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Abstract: Background: This study aimed to evaluate changes in markers of calcification and of
endothelial dysfunction during the development of calcification and instability of atherosclerotic
plaques and to identify associations of calcification factors with the formation of unstable plaques.
Methods: We analyzed 44 male patients with coronary atherosclerosis who underwent endarterectomy
in coronary arteries during coronary bypass surgery. The endarterectomy material (intima/media)
was examined using histological and biochemical methods, and the stability and calcification degree
of atherosclerotic plaques were assessed. In homogenates of the tissue samples and in blood,
concentrations of osteoprotegerin, osteocalcin, osteopontin, osteonectin, monocyte-chemoattractant
protein type 1 (MCP-1), soluble vascular cell adhesion molecule 1 (sVCAM-1), and E-selectin were
determined by enzyme immunoassays. Results: Unstable atherosclerotic plaques proved to be calcified
more frequently (80.4% of plaques) than stable ones (45.0%). Osteonectin, E-selectin, and sVCAM-1
levels were lower in unstable plaques and plaques with large calcification deposits. Osteocalcin
content increased with the increasing size of the calcification deposits in plaque. Blood osteocalcin
concentration directly correlated with osteocalcin concentration in atherosclerotic plaques and was
higher in the blood of patients with calcified plaques in coronary arteries. Conclusions: The results
provide the basis for further research on the suitability of osteocalcin as a potential biomarker of an
unstable calcified atherosclerotic plaque in a coronary artery.

Keywords: calcification of atherosclerotic plaques; unstable atherosclerotic plaque; osteonectin;
osteopontin; osteocalcin; E-selectin; sVCAM

1. Introduction

Coronary heart disease (CHD) is one of major causes of high morbidity and mortality worldwide [1].
The pathomorphological basis of CHD is coronary atherosclerosis, in which an important role is played
by endothelial dysfunction and by the process of calcification, among others. The search for new
biomarkers of atherosclerosis and of coronary artery calcification is actively being conducted.

Coronary calcification is linked with the risk of adverse cardiovascular events in patients with
coronary atherosclerosis. For 15 years, Shaw et al. observed 9715 patients without clinical manifestations
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of CHD at baseline. The authors noted that, in patients with even a low degree of arterial calcification,
the risk of mortality was almost 70% higher, whereas it was sixfold higher in patients with the largest
calcification deposits in arteries than in patients who have no calcification deposits in arteries [2].
According to Criqui et al., the volume of coronary artery calcification is positively and independently
associated with the risk of CHD, while calcification density at any volume of calcification is inversely
proportional to the CHD risk [3]. Even though a higher overall coronary calcification index is a marker
of increased cardiovascular risk, Puchner noticed that a low level of local calcium indicates instability
of an atherosclerotic plaque, whereas a high calcium concentration with high density may be a marker
of plaque stability [4].

Because of the abovementioned discrepancy, addressing the question of whether calcification
indeed affects the formation of an unstable atherosclerotic plaque was chosen as one of the aims of this
study. In addition, we investigated possible associations (including the joint effect) of calcification
factors and of endothelial-dysfunction factors with the formation of calcified (including unstable)
atherosclerotic plaques.

2. Materials and Methods

This study was approved by the local Ethics Committee of the Research Institute of Internal
and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of
Russian Academy of Sciences (protocol№2, approval on 3 July 2017). The study involved 108 male
patients (mean age 60.6 ± 7.8 years) admitted to the Clinic of the Federal State Budgetary Institution
“National Medical Research Center named academician E.N. Meshalkin” of the Ministry of Health
of the Russian Federation for coronary bypass surgery. All the patients signed an informed consent
form for participation in the study. The inclusion criteria were the absence of myocardial infarction
less than 6 months old, the absence of acute chronic infectious and inflammatory diseases and their
exacerbations, and the absence of renal failure, liver diseases, cancer, and hyperparathyroidism (Table 1).
All patients received standard coronary artery disease therapy prior to coronary bypass surgery: statins,
beta-blockers, angiotensin converting enzyme inhibitors, and disaggregants. In the 44 males who were
chosen for further study, according to intraoperative indications during the coronary artery bypass
operation, endarterectomy was performed in the coronary arteries.

