

Article

Synthesis, Structure, and Reactivity of Binaphthyl Supported Dihydro[1,6]diazecines

Miran Lemmerer ¹, Michael Abraham ², Bogdan R. Brutiu ¹, Alexander Roller ³ and Michael Widhalm ²,*

- ¹ Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Wien, Austria
- ² Institute of Chemical Catalysis, University of Vienna, Währinger Straße 38, 1090 Wien, Austria
- ³ Institute of Inorganic Chemistry, University of Vienna, Währinger Straße 42, 1090 Wien, Austria
- * Correspondence: m.widhalm@univie.ac.at; Tel.: +43-4277-70305

Received: 23 July 2019; Accepted: 25 August 2019; Published: 26 August 2019

Abstract: A short approach to chiral diaza-olefines from protected 2,2'-diamino-1,1'-binaphthyl is presented. *Cis-* and *trans*-olefines can be selectively obtained by twofold *N*-allylation followed by RCM or by bridging a 2,2'-diamino-1,1'-binaphthyl precursor with *trans*-1,4-dibromo-2-butene. Deprotection afforded *cis-* and *trans*-dihydro[1,6]diazecines **1** in 58 and 64% overall yield. The reactivity of the but-2-ene-1,4-diyl fragment was investigated yielding corresponding epoxides, diols, and mono- and dibromo products. In several cases rearrangements and participation of the proximate *N*-Boc group was observed. In no case could allylic substitution be accomplished. From 13 compounds X-ray structure analyses could be obtained.

Keywords: 2,2'-diamino-1,1'-binaphthyl; ring closing metathesis; heterocycle; diaza-macrocycle; dihydroxylation; epoxidation; ring contraction; rearrangement

1. Introduction

Monoolefine and diolefine ligands are often key players in homogeneous catalysis and have found various applications in asymmetric transformations [1,2]. The preferred structures are either rigid, based on bicyclic diene skeletons [3–5], semi-rigid, consisting of a mono-ene as part of a cycle which is linked to P [6,7] or S [8,9] functionalities as second coordination site, or flexible with the olefin part being a freely rotating *pending side arm* attached at a chiral back bone [10–20]. Some examples showing structural diversity are depicted in Figure 1.

Figure 1. Selected mono- and diolefine ligands previously applied in asymmetric catalysis.

The requirement for an efficient chiral ligand in transition metal catalysis is its ability to form only a few, conformative stable diastereomeric intermediates during the catalytic cycle. Ideally, these show highly differing stability and/or traversing transition states with significantly different activation energy on the reaction path to product enantiomers. This is usually fulfilled if stable chelate structures are involved. The challenge in catalyst design is to produce molecules with two coordination centres with a sufficiently large chiral cavity and *tuned* rigidity to form stable substrate complexes best as a single conformer. As the search for proper catalysts is a largely empirical and time consuming process, easy access to ligand libraries to be tested is desired. To this end, structural modification should be done at a late stage of the synthesis, preferably as the last step.

As a further extension of ligand design, we therefore considered the incorporation of an atropomeric biaryl unit as part of a cycloolefine *A* or –diolefine moiety *B* (Figure 2). This would place corresponding olefine complexes in a chiral environment with a variable degree of conformative freedom depending on the size and rigidity of the perimeter. Introduction of *N*-alky or –methylaryl substituents will fine-tune steric interactions. In the case of monoolefine *A*, various *N*-substituents also containing heteroatoms (sulphur or phosphorus functional groups preferred) could be introduced in the final step to act as further potential coordination sites. The aim of the present investigation was to synthesize the simplest candidate **1** (R=H) through bridging of 2,2'-diamino-1,1'-binaphthyl, exploring stereochemistry and reactivity [21].

R = H, alkyl, CH₂aryl, (CH₂)₂₋₃X (X=N,S,P)

Figure 2. Chiral diazaheterocycles based on the 1,1'-binaphthyl skeleton.

2. Results and Discussion

For the synthesis of **1** in the beginning, a seemingly simple cyclization step of diaminobinaphthyl **2** was considered using *trans*-1,4-dibromo-2-butene or *trans*-1,4-dihydroxy-2-butene (Scheme 1). Unfortunately, only inseparable mixtures of, and in part oligomerized, products were obtained. Alternatively, olefin ring closing metathesis (RCM) of bis-*N*-allyl substrate **6** with Grubbs I, Grubbs II, Grubbs-Hoveyda II, and Schrock's catalyst was attempted, which was previously successfully applied for substrates with unprotected NH functionality [22–25]. With none of these catalysts did a cyclization of **6** take place, neither at r.t. nor elevated temperature.

Protection of NH was therefore envisaged and suitable *N*-protecting groups (PG) were installed before the RCM step [26]. Diaminobinaphthyls **3a**–**d** with *N*-Ms [27], *N*-Ts [28], *N*-TFA, and *N*-Boc groups [29] were synthesized under standard conditions and obtained in good yield (86–93%). While in the subsequent allylation **3a** and **3d** performed well, yielding the disubstituted products **4a** and **4d** in 80% and 89%, respectively, the substitution of Ts-protected amine **3b** proceeded slowly affording 28% of **4b** along with 29% of the mono-allylated product.

We were pleased to discover that in the case of **3d** the reactivity could be effectively controlled through proper choice of solvent. In THF, mono-allylation exclusively took place (71%), while on the other hand 89% of diallyl product **4d** was obtained in DMF.

Scheme 1. Synthesis of *cis*- and *trans*-1. (a) MsCl or TsCl, Py/DCM, r.t. (**3a**, **3b**), trifluoroacetic anhydride (TFAA), Na₂CO₃, THF, r.t. (**3c**), Li hexamethyldisilazide (LiHMDS), Boc₂O, THF, 0 °C \rightarrow r.t. (**3d**); (b) NaH, *trans*-1,4-dibromobut-2-ene, THF, 0 °C \rightarrow r.t., (c) allylbromide, K₂CO₃, MeCN, 85 °C (**4a**, **4b**), allylbromide, NaH, DMF, 0 °C \rightarrow r.t. (**4d**), (d) 10 mol% catalyst (*see text*) DCM, 40 °C, syringe pump, (e) trifluoroacetic acid (TFA), DCM, 0 \rightarrow 4 °C, (f) allyl alcohol, Pd(OAc)₂, Ph₃P, Ti(OiPr)₄, benzene, 50 °C, (g) TFAA, Et₃N, 4-dimethylaminopyridine (DIMAP), DCM, r.t. * Yield depending on reaction condition and metathesis catalyst applied. # see text. [§] *Note:* The synthesis was conducted with racemic starting material and consequently all products are racemic, too; only the enantiomer with (*S*)_{axial} configuration is depicted.

