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Abstract: A circularly polarized (CP) multi-input multioutput (MIMO) dielectric resonator (DR)
antenna (DRA) with compact size and four ports is implemented. CP radiation was achieved using
the deformed DR geometry excited with aperture coupled feeding. A CPDRA with a single and two
ports is investigated. The defected ground structure (DGS) was incorporated into the antenna for
improving the isolation between the ports. The DGS was incorporated in such a way that the required
phase difference between the generated orthogonal degenerate modes is preserved. This concept
could be utilized in implementing a compact four-port CP antenna. The MIMO antenna provides a
10 dB impedance bandwidth of 38% (8.5–12.5 GHz) and a 3 dB AR bandwidth of 9.32% (9.2–10.1 GHz).
The gain of the implemented antenna was around 6 dBi in the band where CP radiation was achieved.
The MIMO performance parameters were calculated, and their values remained within the acceptable
limits. The implemented antenna could suitably be used in X-band applications.

Keywords: antenna; circular polarization; dielectric resonator; MIMO; X-band

1. Introduction

The dielectric resonator (DR) antenna (DRA) is becoming the best choice over other
antennas in high-frequency wireless systems due to its advantages in providing high
radiation efficiency and gain with low losses [1,2]. In recent days, techniques have been
implemented for developing multiport antennas and DRAs [3]. The usage of multiport
antennas enables wireless systems with a higher data transfer rate [4]. Several multiport
DRAs offering different characteristics have recently been implemented [5–9]. The literature
shows that the latest issues in multiport DRAs are (i) implementing the technique of the
generation of circularly polarized (CP) fields [5], (ii) improving the isolation between
the ports [10], and (iii) increasing the number of ports by maintaining the antenna size
compact [11]. Researchers are working towards finding the best solutions for all these
research issues. In the current scenario, implementing the CP multiport antenna is a
challenging task because (i) the generation of CP fields needs the excitation of orthogonal
degenerate modes with quarter-phase difference, which becomes difficult to maintain in
the case of multiport antenna systems [10,12,13]; and (ii) increasing the number of ports
becomes difficult because the isolation needs to be maintained within the acceptable limits
for an antenna system along with the CP fields [7,10,12,14]. Moreover, the advancement
of small-scale systems needs the compact size of a multiport antenna [11,15]. Very few
research works have reported on these research issues [7,8,10,12,14,16]. For implementing a
CP MIMO antenna, researchers are following the procedure (i) utilizing any CP generation
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technique in a single-port antenna, and (ii) implementing the compact multiport antenna
structure with high isolation along with the desired phase difference between the generated
orthogonal modes, so that CP field can be obtained. A traditional cross-slot is investigated
for fulfilling the aim of achieving the CP response in MIMO DRA with two ports [7]. A
multiport DRA with two ports used metal strips to achieve a CP field [10]. A CP multiport
DRA was reported with the deformed geometry of the DR [16]. Moreover, a research
work was reported with the usage of a quarter modified feedline is a two-port CP MIMO
DRA [12]. Another research work utilized a traditional stair-shaped slot for excitation in
implementing a four-port MIMO antenna [13]. These research works utilized the techniques
of obtaining the CP response in DRA, which had earlier been reported in the case of a
single-port antenna; here, the MIMO antenna was implemented with the said objective.
Still, most of all these recently reported antenna structures can provide the facility up to
only two ports.

To find a solution to the stated research issues, a compact four-port CP MIMO DRA
was designed and implemented in this research work. Utilizing a deformed geometry of
the DR in implementing the CP antenna or antenna array is always reliable over deforming
the feeding line from the point of structural stability [17–19]. So, a deformed geometry
of the DR is used for obtaining the CP field. TAantenna analysis with a single radiating
element was conducted to obtain the radiation behavior of the antenna.

This study was utilized in the implementation of a two-port MIMO antenna with
CP response by the appropriate incorporation of DGS. The concept of a two-port MIMO
antenna is utilized in implanting a four-port CP MIMO DRA. The four radiating elements
are arranged with the simple aperture coupled feeding into a compact space. The defected
ground structure was incorporated into the antenna structure to enhance the isolation
between the radiators, so that the phase differences between the orthogonal modes required
to achieve the CP response are preserved. The suggested antenna could suitably be used
in X-band applications with 38% (8.5–12.5 GHz) and 9.32% (9.2–10.1 GHz) impedance
bandwidth and AR bandwidth, respectively. The deformed geometries of the DR with a
single port were previously reported [20–23]. However, implementing the four-port MIMO
antenna with CP response has not been investigated till now, and this is the novelty of
this research work. Providing the CP response in a compact antenna structure with an
increased number of ports is the advantage of the implemented antenna. The novelty and
advantages of the reported research work can be summarized in the following points.