Table 1. Clinical characteristics of patients with coronary atherosclerosis.

Parameter Value

Age, yeas (M ± SD) 60.6 ± 7.8
Systolic blood pressure (M ± SD) 137.9 ± 15.5
Diastolic blood pressure (M ± SD) 84.2 ± 9.5
Pulse, rate (M ± SD) 68.9 ± 7.11
Body mass index, kg/m2 (M ± SD) 29.2 ± 4.9
History of myocardial infarction 69.4%
History of diabetes type 2 11.9%
Multivascular atherosclerotic lesion of coronary arteries (more than two vessels) 90.1%

History of angina pectoris:
Funcional class I 0%
Funcional class II 10.9%
Funcional class III 82.6%
Funcional class IV 6.5%

Each endarterectomy tissue sample was longitudinally and transversely divided symmetrically
into several parts for histological and biochemical assays. Under an AxioLab.A1 binocular microscope
(Carl Zeiss, Munich, Germany), an examination of 140 fragments of the coronary arteries was conducted,
including the description of the cap, core, and periphery of each atherosclerotic plaque. In accordance
with the results of the histological analysis, 89 samples of stable atherosclerotic plaques were identified
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(a thick plaque cap, a homogeneous lipid core <40% of plaque volume, and no inflammatory alterations,
Figure 1a) and 51 samples of unstable plaques were identified (plaque cap thickness less than 65 µm,
the lipid core >40% of the plaque volume, and >25 cell infiltration by macrophages and T lymphocytes
in a field of view of a 0.3 mm diameter, Figure 1b).
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The analysis of relationships between calcification indicators and markers of endothelial 
dysfunction in the atherosclerotic foci revealed direct moderate correlations between osteopontin 
and sVCAM-1 (r = 0.388, p = 0.001) and MCP-1 (r = 0.523, p = 0.0001) and between osteonectin and 
sVCAM-1 (r = 0.669, p = 0.0001), MCP-1 (r = 0.421, p = 0.0001), and Е-selectin (r = 0.520, p = 0.001). 

Figure 1. Atherosclerotic plaques of coronary arteries. (a) A stable fibrous plaque with calcification
(magnification 100×; hematoxylin–eosin staining). A stable fibrous plaque is shown that has retained
the integrity of the fibrous cap and of the endothelial lining. In the lumen, erythrocytes that have
retained their integrity are visible. The large calcification deposits are present in the layers distal to
the lumen. (b) An unstable atherosclerotic plaque (magnification 100×; hematoxylin–eosin staining).
The plaque features a large atheromatous core composed of amorphous masses, cholesterol crystals,
and extracellular lipids. A cap with well-pronounced disintegration and tearing is visible.

On the basis of the presence of calcification deposits, the plaque samples were subdivided into
three groups: (1) 59 tissue samples without calcification deposits (Figure 2a), (2) 67 samples with small
and dust-like calcification deposits (Figure 2b), and (3) 14 samples with large calcification deposits
(Figure 2c).
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Figure 2. Atherosclerotic plaques with various degrees of calcification. (a) Without calcification deposits.
A stable fibrous plaque with onset of atheromatosis is presented (magnification 100×; hematoxylin–
eosin staining). The plaque has retained the integrity of the thick fibrous cap and endothelial lining.
In the layers distal from the lumen, there are foci of foam cell infiltration and a small core composed of
cholesterol crystals, extracellular lipids, and foam cells. (b) Small calcification is present in an unstable
atherosclerotic plaque (magnification 100×; hematoxylin–eosin staining). An atherosclerotic plaque
with a large atheromatous core consisting of amorphous masses, cholesterol crystals, and small-size
calcification deposits. The fibrous cap is unevenly thinned and shows ruptures and areas of mononuclear
infiltration. (c) Large calcification is present in an unstable atherosclerotic plaque (magnification 100×;
hematoxylin–eosin staining). The plaque features areas of large-size calcification and a thick fibrous
cap with ruptures in the shoulder region.
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Venous blood was collected from the patients before the surgical operation, 12 h after a meal.
For biochemical assays, 1% homogenates in PBS (phosphate buffered saline) were prepared from
intima/media samples of coronary arteries. In the intima/media homogenates, protein was quantified
using the Lowry method. In the homogenates of intima/media and in the blood samples, concentrations
of osteoprotegerin, osteopontin, monocyte-chemoattractant protein type 1 (MCP-1), soluble vascular cell
adhesion molecule 1 (sVCAM-1), E-selectin (enzyme immunoassays from Bender MedSystems, Vienna,
Austria), osteocalcin, and osteonectin (enzyme immunoassays from Immunodiagnostic Systems Ltd.,
Bensheim, Germany) were determined on a Multiscan EX (Thermo Electron Corporation, Vantaa, Finland).
All results on the intima/media homogenates were normalized to the protein content of the samples.

