PtK2 mitoses is also seen in thin cytoplasmic 
projections as they occur in some normal mitoses and, more 
frequently, in mitotic stages arrested by treatment with col- 
cemid (data not shown). 

FIGURE 1 Cytoskeletal polypeptides 
obtained from PtK2 cells after extraction 
with Triton X-100 and high salt buffer 
have been separated by SDS PAGE and 
stained with Coomassie Blue (lane l) or 
blotted on nitrocellulose paper and al- 
lowed to react with monoclonal anti- 
body KG 8.13 followed by reaction with 
12Sl-labeled protein A (lane 2, autoradi- 
ofluorography). The two horizontal bars 
denote the two cytokeratins 1 (upper) 
and 2 (lower). V, vimentin; A, actin. Note 
that only cytokeratin 1 reacts with the 
antibody. 
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recognized by antibody K6 8.13 has been most effective and 
uniform when both methanol and acetone were used at 4"C 
or at room temperature rather than at -20"C. Unmasking of 
the determinant recognized by antibody K6 8.13 has also 
been achieved by brief treatments with 2 M urea and trypsin. 

Electron microscopic examination has confirmed that an- 
tibody K6 8.13 specifically binds to bundles of cytokeratin 
filaments. Positive decoration on IF bundles is seen in mitotic 
cells as well as in interphase cells treated with both the 
detergent and the organic solvents (data not shown). 

DISCUSSION 

FIGURE 2 Immunofluorescence microscopy of mitoses-rich PtK2 
cell cultures after staining with murine monoclonal antibody Kc 
8.13. Note that antibody Kc 8.13 reacts exclusively with mitotic and 
early postmitotic cells. Nuclei of unstained cells are indicated by 
N. Bar, 40 ~m. x 820. 

These observations of a specific reaction of antibody K6 
8.13 with cytokeratin filaments of mitotic but not interphase 
PtK2 cells suggest that this reaction is the result of the masking 
of the determinant recognized in denatured cytokeratin (Fig. 
1) during interphase. The strong staining of cytokeratin fibrils 
in interphase PtK2 cells with various other conventional and 
monoclonal antibodies demonstrates the accessibility of the 
cytokeratin filaments to murine immunoglobulins. Therefore, 
we examined various preparative conditions which, in inter- 
phase cells, might unmask the determinant recognized by K6 
8.13. It has been found that when cells are extracted first with 
buffer containing Triton X-100 or Nonidet P-40 and then 
with methanol and acetone as described under methods f-I 
above significant fibrillar staining with antibody I ~  8.13 is 
seen in interphase PtK2 cells (Fig. 4, a-c). Positive reaction is 
seen in all cells although the distinctiveness of the fibrillar 
fluorescence is often variable from cell to cell in the same 
culture. Double label immunofluorescence microscopy of 
PtK2 cells treated in this way with guinea pig antibodies and 
with murine monoclonal antibody K6 8.13 shows that the 
fibrillar structures stained with antibody KG 8.13 are identical 
to those stained by cytokeratin antibodies that are positive 
also with cells processed according to the standard procedure. 
Inclusion of millimolar concentrations of Mg  2+ or Ca 2+ in the 
various buffers has not resulted in significant differences of 
this umasking effect. This unmasking of the determinant 

Our results present the case of a specific cell cycle-dependent 
re-arrangement of IF structures that is recognized by the 
selective masking and unmasking of a specific immunologic 
determinant in cytokeratin filaments. Selective masking has 
been discussed by Lazarides et al. (34) as a likely explanation 
of an unexpected reaction of another type of IF, desmin, with 
a monoclonal antibody (D76) that reacts with desmin only in 
later stages of myotube differentiation but not in early myo- 
tubes. However, direct proof by experimental unmasking of 
this determinant has not been presented for this case. Our 
observations in PtK2 cells demonstrate cell cycle-dependent 
masking of an IF determinant by experimental unmasking. 
This occurrence of a selective and complete masking of a 
determinant in an IF system should be taken as a reason for 
concern and caution in interpreting negative results obtained 
in immunolocalization studies, especially when monoclonal 
antibodies are used. The phenomenon described here may 
also explain unexpected heterogeneities of reactivity in inter- 
phase cells of the same culture (for examples, see references 
2 l, 33, 35, 36). It may also be relevant for some observations 
in frozen tissue sections, and failures to certain monoclonal 
or conventionally obtained antibodies to react with fibrils of 
some epithelial cells but not with those of others (e.g., refer- 
ences 6, 7, 25, 32, 33, 37, 38) may reflect differential masking 
rather than differences of expression. Woodcock-Mitchell et 
al. (39) have presented an example of a monoclonal antibody 
that does not bind to its cytokeratin determinant in suprabasal 
layers of epidermis and have suggested that this might be due 
to selective masking in situ. We propose to include, as controls 
for possible masking of the type described here, immunoblot- 
ting tests on proteins from the specific cell colonies or layers 
under question as well as treatments with unmasking reagents 
as they have been successful in this study. 