The allylation of bis(trifluoro)acetamide **3c** proceeded slowly at r.t., yielding only monosubstitution product (DMF, NaH). Conducting the reaction at reflux (48 h) in acetonitrile in the presence of K₂CO₃ resulted in a complex mixture, only separable in part by chromatography. Two bands were isolated, each of which contained at least three compounds, two with C_2 symmetry and one with C_1 symmetry as evidenced by ¹⁹F-NMR (see Supplementary Materials). Fortunately, one component of fraction 2 crystallized and X-ray crystallography confirmed the expected structure **4c** (Figure 3). Re-dissolving the crystalline material in CDCl₃ gave identical spectra as before crystallization, supporting the assumption of three interconverting species in equilibrium. The same mixture was obtained as the sole product from diallyl compound **6** upon treatment with TFAA at r.t. The solution structure of neither of these compounds, nor of those present in the first fraction could be elucidated to date. All fractions gave the same HRMS and contain isomers of **4c**.

For the RCM step of **4a**–**d** commercially available catalysts Grubbs I, Grubbs II, and Grubbs-Hoveyda II were tested [30]. It was found that the influence of the type of catalyst on

reactivity was moderate, but instead a pronounced impact of the nature and bulkiness of PG on reactivity and *cis/trans* selectivity was observed. While a complex mixture was formed from **4c** with no clear evidence for formation of a cyclic product **5c** [31], products with *cis*-geometry dominated (**5a**,**b**) or were formed exclusively (76% of *cis*-**5d** with Grubbs I). Having developed a synthetic route with high yields and remarkable selectivity with PG = Boc, the synthesis $2 \rightarrow 3d \rightarrow 4d \rightarrow cis$ -**5d** $\rightarrow cis$ -**1** was chosen for subsequent investigations. Gratifying, the geometric isomer *trans*-**5d** was selectively accessible in 64% from **3d** and *trans*-1,4-dibromo-2-butene in one step. The deprotection under standard conditions proceeded smoothly, affording *cis*- and *trans*-**1** in quantitative yield.

Figure 3. Crystal structure of **4a** (left side) and **4c** (right side). *Note:* To facilitate visual comparison of structures, all compounds are depicted with $(S)_{axial}$ -configuration and viewing along the binaphthyl axis.

The bulkiness of protecting groups effectively controlled the stability of conformers arising through rotation around the naphthyl-*N* bond. In ¹H-NMR spectra significant line broadening of allyl moieties of **4a** and **4b** was observed, particularly pronounced for **4d**.

Solid state structure of *N*-protected cycles *cis*- and *trans*-**5a** and **5d** as well as cycles with free NH *cis*- and *trans*-**1** did not show evidence for severe steric strain (Figure 4). Double bonds only display small deviations from planarity (maximum 5.2° for *trans*-**1**) as a consequence of widely unrestricted rotability of the binaphthyl bond. Most striking are differences between *cis*- and *trans*-**1** with Ar-Ar angles of 65.2° and 98.9° and *N*-*N* distances of 3.04 Å and 4.31 Å, respectively. In *trans*-**5d**, as well as in *trans*-**1** intermolecular hydrogen bonds were observed (C-H…O and N…H, respectively see Supplementary Materials) and intramolecular C-H… π -ring interactions in *trans*-**5d**.

Cis- and *trans-***1** was completely stable in toluene even when heated to 100 °C which is in contrast to corresponding [1,6]dioxecine which could not be trapped due to its readiness to undergo Claisen rearrangement [32,33].

The reactivity of intermediates **5d** was investigated next. Reaction of *cis*-**5d** with bromine did not give the expected dibromide by simple *trans* addition (Scheme 2). Instead formation of a cyclic carbamate **7** was observed, obviously formed through attack of the Boc group on the bromonium ion [34]. This step is facilitated as the *tert*-butyl cation is trapped by bromide, eventually forming some amount of isobutene with liberation of HBr which removes the second Boc group to give **8** as a sequence product. Racemic **7** crystallized in a chiral space group (see Supplementary Materials). From a non-racemic crystal relative configurations were determined as being *10S*, *11S*, in a binaphthyl with (*S*)_{ax} configuration. While **7** exists as a single geometric form, two conformers of **8** were detected in an approximate ratio of 60:40 (¹H-NMR). Also *trans*-**5d** did not afford the 2,3-dibromide; instead, ring contracted product **9** was isolated in 71% yield. The geometry of **9** was in agreement with HRMS and confirmed by X-ray structure analysis (Figure **5**).

Figure 4. Crystal structures of *N*-protected diazacycles *cis*- and *trans*-**5a** and **5d** and deprotected cycles *cis*- and *trans*-**1**. See also note in Figure 3.

The ¹H-NMR spectrum, even from the crystallized compound, was a complex which was attributed interconverting conformers. A *N*-boc aziridinium cation *A* is suggested as an intermediate as a similar rearrangement was reported by Paquette et al. [35]. The reaction is rather slow and required more than 48 h to complete. Attempts to cleave the Boc groups proceeded only with an excess of TFA and resulted in a mixture of two products, both without Boc groups (¹H-NMR). One was identified as cyclic carbamate **10**.

Epoxidation of *cis*- and *trans*-5 (Scheme 3) proceeded with both when employing *m*-CPBA under standard conditions [36], however considerably faster with the *trans*-substrate yielding **11** (57%) and **12** (89%), respectively. During prolonged reaction time, increasing amounts of hydroxyketone **11'** (10–30%) were formed. X-ray structure analysis confirmed the geometry of **12** and **11'**. Both compounds showed inter moleculer (**11'**, O-H…O=C) or intra molecular interaction (**12**, C-H… π -ring). For details see Supplementary Materials, Figures S14 and S16. Treatment of **11** with excess of TFA afforded cyclocarbamate **13** still carrying one Boc group. Since formation of 5-membered rings is in general faster, this structure appears to be more reasonable than the isomeric 6-membered carbamate and is in agreement with 2D-NMR. A similar transformation has been reported by Tietze et al. [37]. Attempted deprotection of **12** with TFA at r.t. yielded a mixture of **14** and **15**.

Scheme 2. Bromination of *cis*- and *trans*-5d. (a) Br_2 , DCM, 0 °C \rightarrow r.t. (b) TFA, DCM. § See note in Scheme 1.

Figure 5. Crystal structure of 7, 9, and 12. See also note in Figure 3.

Scheme 3. Epoxidation of *cis*- and *trans*-**5d.** (a) *meta*-chloroperbenzoic acid (*m*-CPBA), DCM. (b) TFA, DCM. [§] See note in Scheme 1.