The results were statistically analyzed using the SPSS software (version 17.0, USA).
The normality of distribution of biomarker levels was determined using the Kolmogorov-Smirnov
test. These distributions were not normal; therefore, nonparametric tests were applied. The results are
presented as the 25th, 50th, and 75th percentiles. The significance of differences was evaluated using
the Mann-Whitney test and chi-square test for categorical variables. Multiple comparisons among
the groups were performed with the Kruskal-Wallis method. Univariate correlation (Spearman’s)
analysis and multivariate linear regression and logistic regression analyses were carried out to find
independent predictors of unstable plaques and calcified plaques. Data were considered statistically
significant at p < 0.05.

3. Results

Analysis of histological data showed that 80.4% of unstable plaques were calcified (60.8% contained
small and dust-like calcification deposits, and 19.6% contained large calcification deposits), as were
45.0% of stable plaques (40.5% contained small and dust-like calcification deposits, and 4.5% contained
large calcification deposits).

Comparative analysis of calcification factors and endothelial-dysfunction factors between stable
and unstable plaques revealed significant differences only in three markers (Table 2). In unstable plaques,
the levels of osteonectin, sVCAM-1, and E-selectin were 1.5-, 1.8-, and 2.7-fold lower, respectively,
in comparison with stable plaques.

Table 2. A comparison of calcification markers and endothelial-dysfunction markers between stable
and unstable atherosclerotic plaques (median (interquartile range): Me (25%; 75%)).

Indicator Stable Plaques
(n = 89)

Unstable Plaques
(n = 51) p

Osteoprotegerin, pg/mg protein 110.7 (43.0; 235.9) 89.9 (34.4; 249.4) 0.491
Osteopontin, ng/mg protein 3.3 (1.4; 8.1) 1.7 (0.7; 7.6) 0.120
Osteocalcin, ng/mg protein 16.9 (2.3; 112.9) 14.0 (3.7; 100.5) 0.691
Osteonectin, µg/mg protein 2.4 (1.4; 4.4) 1.6 (1.1; 2.9) 0.024

MCP-1, pg/mg protein 79.0 (35.4; 169.5) 85.4 (35.5; 174.1) 0.904
sVCAM-1, ng/mg protein 122.9 (45.9; 254.4) 66.4 (18.5; 161.3) 0.014
E-selectin, ng/mg protein 5.43 (1.8; 14.9) 2.02 (1.1; 3.8) 0.001

Number in bold are statistically significant in comparisons.

A comparative analysis of the calcification factors and endothelial-dysfunction factors among
different stages of plaque calcification (according to histological analysis) uncovered significant
differences in five of the seven studied markers (Table 3). Levels of calcification factors osteopontin
and osteonectin decreased (more than fourfold and twofold, respectively) with the increasing plaque
calcification (plaques without calcification→ plaques with small and dustlike calcification deposits→
plaques with large calcification deposits) and were the lowest in plaques with large calcification deposits.
Similarly, concentrations of endothelial-dysfunction factors—sVCAM-1 and E-selectin—decreased
more than threefold and fivefold, respectively.
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The opposite result was obtained for the calcification-related substance osteocalcin. Specifically,
the level of osteocalcin increased with the progressing plaque calcification and was the highest in
plaques with large calcification deposits (10.7-fold higher than its concentration in plaques without
calcification) (Figure 3).

Table 3. Markers of calcification and of endothelial dysfunction in plaques showing different degrees
of calcification (Me (25%; 75%)).