• The compact structure of a four-port CP MIMO DRA with the utilization of the
deformed shape of the DR and DGS together. Implementing a four-port CP MIMO
DRA with high isolation in a compact geometry with the utilization of DGS is a novel
technique proposed in the reported research work. Obtaining the compact geometry
of the four-port CP MIMO DRA is not available in the literature.

• A technique of obtaining the high isolation between the ports along with the CP
response and maintaining the four ports in a compact geometry of antenna.

• High gain is another advantage of the proposed antenna structure that is generally
difficult to obtain in the case of C.

• PDRA.

2. Single-Element Analysis

Figure 1 illustrates the 2D and 3D layout of the CPDRA. The antenna contained a
DR of deformed shape, so that the CP field could be obtained as shown in Figure 1. The
simplest deformed shape of the DR that is generally used in obtaining the CP response is
the stair-shaped geometry [20,22,24]; so, this was also utilized here to fulfil the aim of this
research work, i.e., implementing a compact CP MIMO antenna. The DR was composed
of material with a permittivity of 10.2, and added above the substrate of the thickness of
0.762 mm. The dimensions of the DR could be selected using the dielectric waveguide
model (DWM) by considering the rectangular geometry, and can then be deformed for
obtaining the desired polarization and response [23,25]. The simulation was performed
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by considering the fabrication tolerances, as the prototype was fabricated with multiple
layers of dielectric material. The power was coupled to the DR using a rectangular slot with
dimensions of 5.8 × 0.6 mm in aperture. A 50 Ω microstrip line of 0.6 mm width was used as
the transmission line. The microstrip line was terminated with a λ/4 triangular transformer
stub for obtaining an appropriate impedance matching. The proposed DR and the ground
had a curvature with a radius Rd = 1.5 mm and Rg = 2.5 mm. The reason for chamfering
the ground plane and reducing its dimensions was for preserving the isolation between
ports, and keeping the desired phase differences between the orthogonal modes to generate
the CP field. These values were optimized to achieve the desired frequency response.
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Figure 1. Single-element DRA layout: (a) 2D front view; (b) 2D back view; (c) 3D view; (d) fabricated
prototype with single DR element.

This antenna was fabricated, and the results obtained from the simulation using CST
microwave studio were validated by the measurement as illustrated in Figure 2. The
antenna displayed an impedance bandwidth of 38% (8.5–12.5 GHz), along with the 3 dB
AR passband extended from 9.1 to 10.1 GHz offering 10.4% AR bandwidth. The axial
ratio bandwidth was not dependent upon impedance matching and was related to the
orthogonal modes [10,12,13]. The DWM model does not consider the effect of the type
of feed; hence, the effect of variation in the dimensions of the coupling slot is reported
in Figure 3, so that one can infer the conclusions for obtaining the desired response by
maintaining the phase difference between the generated orthogonal modes. Figure 4a,b
show the E-field distribution at the top of the DR in a z = h plane at frequencies of 9.64
and 11.88 GHz, respectively. The field distribution in the antenna corresponded to modes
TEy

11δ and TEx
11δ at frequencies of 9.64 and 11.88 GHz, respectively. This confirmed the

generation of two orthogonal degenerate modes, which is required for obtaining the CP
field. These modes provide circular polarization at a frequency of 9.77 GHz. The field
was drawn at a frequency of 9.77 GHz at different time instants, as shown in Figure 5.
The field vectors rotated in the counterclockwise direction, confirming the generation of
the dominant right-hand CP field, which was later confirmed during the study of the
radiation pattern.
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3. Two-Port MIMO Antenna

A two-port CP MIMO DRA was designed as shown in Figure 6. Two structures were
investigated: one with the full ground, and another with defected ground structure (DGS),
as shown in Figure 6a,b, respectively. Figure 7 shows the frequency response of the S11
parameter and AR in both cases. Table 1 shows the performance of both antennas. As
usual, the DGS structure enhanced the impedance bandwidth and improved the isolation
between ports. Furthermore, the appropriate incorporation of slots in the ground plane
improved the AR bandwidth. The phase differences between orthogonal modes could be
preserved at the required limit with their desired magnitude; hence, the AR bandwidth was
improved after the incorporation of the DGS. Here, in two-port antennas, the edge-to-edge
separation between the DR elements was kept as 2.8 mm (0.08λo at 8.5 GHz) with a center
to the center separation of 15 mm (0.4λo at 8.5 GHz).