Bromination and TFA-induced deprotection of epoxides show similar behavior, best explained with the presence of cyclic onium ions in both cases (Figure 6). Their reactivity might be controlled through conformation of the substrate with efficient shielding preventing intermolecular reactivity but favouring an intramolecular attack of the boc group. The *trans*-isomer of **5d** forms (protonated) epoxide **12** (and obviously also a cyclic bromonium ion) with local C_2 symmetry, which will be attacked by N rather than by O as the Boc group is directed *outside* the perimeter (distance C-N: 2.4 Å) to give **9** via *A* (Scheme 2) and (presumably) a precursor of **15**. In both cases a *N*-boc-aziridinium ion might be a key intermediates. In contrast, the *cis*-isomer of **5d** may form an onium ion with better accessibility of the Boc carbonyl group yielding **7** and **13**, respectively (distance C-O: 2.7 Å).

The dihydroxylation of *cis*- and *trans*-5d under standard conditions (K₂OsO₄, *N*-methylmorpholino-*N*-oxide (NMO) afforded diols 16 and 18 and after deprotection dihydroxydiamines 17 and 19 in good yield. The hydrogenation of *cis*- or *trans*-5d yielded diamine 21 in two steps (Schemes 4 and 5). The X-ray structure of 21 was determined (see Supplementary Materials).

Figure 6. Graphic representation of postulated onium ions derived from *cis*- (left side) and *trans*-5d (right side).

Treatment of unprotected substrates, *cis*- and *trans*-**1**, with bromine under various conditions produced inseparable mixtures of polybrominated products. ¹H-NMR spectra showed formation of several compounds with up to four bromo substituents (also in position 6 and 6' of the binaphthyl moiety).

Scheme 4. Dihydroxylation of *cis*- and *trans*-**5d.** (a) K_2OsO_4 , NMO, DCM. (b) TFA, DCM. [§] See note in Scheme 1.

Summarizing, a short synthetic route for two ten-membered chiral diaza-macrocyles, *cis-* and *trans-***1**, in 3 and 4 steps from 2,2'-diamino-1,1'-binaphthyl (58-64% overall yield) was developed and the reactivity of Boc-protected precursors towards bromine, *m*-CPBA, K₂OsO₄/NMO, and H₂/Pd was investigated. In several cases, rearranged products could be isolated and characterized. Crystal structures of target compounds and various intermediates were determined.

Scheme 5. Hydrogenation of *cis*- and *trans*-**5d** (a) Pd/C, H_2 (1 bar), THF. (b) TFA, DCM. [§] See note in Scheme 1.

3. Materials and Methods

3.1. General Considerations

Melting points: Kofler melting point apparatus, uncorrected. NMR: recorded at 400.27 MHz (¹H) and 100.66 MHz (¹³C), respectively, or at 600.25 MHz (¹H) and 150.95 MHz (¹³C), respectively, on a Bruker AVIII400 or AVIII600 spectrometer. Chemical shifts δ were reported in ppm; for ¹H rel. to (residuals non-deuterated) solvent signals (chloroform-d or DMSO-d6: 7.26 or 2.50 ppm, respectively), for ¹³C to CDCl₃ or (CD₃)₂SO at 77.00 or 39.52 ppm, respectively. Coupling patterns were designated as s(inglet), d(oublet), t(riplet), q(uartet), m(ultiplet), ps(eudo), and br(oad). ¹³C{¹H}-NMR spectra are recorded in a J-modulated mode; signals are assigned as C, CH, CH₂, and CH₃. HRMS: ESI (maXis ESI-Qq-TOF mass spectrometer, Bruker Daltonics, Bremen, Germany), or EI (Bruker, 70 eV).

Heptane fraction (PE), dichloromethane (DCM), and ethyl acetate (EtOAc) were distilled, absolute THF from sodium benzophenone ketyl, dichloromethane (DCM), DMF, and acetonitrile from CaH₂; Li hexamethyldisilazide (LHMDS) was used as a 1.0 molar solution in THF. All the other chemicals were analytical grade and used without further purification. Preparative medium pressure chromatography (MPLC) was performed on an Isolera One chromatograph (Biotage) applying a solvent gradient using self-packed cartridges (SiO₂, 40-63 μ m). Reported procedures have been followed to obtain 2,2'-diamino-1,1'-binaphthyl (2) [38] and di-*tert*-butyl [1,1'-binaphthalene]-2,2'-diyldicarbamate (3d) [29].

3.2. Synthesis

(*E*)-11,12,15,16-Tetrahydrodinaphtho [2,1-b:1',2'-d][1,6]diazecine (trans-1): A solution of *trans*-5d (67 mg, 0.12 mmol) in DCM (3 mL) was cooled to 0 °C and an excess of TFA (1.5 mL) was added. The mixture was stirred for 2 h and then kept at 4 °C overnight. The reaction was quenched by careful addition of saturated NaHCO₃ solution (10 mL) and extracted with DCM. The organic layer was dried (Na₂SO₄) and the solvent was evaporated at reduced pressure, affording 40 mg (99%) of *trans*-1 as colorless crystals; m.p.: 204–207 °C. ¹H-NMR δ = 7.99 (d, *J* = 8.8 Hz, 2H); 7.91 (d, *J* = 8.2 Hz, 2H); 7.48 (d, *J* = 8.8 Hz; 2H); 7.43 (ddd, *J* = 8.2, 6.5, 1.7 Hz, 2H); 7.31 (ddd, *J* = 8.4, 6.6, 1.3 Hz, 2H); 7.27 (dm, *J* = 8.4 Hz, 2H); 4.67–4.76 (m, 2H); 3.42 (dm, *J* = 13.1 Hz, 2H); 3.22 (dm, *J* = 13.1 Hz, 2H); ~2.8 (br.s, 2H). ¹³C-NMR δ = 144.5 (C); 133.6 (C); 130.8 (C); 129.6 (CH); 128.7 (C); 128.3 (CH); 127.8 (CH); 127.3 (CH); 126.6 (CH); 125.0 (CH); 124.9 (CH); 52.2 (CH₂). HRMS: calcd for C₂₄H₂₁N₂ [M + H]⁺: 337.1698; found: 337.1696.

(*Z*)-11,12,15,16-Tetrahydrodinaphtho[2,1-b:1',2'-d][1,6]diazecine (cis-1): The same procedure was applied as given for *trans*-1; yield: 34 mg (99%, colorless crystals, 0.1 mmol scale); m.p.: 184–185 °C. ¹H-NMR δ = 7.90 (d, *J* = 8.7 Hz, 2H); 7.82 (br.d, *J* = 8.0 Hz, 2H); 7.35 (d, *J* = 8.8 Hz, 2H); 7.29 (ddd, *J* = 8.1, 6.6, 1.5 Hz, 2H); 7.21 (ddd, *J* = 8.5, 6.6, 1.4 Hz, 2H); 7.17 (dm, *J* = 8.5 Hz, 2H); 5.92–6.00 (m, 2H); 3.73–3.91 (m, 4H); 3.30 (br.s, 2H). ¹³C-NMR δ = 145.8 (C); 134.0 (C); 132.7 (CH); 129.7 (CH); 129.3 (C); 128.1 (CH); 126.7 (CH); 125.4 (CH); 123.2 (CH); 118.5 (CH); 117.7 (C); 45.1 (CH₂). HRMS: calcd for C₂₄H₂₁N₂ [M + H]⁺: 337.1705; found: 337.1696.