Indicator

(1)
No Calcification

Deposits
(n = 59)

(2)
Small and Dust-like

Calcification Deposits
(n = 67)

(3)
Large Calcification

Deposits
(n = 14)

Statistical
Significance

Osteoprotegerin,
pg/mg protein

122.4
(43.8; 194.7)

115.1
(32.3; 264.0)

66.7
(40.4; 118.5) p > 0.05

Osteopontin,
ng/mg protein

4.6
(1.8; 10.2)

2.3
(0.9; 7.3)

1.1
(0.3; 3.5)

1 vs. 2 (p = 0.05)
1 vs. 3 (p = 0.012)

Osteonectin,
µg/mg protein

2.3
(1.1; 4.9)

2.0
(1.3; 3.8)

1.0
(0.4; 2.1)

1 vs. 3 (p = 0.016)
2 vs. 3 (p = 0.023)

MCP-1,
pg/mg protein

80.2
(35.0; 147.8)

77.5
(37.2; 174.1)

148.2
(29.0; 179.3) p > 0.05

sVCAM-1,
ng/mg protein

115.0
(44.5; 239.2)

110.9
(34.3; 229.5)

30.3
(8.1; 52.3)

1 vs. 3 (p = 0.005)
2 vs. 3 (p = 0.01)

E-selectin,
ng/mg protein

4.8
(2.1; 13.0)

3.1
(1.1; 7.9)

0.9
(0.2; 2.1)

1 vs. 2 (p = 0.016)
1 vs. 3 (p = 0.002)
2 vs. 3 (p = 0.048)
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Figure 3. Changes in the concentration of osteocalcin with an increase in the degree of calcification of
atherosclerotic plaque.

The analysis of relationships between calcification indicators and markers of endothelial
dysfunction in the atherosclerotic foci revealed direct moderate correlations between osteopontin and
sVCAM-1 (r = 0.388, p = 0.001) and MCP-1 (r = 0.523, p = 0.0001) and between osteonectin and sVCAM-1
(r = 0.669, p = 0.0001), MCP-1 (r = 0.421, p = 0.0001), and E-selectin (r = 0.520, p = 0.001). Multivariate
linear regression analysis—where one of the calcification factors served as a dependent variable,
and markers of endothelial dysfunction served as independent variables—also yielded significant
results. It was found that osteonectin is associated with sVCAM-1 (B = 0.01, p = 0.0001) and E-selectin
(B = 0.055, p = 0.001), R2 = 0.596, p = 0.0001, osteopontin is associated with sVCAM-1 (B = 0.013,
p = 0.043), R2 = 0.296, p = 0.0001, and osteoprotegerin with sVCAM-1 (B = 0.249, p = 0.038), R2 = 0.084,
p = 0.014. These results confirmed the unidirectionality of changes in the levels of osteopontin
and osteonectin with respect to the changes in the levels of endothelial-dysfunction markers as the
calcification of atherosclerotic foci increased.
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Next, we performed multivariate logistic regression analysis with the construction of models
where the parameter “stable/unstable atherosclerotic plaque” was a dependent variable. We found that
the probability of unstable plaque presence inversely correlates with the plaque content of E-selectin
(Exp(B) = 0.924, 95% confidence interval (CI) 0.854–0.999, p = 0.047) and directly correlates with the
calcification degree of the atherosclerotic focus. For example, in the presence of small calcification
deposits, the probability of development of an unstable plaque was 4.4-fold higher (Exp(B) = 4.413, 95%
CI 1.545–12.602, p = 0.006) and 39.4-fold higher in the presence of large calcification deposits in it (Exp(B)
= 39.443, 95% CI 3.564–436.53, p = 0.003). We also conducted multivariate logistic regression analysis
with the construction of models where the parameter “calcification in the plaque is present/absent” was
the dependent variable. We noticed that relative risk of calcification formation in atherosclerotic plaques
of coronary arteries was associated with osteocalcin (Exp(B) = 1.011, 95% CI 1.004–1.018, p = 0.001).

To understand the pathogenesis features of an atherosclerotic lesion in the vascular wall that lead to
the formation of an unstable plaque, it is necessary to consider not only local but also systemic processes.
Therefore, assays performed in parallel on the vessels and on the blood are relevant and important
in this context. In our assessment of correlations of the studied parameters between atherosclerotic
plaques and blood, significant correlations were found for sVCAM-1 (r = 0.180, p = 0.038), MCP-1
(r = 0.263, p = 0.003), and osteocalcin (r = 0.353, p = 0.0001). These results point to the feasibility of
these markers’ assays in the blood for evaluating the state of atherosclerotic plaques.