Increasing the distance between antenna elements being represented by X, the mutual
coupling decreased, but the size of the antenna increased. The circular polarization at the
proposed band of the antenna was affected by keeping the radiators close to each other. So,
the distance between antenna elements was optimized to achieve low mutual coupling with
compact size, and maintain the circular polarization. Figure 8a–c present the S11, AR, and
S21, respectively, corresponding to various separation distances among the two-element
DRAs. The optimized distances among DRAs were chosen on the basis of a parametric
study; Figure 8 shows that the optimized separation distance as X = 15 mm provided a
better 3 dB.
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Table 1. Performance of a two-port antenna.

Antenna BWIM (%)/(GHz)
(S11 < −10 dB)

Minimal Isolation
(dB)

BWAR/(GHz)
(AR < 3 dB)

Without DGS 31.96 (9.2–12.7) 20–35 7.40 (9.1–9.8)
With DGS 38.09 (8.5–12.5) 20–35 11.28 (9.2–10.03)
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4. Four-Port CP MIMO DRA

Analysis of a two-port CP MIMO antenna revealed that a four-port CP MIMO DRA
could also be implemented as shown in Figure 9. As the use of DGS improves antenna
performance, it was applied to the final antenna structure. The four antennas shared the
same ground to reduce the antenna size into a compact 30 × 30 mm2. The symmetric
antenna structure provided similar results at Ports 1 and 3, and Ports 2 and 4. The location
of the DR was selected so that the proposed antenna could maintain the high isolation
between the ports, and the phase difference between the generated orthogonal modes
remained intact. The structure of a two-port antenna was repeated by maintaining the
separation of around a quarter wavelength, so that the desired results could be obtained
without changing the basic nature of radiation of the single-port antenna.
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Figure 9b shows the fabricated prototype of the CP MIMO DRA. Figure 10 shows
the electric field distribution in the antenna structure without and with DGS. The field
distribution shows the coupling between the adjacent radiating DR elements in a case when
four ports were applied. Figure 10 also shows that there was high coupling in the case of
usage of the full ground structure. The usage of DGS improved the isolation between ports.
The color bar shows that the red field did not appear in the second slot area when DGS was
applied. Especially at lower frequencies, this coupling was stronger in the case of a four-port
structure in comparison to the two-port structure shown in Figure 6. At higher frequencies,
the spacing between radiating elements became comparable to the half-wavelength; hence,
the isolation was not much affected. The S-parameter response in these two cases was
expected to be as usual, so it is not reported in this manuscript. The field distribution
is only reported at lower frequencies and could be assumed at higher frequencies. The
four-port antenna contained four radiating elements. The effect of horizontal separation
between the radiating elements of the antenna having two ports was observed earlier in
this manuscript (Figure 8). The effect of vertical separation being represented by Y is shown
in Figure 11a–e. The variation in Y did not significantly affect the reflection coefficient. The
variation in Y may affect the phase difference between the generated orthogonal modes
desired for generating the CP response; thus, the AR response was varied. The increment
in Y enhanced the isolation between radiating elements, which were separated by Y but not
by X, as expected. The port parameters were measured using vector network analyzer ZVA
67 to validate the simulated results, as shown in Figure 12. The variation in the S parameter
response at each port was due to the fabrication tolerances. A 10 dB bandwidth of 38%
(8.5–12.5 GHz) was obtained from the antenna. The isolation between ports is illustrated in
Figure 11e. The measured isolation results had a level higher than 20 dB in the operating
band. The simulated and measured results of 3 dB AR are displayed in Figure 13. The
antenna had a bandwidth of 10.41% (9.1–10.1 GHz) and 9.3% (9.2–10.1 GHz), respectively.
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The mismatching between the two results was due to fabrication tolerances, but it was
still at a good level. The advantage of the proposed CP MIMO DRA is that it provides the
CP response at all individual ports. Figure 14 illustrates the simulated 3D patterns of the
MIMO DRA at each port at 9 and 11 GHz. As the antenna operated with the fundamental
mode, the broadside radiation was obtained. Figure 15 shows the simulated RHCP and left-
hand (LH) CP field pattern at the frequency where the dip of AR was obtained. The antenna
provided the dominant LHCP by around 18 dB over the cross-polarized component in the
direction of radiation, which remained broadside. Gain (simulated and measured) and
efficiency (simulated) results are shown in Figure 16. The antenna provided a gain of more
than 4.5 dBic over the passband with each port. The radiation efficiency of the antenna
also remained at more than 80% in the operating passband. The simulated and measured
radiation pattern results of the suggested antenna are illustrated in Figure 17. Far-field
measurement was conducted using the Starlab system. The envelope of the simulated
far-field response matches well with the measured one.
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5. MIMO Performance Analysis