N,*N*'-([1,1'-Binaphthalene]-2,2'-diyl)dimethanesulfonamide (3a): To a solution of 2 (142 mg, 0.5 mmol) in pyridine (1 mL)/DCM (4 mL) was added mesylchloride (126 mg, 1.1 mmol) and the orange mixture was stirred at r.t. After 24 h, a second portion of mesylchloride was added (126 mg, 1.1 mmol) and stirring was continued. After complete conversion (TLC), the reaction was acidified (HCl, 1 M) and sufficiently extracted with DCM. The organic phase was dried (MgSO₄) and the solvent removed under reduced pressure. The crude mixture was purified by MPLC (EtOAc (30 \rightarrow 50%)/heptane) to yield 223 mg (quant.) of **3a** as a mixture of tautomers; m.p.: 221–222 °C. ¹H-NMR (*C*₂-symmetric tautomer) δ = 8.10 (d, *J* = 8.9 Hz, 2H); 8.02 (d, *J* = 8.9 Hz, 2H); 7.95 (br.d, *J* = 8.2 Hz, 2H); 7.47 (ddd, *J* = 8.0, 6.8, 1.1 Hz, 2H); 7.31 (ddd, *J* = 8.4, 6.9, 1.3 Hz, 2H); 6.99 (br.d, *J* = 8.3 Hz, 2H); 6.02 (br.s, 2H); 2.97 (s, 6H). ¹³C-NMR δ = 134.4 (C); 132.5 (C); 131.5 (CH); 131.2 (C); 128.7 (CH); 128.2 (CH); 126.1 (CH); 124.5 (CH); 118.5 (C); 118.2 (CH); 41.0 (CH₃). HRMS: calcd for C₂₂H₂₀NaN₂O₄S₂ [M + Na]⁺: 463.0762; found 463.0762.

N,*N*'-([1,1'-Binaphthalene]-2,2'-diyl)bis(4-methylbenzenesulfonamide) (3b): A similar procedure as given for **3a** was applied, yielding 252 mg (85%, 0.5 mmol scale) of **3b** as off-white solid. NMR spectra are in agreement with references [28,39].

N,N'-([1,1'-Binaphthalene]-2,2'-diyl)bis(2,2,2-trifluoroacetamide) (3c): To a solution of 1,1'-binaphthyl-2,2'-diamine 2 (569 mg, 2 mmol) in THF (30 mL) was added solid Na₂CO₃ (212 mg, 2 mmol) followed by dropwise addition of TFAA (1.27 mL, 9 mmol) in THF (30 mL). After 2 h the reaction was quenched with sat. NaHCO₃ solution and extracted with EtOAc, washed with H₂O and brine, dried (Na₂SO₄), and evaporated to give 826 mg (87%) of **3c**; colorless crystals; m.p.: 195–196 °C. The product was pure enough for the next step. ¹H-NMR: δ = 8.19 (d, *J* = 8.9 Hz, 2H); 8.14 (d, *J* = 8.9 Hz, 2H); 8.01 (d, *J* = 8.2 Hz, 2H); 7.72 (s, 2H); 7.56 (ddd, *J* = 8.2, 6.8, 1.2 Hz, 2H); 7.38 (ddd, *J* = 8.4, 6.8, 1.3 Hz, 2H); 7.13 (dm, *J* = 8.6 Hz, 2H). ¹³C-NMR δ = 132.3 (C); 131.8 (C); 131.7 (C); 130.9 (CH); 128.7 (CH); 128.2 (CH); 127.0 (CH); 124.7 (CH); 124.0 (C); 121.8 (CH); 115.3 (CF₃, *J*_{CF} ~280 Hz). HRMS: calcd for C₂₄H₁₅F₆N₂O₂ [M + H]⁺: 477.1038; found 477.1041.

N,*N*'-([1,1'-Binaphthalene]-2,2'-diyl)bis(*N*-allylmethanesulfonamide) (4a): Bis(*N*-mesylate) 3a (220 mg, 0.5 mmol) was suspended in acetonitrile and degassed. To this was added allylbromide (420 mg, 3.5 mmol) and K_2CO_3 (350 mg, 2.5 mmol), and the mixture was stirred at 85 °C for 48 h. Extractive work-up with EtOAc/water left crude diallylated product which was purified by column

10 of 18

chromatography (EtOAc (20 \rightarrow 30%)/heptane) to yield 208 mg (80%) of **4a**; m.p.: 197–199 °C. ¹H-NMR: δ = 7.99 (d, *J* = 8.8 Hz, 2H); 7.92 (br.d, *J* = 8.2 Hz, 2H); 7.65 (d, *J* = 8.9 Hz, 2H); 7.49 (ddd, *J* = 8.0, 6.8, 1.0 Hz, 2H); 7.26 (ddd, *J* = 8.4, 6.9, 1.3 Hz, 2H); 7.08 (d, *J* = 8.4 Hz, 2H); 5.67 (br.s, 2H); 4.96–5.08 (m, 4H); 3.73–4.05 (br.m, 4H); 2.54 (br.s, 6H). ¹³C-NMR δ = 138.1 (br.C); 133.8 (C); 132.6 (C); 132.3 (C); 129.2 (CH); 128.2 (br.CH); 127.9 (CH); 127.7 (br.CH); 126.7 (CH); 126.6 (CH); 119.3 (CH₂); 54.4 (br.CH₂); 41.7 (br.CH₃). HRMS: calcd for C₂₈H₂₈NaN₂O₄S₂ [M + Na]⁺: 543.1388; found 543.1394.