Furthermore, to detect biomarkers in the blood that are significantly characteristic of unstable
plaques, all blood samples were distributed into two groups: (1) blood samples that corresponded to
tissue samples containing stable plaques (according to histological analysis), and (2) blood samples
that corresponded to tissue samples containing unstable plaques (Table 4). No significant differences
were detectable between these groups.

Table 4. Biochemical parameters of calcification and of endothelial dysfunction in the blood of males
with coronary atherosclerosis, depending on plaque stability (Me (25%; 75%)).

Parameter Stable Plaques in Coronary
Arteries

An Unstable Plaque Is Present in
Coronary Arteries

Osteoprotegerin (pg/mL) 60.5 (36.5; 79.9) 49.0 (43.5; 60.5)
Osteopontin (ng/mL) 28.2 (18.12; 42.1) 27.5 (17.1; 38.0)
Osteocalcin (ng/mL) 12.0 (8.3; 16.5) 14.6 (7.8; 17.9)
Osteonectin (µg/mL) 8.9 (8.0; 10.9) 9.2 (7.5; 10.4)

MCP-1 (pg/mL) 404.6 (283.9; 530.9) 547.4 (353.9; 625.4)
sVCAM-1 (ng/mL) 838.8 (669.5; 1023.1) 809.2 (655.6; 935.8)
E-selectin (ng/mL) 47.7 (33.3; 60.2) 54.5 (38.2; 62.1)

Likewise, to identify biomarkers in the blood that are significantly characteristic of atherosclerotic
plaque calcification, all blood samples were distributed into two groups: (1) blood samples that
corresponded to tissue samples containing calcified plaques (according to histological analysis), and (2)
blood samples that corresponded to tissue samples containing plaques without calcification (Table 5).

Table 5. Biochemical indicators of calcification and of endothelial dysfunction in the blood of males
with coronary atherosclerosis, depending on the presence of calcification deposits in atherosclerotic
plaques (Me (25%; 75%)).

Indicator No Calcified Plaques Calcified Plaques Are Present

Osteoprotegerin (pg/mL) 59.4 (33.9; 78.9) 52.0 (41.7; 78.4)
Osteopontin (ng/mL) 8.7 (7.2; 10.8) 9.2 (8.0; 10.422)
Osteonectin (µg/mL) 8.7 (7.2; 10.8) 9.2 (7.9; 10.4)

MCP-1 (pg/mL) 421.1 (294.7; 563.8) 467.7 (398.9; 622.8)
sVCAM-1 (ng/mL) 843.5 (695.7; 1003.6) 838.8 (669.5;1023.1)
E-selectin (ng/mL) 41.8 (33.4; 60.2) 53.7 (38.9; 62.1)
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Among all the studied parameters, only osteocalcin showed a significant difference between
the two groups (Figure 4). In males with calcified plaques in coronary arteries, blood osteocalcin
concentration was 1.2-fold higher.

These results also indicate the suitability of osteocalcin assays in the blood for evaluating the state
of atherosclerotic plaque calcification.
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4. Discussion

In this study, unstable plaques (which are the cause of adverse cardiovascular events) turned out to
be more calcified. In a multivariate logistic regression analysis, we found that the risk of development
of an unstable plaque is associated with the degree of calcification of the lesion. Our results are
consistent with the finding of Hoffmann et al. that coronary-artery calcium is most strongly associated
with CHD, regardless of other cardiovascular risk factors, and that an increase in the arterial calcium
level increases the risk of adverse events [5].