The diversity characteristics and performance of the MIMO system could be examined
by using the envelop correlation coefficient (ECC), diversity gain (DG), channel capacity
loss (CCL), multiplexing efficiency (ηmux), mean effective gain (MEG), total active reflection
coefficient (TARC), and channel capacity. ECC, DG, and CCL were calculated using the
simulated and measured port parameters, and the simulated far-field, and the results are
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shown in Figures 18 and 19, respectively. Results for ηmux, MEG, TARC, and channel
capacity were calculated using simulated parameters only, and are presented in Figures 20
and 21. The MIMO performance parameters remained within the acceptable limits, proving
that the proposed antenna is a good candidate for CP MIMO operation [16]. The calculation
method of the parameters is already available in the literature, and a similar method was
followed [15,16,26,27]. Table 2 shows a comparison of the proposed antenna with others
available in the literature [10,12–14,16,25,28–30]. The comparison table shows the following.
(i) Many other antennas are available with the two-port geometry, and the number of ports
of the proposed antenna was doubled. (ii) The size of the antenna was significantly small
if DGS was applied in the structure by maintaining high isolation. (iii) The gain of the
proposed antenna was higher or comparable with the other four-port antennas. The CP
bandwidth was also comparatively wider in the case of a four-port DRA.
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Table 2. Comparison with other CP MIMO DRAs.

Ref No. of Ports fr(GHz)/BW (%) AR BW (GHz)/(%) Gain
(dBi)

Isolation
(dB) ECC Antenna Size

(mm × mm)/λ0
2

[14] 2 3.45/23.1 3.34–4.02/18.5 4.83 >26 <0.02 95 × 49.7/1.09 × 0.56
[16] 2 6.44/36.7 7.72–8.08/4.55 3.8 15 <0.05 80 × 80/1.7 × 1.7

[13] 4
3.58/13.1 3.54–3.74/4.9 5.2 >18

0.03 80 × 80/0.95 × 0.955.25/6.09 5.02–5.18/2.3 5.5 20
[10] 2 4/38.5 3.58–4.40/20.8 6.5 >28 <0.04 350 × 350/4.3 × 4.3
[25] 2 5.62/21.4 5.15–5.88/13.2 4.7 >18 <0.05 50 × 50/0.92 × 0.92

[12] 2
3.42/19 3.425–3.6/5 6.8 16.5

<0.05 110 × 50/1.25 × 0.565.45/9.4 5.45–5.55/2 4.6 16.2
[28] 4 3.5/14.4 3.34–3.54/5.8 4.2 >15 <0.5 66 × 60/0.76 × 0.70
[29] 4 4.9/5.1 - 6.2 25 0.002 140 × 45/2.28 × 0.73
[30] 4 5.7/10.5 - 5 18 0.25 30 × 30/0.57 × 0.57

This work 4 10.5/38 9.2–10.1/9.32 6 >22 <0.005 35 × 30/1.05 × 1.22

6. Conclusions

A four-port CPDRA with compact size was designed and implemented. CP radiation
was achieved using the deformed shape of the DR excited with aperture coupled feeding.
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The study of the single-port CPDRA revealed that a two-port CP antenna could be imple-
mented if a DGS is properly incorporated into the antenna structure. This concept was
also applied to implementing a four-port CP antenna. A 10 dB impedance bandwidth of
38% (8.5–12.5 GHz) with a 3 dB AR bandwidth of 9.32% (9.2–10.1 GHz) was achieved. In
addition, a gain of 6 dBi was obtained in the band where CP radiation was achieved. The
MIMO performance parameters were calculated, and their values remained within the
acceptable limits. The suggested antenna could suitably be used in X-band applications.
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