N,*N*'-(**[1,1'-Binaphthalene]-2,2'-diyl)bis**(*N*-allyl-4-methylbenzenesulfonamide) (4b): A similar procedure as given for the synthesis of **4a** was applied using an excess of allylbromide (8 equ.) and 48 h reflux to afford 92 mg (28%, 0.5 mmol scale) of **4b** (along with 92 mg, 29% of mono-allylated product); m.p.: 125–128 °C. ¹H-NMR: δ = 7.94 (d, *J* = 8.8 Hz, 2H); 7.87 (d, *J* = 8.0 Hz, 2H); 7.61 (br.d, *J* = 8.8 Hz, 2H); 7.43 (ddd, *J* = 8.0, 6.9, 1.1 Hz, 2H); 7.14–7.29 (br.m, 4H); 7.18 (ddd, *J* = 8.2, 6.7, 1.1 Hz, 2H); 7.06 (br.d, *J* = 8.4 Hz, 2H); 6.96–7.08 (br.m, 4H); 5.68 (br.s, 2H); 4.76–4.91 (br.m, 4H); 4.03–4.21 (br.m, 2H); 3.73–3.93 (br.m, 2H); 2.35 (s, 6H). ¹³C-NMR δ = 143.0 (br.C); 137.3 (br.C); 134.4 (C); 134.0 (C); 133.6 (br.CH); 132.6 (C); 129.1 (CH); 128.8 (CH); 128.7 (br.CH); 127.8 (CH); 127.5 (br.CH); 126.6 (CH); 126.2 (CH); 118.7 (CH₂); 21.5 (CH₃). HRMS: calcd for C₄₀H₃₆NaN₂O₄S₂ [M + Na]⁺: 695.2014; found 695.2026.

N,*N*'-([1,1'-binaphthalene]-2,2'-diyl)bis(*N*-allyl-2,2,2-trifluoroacetamide) (4c): (*Method A*) Bis(trifluoroacetamide) 3c (238 mg, 0.5 mmol) was dissolved in MeCN (10 mL) and degassed. To this was added K₂CO₃ (346 mg, 2.5 mM) and allylbromide (423 mg, 303 μL, 3.5 mM) and the mixture was stirred at reflux for 20 h. The reaction was worked up with DCM (50 mL)/water (20 mL). The organic phase was washed with water and brine and dried (MgSO₄). After removal of solvents the crude material was subjected to MPLC (EtOAc (5→20%)/heptane) afforded 109 mg (95% purity, 40% yield) of 4c as mixture of rotamers. Due to complexity of the ¹H and ¹³C-NMR spectra, no signal assignment was possible (see Supplementary Materials). ¹⁹F-NMR: $\delta = -66.43$ (s); -66.53 (q, J = 6.0 Hz); -68.43 (q, J = 6.0 Hz); -68.65 (s). HRMS: calcd for C₃₀H₂₂NaF₆N₂O₂ [M + Na]⁺: 579.1483; found 579.1467.

(Method B) To a solution of diallyldiamine **6** (142 mg, 0.5 mmol), Et₃N (101 mg, 139 μ L, 1 mmol) and DIMAP (122 mg, 1 mmol) in DCM (5 mL) was added trifluoroacetic anhydride (420 mg, 282 μ L, 2 mmol) at r.t. and the solution was stirred for 24 h. Extractive work-up with DCM (30 mL)/water (20 mL) and MPLC (see above) afforded of **4c** (140 mg, 50%, colorless crystals, m.p.: 175–176 °C).

Di-tert-butyl **[1,1'-binaphthalene]-2,2'-diylbis(allylcarbamate)** (**4d**): A stirred suspension of Boc protected 2,2'-diamino-1,1'-binaphthyl **3d [**29**]** (242 mg, 0.5 mmol) in DMF (5 mL) was mixed at 0 °C with NaH (60 mg, 1.5 mmol, 60% in mineral oil) and then warmed up to r.t. during 30 min. The mixture was cooled to 0 °C again and treated with allylbromide (173 µL, 2 mmol) After stirring for 16 h at r.t. the reaction was diluted with EtOAc, washed with water and brine, dried (MgSO₄), and concentrated under reduced pressure. Purification by MPLC (EtOAc (10→30%)/heptane) afforded 270 mg (93% purity, 89% yield, colorless foam) of **4d** as mixture of rotamers. ¹H-NMR δ = 7.88 (d, *J* = 7.9 Hz, ~2H); 7.87 (d, *J* = 8.5 Hz, ~2H); 7.42 (ps.t, *J* = 7.6 Hz, ~2H); 7.33 (d, *J* = 8.9 Hz, ~1H); 7.17 (ps.t, *J* = 7.5 Hz, ~1H); 6.85 (d, *J* = 8.5 Hz, ~1H); 5.59–5.72 (m, ~1H); 4.79 (d, *J* = 10.1 Hz, ~1H); 4.54 (d, *J* = 17.1 Hz, ~1H); 3.99 (dd, *J* = 15.4, 4.0 Hz, ~1H); 2.91 (dd, *J* = 15.4, 7.8 Hz, ~1H); 1.44 (br.s, >9H). In addition several unresolved multiplets were observed between 2.8 and 8.0 ppm. HRMS: calcd for C₃₆H₄₀N₂NaO₄ [M + Na]⁺: 587.2886; found: 587.2893.

Repetition of allylation of **3d** in THF with a reaction time of 2 h at r.t. afforded 112 mg (71%, 0.3 mmol scale) of mono-allylated product, *tert*-butyl allyl(2'-((*tert*-butoxycarbonyl)amino)-[1,1'-binaphthalen]-2-yl)carbamate. ¹H-NMR δ = 6.57–8.30 (several br.m, ~12H); 5.40–5.90 (m, 1H); 4.45–4.92 (m, 2H); 2.80–4.20 (m, 2H); 1.37; 1.28; 1.25 (3× br.s, ~18H). HRMS: calcd for C₃₃H₃₆N₂NaO₄ [M + Na]⁺: 547.2573; found: 547.2576.

(*Z*)- and (*E*)-11,16-Bis(methylsulfonyl)-11,12,15,16-tetrahydrodinaphtho[2,1-b:1',2'-d][1,6]diazecine, (*cis*- and *trans*-5a) (Typical procedure): To a solution of 4a (52 mg, 0.1 mmol) in DCM (7 mL) was

added at 40 °C Grubbs II catalyst (8.5 mg, 10 mol%) in DCM (3 mL) during 6 h by syringe pump. After 24 h the solvent was removed and the product mixture separated by chromatography ($30 \rightarrow 50\%$ EtOAc/PE) to yield *trans*-5a (2 mg, 4%), *cis*-5a (35 mg, 71%), and a side product with shifted double bond *cis*-5a' (9 mg, 18%). Repetition with Grubbs I catalysts afforded *trans*-5a (15%), *cis*-5a (55%), and 4a (2%).