When examining markers of endothelial dysfunction, we noted that unstable plaques and plaques
with large calcification deposits contain lower levels of sVCAM-1 and E-selectin. Our data are in
agreement with several studies. For instance, Oishi et al. [6] revealed that the level of E-selectin was
highest in the group of patients with moderate atherosclerosis and stable CHD, in contrast to the
group of patients with well-pronounced atherosclerosis. In their study, Jang et al. [7] emphasized
that E-selectin is especially important at early stages of atherosclerosis development. Increased blood
concentrations of E-selectin—which is expressed by cells of a damaged endothelium and helps to recruit
leukocytes—lead to greater endothelial damage, atherosclerosis progression, and the development
of cardiovascular diseases. According to a study by Kunutsor et al., the blood level of sVCAM-1 is
inversely and independently associated with cardiovascular diseases [8]. Hulok et al. demonstrated
that an increased blood level of sVCAM-1 is a predictor of acute coronary syndrome [9]. It was also
reported that an increased blood level of sVCAM-1 is an indicator of the presence of atherosclerosis
in coronary arteries but not its progression [10]. Thus, the results of our and other studies indicate
that E-selectin and sVCAM-1 are significant factors of early stages of coronary atherosclerosis and of
atherosclerotic plaque calcification.

In our analysis of calcification markers, unstable plaques manifested a lower osteonectin level and
insignificant downregulation of osteoprotegerin and osteopontin in comparison with stable plaques.
In addition, plaques with large calcification deposits featured lower concentrations of osteonectin and
osteopontin and insignificant downregulation of osteoprotegerin. In the discussion of these results,
it is important to point out that the findings about these three calcification-related biomolecules are
contradictory among different studies. For example, judging by the results of Lin at al., high blood
levels of osteoprotegerin and osteopontin are strong predictors of mortality in patients with CHD [11].
Tousoulis et al. showed that serum levels of osteoprotegerin and osteopontin positively correlate
with arterial stiffness and CHD [12]. Those authors suggested that the levels of osteoprotegerin and
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osteopontin are significantly related to vascular function, thereby contributing to the pathogenesis of
atherosclerosis [12]. On the other hand, according to Callegari et al., osteoprotegerin inhibits vascular
calcification [13], in line with our data. In a study, Gadeau et al. found no osteonectin in calcification
deposits in blood vessels, while osteopontin and osteocalcin were detectable in more mature calcified
plaques [14]. Those authors proposed that osteopontin, osteocalcin, and osteonectin are not involved
in the initiation stage of the calcification process, but osteopontin and osteocalcin may play a role in
the regulation of arterial calcification [14]. On the contrary, Ciceri et al. hypothesized that osteonectin
can play a regulatory role in the calcification process and exerts a potentiating action in the regulation
of mitosis and cell differentiation [15]. Hirota et al. suggested that osteopontin participates in the
calcification of atheromatous plaques because atheromatous plaques are surrounded by macrophages
expressing osteopontin messenger RNA (mRNA), and its level increases with the progression of the
atherosclerotic focus [16].

Lastly, the results of our study indicate a major role of osteocalcin as a biomolecule that potentiates
the development of a calcified unstable plaque. International literature data about the effects of
osteocalcin on vascular calcification and stabilization/destabilization of atherosclerotic plaques are
contradictory. For instance, the results of Millar et al. imply that osteocalcin is not a mediator of
vascular calcification [17]. Rashdan et al. showed the colocalization of osteocalcin with the calcification
of smooth muscle cells in calcified plaques and pointed out the crucial role of osteocalcin in arterial
calcification [18]. In their review, Tacey et al. theorized that osteocalcin has a protective effect on
endothelial function by preventing the development of atherosclerosis, but whether osteocalcin affects
vascular calcification remains unclear [19]. Zhang et al. [20] demonstrated a positive correlation between
the number of endothelial progenitor cells carrying osteocalcin and coronary-vessel calcification in
patients with CHD. In a study, Foresta et al. concluded that platelets in the area of an atherosclerotic
plaque additionally release osteocalcin into the plaque [21].

5. Conclusions

In general, our results suggest that the calcification of an atherosclerotic plaque promotes its
transition to an unstable state and that osteocalcin performs an important potentiating function in these
processes. Here, we obtained the same results when assaying the concentration of this biomolecule
in the blood; specifically, the concentration of osteocalcin in the blood directly correlates with its
content in atherosclerotic plaques and is significantly higher in the blood of male patients having
calcified plaques in the arteries. Our findings provide the basis for further research on the suitability of
osteocalcin as a potential biomarker of an unstable calcified atherosclerotic plaque in a coronary artery.
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