Antibody KG 8.13 reacts with a determinant of a group of 
cytokeratin polypeptides present in diverse mammalian spe- 
cies (23). Interestingly, this determinant is differently exposed 
during interphase in cultured cells from various species. 
Whether this different reactivity of the same determinant in 
different cells reflects functional differences or only tolerance 
of changes in an unimportant region of this molecule is not 
known. 

The accessibility of the cytokeratin determinant recognized 
in PtK2 cells during mitosis but not during most of the 
interphase indicates that the organization of cytokeratin fila- 
ments is not constant but goes through systematic and dy- 
namic changes, both when the cell enters mitosis and when it 
re-establishes its interphase architecture. PtK cells maintain 
intermediate-sized filament structures during mitosis, al- 
though changes in their display have been noticed by electron 
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FIGURE 3 Double label immunofluorescence microscopy of PtK2 cells, using guinea pig antibodies against cytokeratin (a and c; 
same as in Fig. 2, a-c) and murine antibody KG 8.13 (b and d). Note that antibody KG 8.13 reacts only with filaments of mitotic 
cells (a and b) and postmitotic cells of early 61 phase. (c and d). Bars, 30/~m. x 900. 
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FIGURE 4 Immunofluorescence microscopy of PtK2 cells treated sequentially with Triton X-100 as well as methanol and acetone 
using monoclonal antibody KG 8.13 (a-c). Note that cytokeratin filaments positively stained with antibody KG 8.13 are recognized 
in cells extracted in this way (a, survey; b, a large and a small cell; c, an interphase cell, in the left, and two mitotic cells in the 
upper right). Bars, 30 tzm. (a) X 700; (b) x 750; (c) x 750. 

microscopy (19) as well as immunofluorescence microscopy 
(14, 18), different from many other epithelial cells in which 
cytokeratin filaments are transformed into spheroidal aggre- 
gates of non-IF structures (20-22). Now our observations that 
cytokeratin filaments of mitotic PtK2 cells are not identical 
to those of interphase PtK2 cells and can be clearly distin- 
guished by monoclonal antibody I ~  8.13 suggest that per- 
imitotic changes of IF organization may be much more com- 
mon, albeit not necessarily as dramatic as in those cells which 
transiently transform their cytokeratin filaments into nonfi- 
brillar aggregates (20-22). 

Our experiments do not allow us to decide whether the 
masking of the K~ 8.13 determinant in cytokeratin filaments 
of PtK2 interphase cells is due (i) to the specific association 
with a noncytokeratin protein or (ii) to an intrinsic change 
in the arrangement of the cytokeratin polypeptides. Treat- 
ment with Triton X-100 or Nonidet P-40 does not detectably 
change the electron microscopic appearance of these filaments 
(cytokeratins are even capable of reconstituting intermediate- 
sized filaments in vitro in the presence of 1% Triton X-100, 
data not shown). The various treatments used for unmasking 
could "loosen" the specific polypeptide arrangement within 
IF or extract a masking component. It is also possible that 
the perimitotic changes in the K~ 8.13 determinant of PtK2 
cells are related to modifications of cytokeratins (for reports 

of increased phosphorylated of vimentin in mitosis, see ref- 
erences 40, 41). The observed changes in IF organization may 
have, beyond the structural aspect, functional importance: 
the surface pattern of IF which, in the living cell, provide a 
large area for potential structure-bound reactions may not be 
constant and inactive but may be involved in the regulation 
of other cellular activities. 
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