trans-5a: Colorless crystals, m.p.: 248–255 °C, dec. ¹H-NMR δ = 8.06 (d, *J* = 8.7 Hz, 2H); 7.92 (br.d, *J* = 8.2 Hz, 2H); 7.63 (br.d, *J* = 8.6 Hz, 2H), 7.62 (d, *J* = 8.6 Hz, 2H); 7.53 (ddd, *J* = 8.1, 6.9, 1.3 Hz, 2H); 7.38 (ddd, *J* = 8.3, 6.8, 1.3 Hz, 2H); 4.78–4.88 (m, 2H); 3.96–4.04 (m, 2H); 3.54–3.65 (m, 2H); 2.04 (s, 6H). ¹³C-NMR δ = 137.5 (C); 135.1 (C); 133.9 (C); 132.7 (C); 130.1 (CH); 129.5 (CH);129.1 (CH); 128.5 (CH); 127.5 (CH); 127.1 (CH); 126.5 (CH); 53.8 (CH₂); 40.2 (CH₃). HRMS (EI) calcd for C₂₆H₂₄N₂O₄S₂ [M]⁺: 492.1178; found: 492.1171.

cis-5a: Colorless crystals, m.p.: 125–129 °C. ¹H-NMR δ = 8.00 (d, *J* = 8.8 Hz, 2H); 7.90 (d, *J* = 8.2 Hz); 7.55 (d, *J* = 8.7 Hz, 2H); 7.47–7.53 (m, 2H); 7.29–7.35 (m, 4H); 5.80–5.88 (m, 2H); 4.16–4.23 (m, 4H); 1.88 (s, 6H). ¹³C-NMR δ = 137.8 (C); 135.0 (C); 133.5 (C); 132.4 (C); 129.9 (CH); 129.7 (CH); 128.4 (CH); 128.2 (CH); 127.7 (CH); 127.0 (CH); 126.7 (CH); 46.8 (CH₂); 40.7 (CH₃). HRMS (EI) calcd for C₂₆H₂₄N₂O₄S₂ [M]⁺: 492.1178; found: 492.1168.

(*Z*)- and (*E*)-11,16-Ditosyl-11,12,15,16-tetrahydrodinaphtho[2,1-b:1',2'-d][1,6]diazecine (*cis-* and *trans-*5b): A similar procedure as given for 5a was applied yielding a mixture of *cis-* and *trans-*5b, which was only in part separable affording *trans-*5b (~16%, enriched sample) and *cis-*5b (36 mg, 56%, 0.1 mmol scale) as a colorless foam.

trans-**5b**: ¹H-NMR δ = 8.13 (d, *J* = 8.8 Hz, 2H); 8.04 (d, *J* = 8.1 Hz, 2H); 7.88 (d, *J* = 8.8 Hz, 2H); 7.81 (d, *J* = 8.4 Hz, 2H); 7.58 (ddd, *J* = 8.1, 6.8, 1.1 Hz, 2H); 7.39 (ddd, *J* = 8.3, 6.8, 1.3 Hz, 2H); 6.89 (d, *J* = 7.8 Hz, 4H); 6.70 (d, *J* = 8.2 Hz, 4H); 4.53–4.63 (m, 2H); 3.57–3.64 (m, 2H); 3.33–3.44 (m, 2H); 2.29 (s, 6H).

cis-**5b**: ¹H-NMR δ = 7.98 (d, *J* = 8.8 Hz, 2H); 7.93 (br.d, *J* = 8.2 Hz, 2H); 7.50 (ddd, *J* = 8.1, 6.8, 1.1 Hz, 2H); 7.43 (d, *J* = 8.8 Hz, 2H); 7.38 (br.d, *J* = 8.4 Hz, 2H); 7.28 (ddd, *J* = 8.1, 6.7, 1.2 Hz, 2H); 6.94 (br.s, 8H); 5.42 (m, 2H); 3.92 (m, 4H); 2.31 (s, 6H). ¹³C-NMR δ = 143.5 (C); 137.4 (C); 135.9 (C); 135.6 (C); 134.1 (C); 132.6 (C); 129.41 (CH); 129.38 (CH); 129.3 (CH); 129.1 (CH); 128.1 (CH); 127.3 (CH); 126.7 (CH); 126.2 (2×CH), 47.2 (CH₂); 21.4 (CH₃). HRMS calcd for C₃₈H₃₃N₂O₄S₂ [M + H]⁺: 645.1882; found: 645.1887.

Di-tert-butyl (*E*)-12,15-dihydrodinaphtho[2,1-b:1',2'-d][1,6]diazecine-11,16-dicarboxylate (*trans*-5d): To a suspension of 3d (484 mg, 1 mmol) in DMF (10 mL) was added NaH (120 mg, 3 mmol, 60% in mineral oil) at 0 °C with stirring and after gas evolution ceased stirring was continued at r.t. for 30 min. The turbid mixture was again cooled to 0 °C, solid *trans*-1,4-dibromobut-2-ene (214 mg, 1 mmol) was added and reaction stirred at r.t. for 20 h. The mixture was diluted with EtOAc, washed with water and brine, dried and concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc(10→30%)/heptane) to give 399 mg (74%) of *trans*-5d as an off-white solid, m.p.: 242–243 °C. ¹H-NMR (unresolved mixture of conformers) δ = 7.99 (br.d, *J* = 8.6 Hz, 2H); 7.86 (br.d, *J* = 8.2 Hz, 2H); 7.41–7.60 (br.m, 2H); 7.45 (br.pt, *J* = 7.4 Hz); 7.18–7.34 (br.m, 2H); 7.23 (ddd, *J* = 8.4, 7.0, 1.1 Hz, 2H); 4.79–4.89 (br.m, 2H); 4.40–4.90 (br.m, 2H); 3.18–3.42 (br.m, 2H); 1.15–1.45 (br.m, 18H). HRMS calcd for C₃₄H₃₆N₂Na₂O₄ [M + Na]⁺: 559.2573; found: 559.2567.

Di-tert-butyl (*Z*)-12,15-dihydrodinaphtho[2,1-b:1',2'-d][1,6]diazecine-11,16-dicarboxylate (cis-5d): A similar procedure as given for 5a was applied affording exclusively *cis*-5d in 41 mg (76%, Grubbs I or Grubbs-Hoveyda II) or 35 mg (65%, Grubbs II) yield. Experiments were performed on a 0.1 mmol scale and 10 mol% of catalyst; colorless crystals, m.p.: 230–231 °C. ¹H-NMR (unresolved mixture of conformers) δ = 7.86–7.98 (br.m, 2H); 7.84 (br.d, *J* = 7.7 Hz, 2H); 7.37–7.46 (br.m, 2H); 7.16–7.36 (br.m, 6H); 5.62–5.73 (br.m, 2H); 3.69–4.39 (br.m, 4H); 0.95–1.38 (br.m, 18H). HRMS calcd for C₃₄H₃₆N₂Na₂O₄ [M + Na]⁺: 559.2573; found: 559.2566.

 N^2 , N^2 '-Diallyl-[1,1'-binaphthalene]-2,2'-diamine (6): To a solution of 2 (1.421 g, 5 mmol) in benzene (5 mL) was added allylalcohol (0.850 mL, 12.5 mmol) and dried molsieve (1 g, 4 Å) and the mixture was degassed. Subsequently, Ti(*i*-OPr)₄, (710 mg, 740 µL, 2.5 mmol), PPh₃ (105 mg, 0.4 mmol), and Pd(OAc)₂ (22.5 mg, 0.1 mmol) was added and the reaction was stirred under Ar at 50 °C. The conversion was monitored by TLC. After extractive work-up with DCM/water, drying (MgSO₄), and evaporation, the crude product was purified by chromatography in EtOAc (5→20%)/heptane to afford 1.55 g (85%) of **6** as a slightly brown crystaline solid; m.p.: 95–99 °C. ¹H-NMR δ = 7.87 (d, *J* = 9.0 Hz, 2H); 7.78 (dm, *J* = 7.7 Hz, 2H); 7.21 (d, *J* = 9.1 Hz, 2H); 7.14–7.22 (m, 4H); 6.99 (dm, *J* = 7.9 Hz, 2H); 5.77 (ddm, *J* = 17.3, 10.3 Hz, 2H); 5.12 (dm, *J* = 17.3 Hz, 2H); 5.02 (dm, *J* = 10.3 Hz, 2H); 3.92 (br.s, 2H); 3.77–3.86 (br.m, 4H). ¹³C-NMR δ = 144.2 (C); 135.7 (CH); 133.9 (C); 129.5 (CH); 128.1 (CH); 127.7 (C); 126.7 (CH); 123.9 (CH); 122.0 (CH); 115.6 (CH₂); 114.2 (CH); 112.0 (C); 46.1 (CH₂). HRMS calcd for C₂₆H₂₅N₂ [M + H]⁺: 365.2018; found: 365.2011.

tert-Butyl (10S*,11S*)-11-bromo-8-oxo-11,12-dihydro-8H-7,10-methanodinaphtho[2,1-d:1',2'-f][1]oxa[3,8]di-azacycloundecine-13(10H)-carboxylate (7) and (10S*,11S*)-11-Bromo-10,11,12,13-tetrahydro-8H-7,10-methanodinaphtho[2,1-d:1',2'-f][1]oxa[3,8]diazacycloundecin-8-one (8): Diazecine *cis*-5d (54 mg, 0.1 mmol) was added to DCM (2 mL) and the solution was cooled to 0 °C. Bromine (26 mg, 0.16 mmol) dissolved in DCM (1 mL) was added dropwise. After 16 h at r.t. the pale yellow reaction was diluted with DCM (10 mL) and stirred with NaHSO₃ solution (10%, 3 mL). The organic phase was separated, dried, and evaporated. MPLC (EtOAc(20→40%)/heptane) afforded fractions containing 7 (18 mg, 33%, colorless crystals, m.p.: 180–185 °C, dec.) and 8 (28 mg, 62%, colorless crystals, m.p.: 254–256 °C, dec.).

7: ¹H-NMR δ = 8.02 (d, *J* = 8.7 Hz, 1H); 7.96 (d, *J* = 8.5 Hz, 1H); 7.88 (br.d, *J* = 8.3 Hz); 7.48 (d, *J* = 8.8 Hz, 1H); 7.43–7.48 (m, 2H); 7.42 (d, *J* = 8.7 Hz, 1H); 7.18–7.27 (m, 3H); 7.01 (dm, *J* = 8.7 Hz, 1H); 5.01 (dd, *J* = 6.4, 3.6 Hz, 1H); 4.72 (dd, *J* = 12.7, 15.0 Hz, 1H); 4.29 (dd, *J* = 9.8, 6.4 Hz, 1H); 4.18 (dd, *J* = 15.0, 3.2 Hz, 1H); 4.09 (d, *J* = 9.9 Hz, 1H); 3.79 (dps.t, *J* = 12.7, 3.4 Hz, 1H); 0.71 (s, 9H). ¹³C-NMR δ = 153.4 (C); 134.23 (C); 134.17 (C); 133.7 (C); 133.1 (C); 132.4 (C); 132.2 (C); 132.1 (C); 131.9 (C); 130.3 (CH); 130.1 (CH); 128.5 (CH); 128.0 (CH); 127.9 (CH); 127.7 (CH); 126.6 (CH); 126.5 (CH); 126.4 (CH); 126.2 (CH); 123.3 (CH); 120.9 (CH); 81.8 (C); 52.8 (CH₂); 50.5 (CH₂); 49.0 (CH); 27.4 (CH₃). HRMS: calcd for C₃₀H₂₇BrN₂NaO₄ [M + Na]⁺: 583.1031; found: 583.1024.

8: ¹H-NMR (mixture of conformers) δ = 8.03 (d, *J* = 8.5 Hz, 0.4H); 8.02 (d, *J* = 8.4 Hz, 0.6H); 7.92–7.96 (m, 1.4H); 7.90 (d, *J* = 8.8 Hz, 0.6H); 7.50–7.55 (m, 1H); 7.47 (d, *J* = 8.5 Hz, 0.6H); 7.46 (d, *J* = 8.7 Hz, 0.4H); 7.16-7.30 (m, 5H); 6.99 (dm, *J* = 8.5 Hz, 0.6H); 6.85 (dm, *J* = 9.1 Hz, 0.4H); 5.10–5.14 (m, 1H); 4.47–4.56 (m, 2H); 4.27–4.36 (m, 1H); 3.81–3.89 (m, 2H); 3.42–3.51 (m, 1H). ¹³C-NMR (mixture of conformers [40]) δ = 152.4 (C); 139.4 (C); 139.0 (C); 134.14 (C); 134.07 (C); 134.05 (C); 133.9 (C); 133.7 (C); 132.9 (C); 132.6 (C); 130.5 (CH^B); 130.4 (CH^A); 130.2 (CH^A); 130.1 (CH^B); 129.98 (CH^B); 129.95 (C); 129.6 (C); 129.5 (CH^B); 128.9 (C); 128.3 (CH^B); 128.22 (CH^A); 128.21 (CH^A); 127.43 (CH^B); 127.42 (CH^B); 127.36 (CH^B); 127.2 (CH^A); 127.1 (CH^B); 126.8 (CH^A, CH^B); 126.6 (CH^A); 125.6 (CH^A); 123.41 (CH^A); 123.38 (CH^B); 123.3 (CH^A); 117.01 (C); 116.99 (C); 115.5 (CH^B); 114.4 (CH^A); 79.1 (CH^A); 79.0 (CH^B); 50.4 (CH^A); 50.1 (CH₂^A); 50.04 (CH^B); 50.00 (CH₂^B); 48.4 (CH₂^A); 48.3 (CH₂^B). HRMS: calcd for C₂₅H₁₉BrN₂NaO₄ [M + Na]⁺: 481.0528; found: 481.0516.

Di-tert-butyl (8*S**,9*R**)-9-bromo-8-(bromomethyl)-9,10-dihydro-7H-dinaphtho[2,1-f:1',2'-h][1,5] diazonine-7,11(8*H*)-dicarboxylate (9): Diazecine *trans*-5d was treated with bromine in DCM similarly as described for *cis*-5d to afford 9 (49 mg, 71%, 0.1 mmol scale) after MPLC (EtOAc(5→20%)/heptane); m.p.: 180–183 °C, dec. ¹H-NMR (mixture of conformers, THF solvate) δ = 7.63–8.03 (m, 5.13H); 6.85–7.52 (m, 6.90H); 5.10–5.19 (m, 0.42H); 4.49–4.79 (m, 2.60H); 3.90–3.95 (m, 0.49H); 3.73–3.77 (m, 2H, THF); 3.57–3.89 (m, 4.11H); 3.48 (dd, *J* = 14.4, 8.4 Hz, 0.48H); 1.81–1.90 (m, 2H, THF); 0.70–1.12 (6× s, 18.2H). HRMS: calcd for C₃₄H₃₆⁷⁹Br⁸¹BrN₂NaO₄ [M + Na]⁺: 717.0919; found: 717.0923. Attempted deprotection of 9: Treatment of 9 with excess of TFA in DCM (1:1) afforded bromocarbamate 10 as white solid (12 mg, 25%, 0.1 mmol scale). ¹H-NMR δ = 8.03 (dm, *J* = 8.9 Hz, 1H); 7.91 (dm, *J* = 8.3 Hz, 1H); 7.84 (dm, *J* = 8.9 Hz, 1H); 7.78 (dm, *J* = 8.9 Hz, 1H); 7.77 (d, *J* = 8.8 Hz, 1H); 7.47 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H); 7.23–7.27 (m, 2H); 7.14 (ddd, *J* = 8.4, 6.9, 1.4 Hz, 1H); 7.09 (d, *J* = 8.9 Hz, 1H); 7.01 (dm, *J* = 8.4 Hz, 1H); 6.84 (dm, *J* = 8.4 Hz, 1H); 4.80 (ddd, *J* = 10.9, 9.6, 8.3 Hz, 1H); 4.34 (dd, *J* = 8.8, 8.2 Hz, 1H); 4.08 (dt, *J* = 11.1, 2.1 Hz, 1H); 3.84 (dd, *J* = 9.4, 9.0 Hz, 1H); 3.53 (dd, *J* = 17.2, 2.0 Hz, 1H); 2.93 (dd, *J* = 17.1, 2.4 Hz, 1H). ¹³C-NMR δ = 156.3 (C); 142.8 (C); 134.6 (C); 133.6 (C); 133.4 (C); 132.5 (C); 130.2 (CH); 130.0 (C); 129.6 (CH); 128.6 (C); 128.0 (CH); 127.6 (CH); 127.5 (CH); 127.2 (CH); 126.6 (CH); 125.64 (CH); 125.55 (CH); 123.6 (CH); 123.5 (CH); 120.5 (CH); 114.0 (C); 69.5 (CH₂); 60.0 (CH); 57.3 (CH); 48.0 (CH₂). HRMS: calcd for C₂₅H₁₉BrN₂NaO₂ [M + Na]⁺: 483.0507; found: 483.0505.

Di-tert-butyl (1aR*,17aS*)-1a,2,17,17a-tetrahydrodinaphtho[2,1-b:1',2'-d]oxireno[2,3h][1,6]diazecine- 3,16-dicarboxylate (11): To a solution of cis-5d (0.1 mmol, 54 mg) in DCM (4 mL) was added *m*-CPBA in portions (120 mg, 0.7 mmol) and the mixture was kept at r.t. overnight. To destroy excess of reagent, NaHSO₃ (10%) was added and the organic phase was washed with Na₂CO₃ (2 M) and dried (Na₂SO₄). The crude material was purified by MPLC (EtOAc($20 \rightarrow 50\%$)/heptane) to afford 11 as semisolid product (35 mg, 57%) and 11' as a by-product (6 mg, 10%). **11**: ¹H-NMR δ = 7.77–8.07 (br.m, 4H); 7.16–7.55 (br.m, 8H); 4.03–4.71 (br.m, 2H); 2.89–3.14 (br.m, 2H); 2.45–2.89 (br.m, 2H); 1.00–1.42 (3× br.s, 18H). HRMS: calcd for $C_{34}H_{36}N_2NaO_5$ [M + Na]⁺: 575.2522; found: 575.2529. 11': m.p.: 192–8 °C (dec.). ¹H-NMR (DMSO- d_6 , 353K) δ = 8.13 (d, J = 8.9 Hz, 1H); 8.05 (d, J = 8.9 Hz, 1H); 7.98 (d, J = 8.3 Hz, 1H); 7.94 (d, J = 8.3 Hz, 1H); 7.84 (d, J = 8.9 Hz, 1H); 7.54 (d, J = 8.8 Hz, 1H); 7.46 (m, 2H); 7.21 (m, 2H); 7.01 (d, J = 8.6 Hz, 1H); 6.97 (d, J = 8.5 Hz, 1H); 4.79 (br.d, J = 6.3 Hz, 1H); 4.54 (d, J = 16.3 Hz, 1H); 4.24 (br.m, 1H); 3.99 (m, 2H); 3.91 (d, J = 16.3 Hz, 1H);0.84 (s, ~9H); 0.80 (s, ~9H). ¹³C-NMR (DMSO- d_6 , 353K) $\delta = 204.4$ (C); 152.5 (C); 138.1 (C); 136.0 (C); 132.8 (C); 132.7 (C); 131.9 (C); 131.4 (C); 131.04 (C); 130.99 (C); 129.4 (CH); 128.8 (CH); 128.0 (CH); 127.7 (CH); 127.0 (CH); 125.23 (CH); 125.16 (CH); 125.0 (CH); 124.2 (CH); 122.7 (CH); 80.4 (C); 79.6 (C); 68.7 (CH); 58.9 (CH₂); 52.0 (CH₂); 26.8 (CH₃); 26.7 (CH₃). HRMS: calcd for $C_{34}H_{36}N_2NaO_6$ [M + Na]⁺: 591.2471; found. 591.2466.

Di-tert-butyl (1a*R**,17a*R**)-1a,2,17,17a-tetrahydrodinaphtho[2,1-b:1',2'-d]oxireno[2,3-h][1,6]diazecine-3,16-dicarboxylate (12): Epoxide 12 was accessed from *trans*-5d similarly as described for 11, with the exception that 3 equ. of *m*-CPBA were used; the reaction was complete after 6 h at r.t. Crystalline colorless material was obtained by slow evaporation from DCM/heptane solution; 49 mg (88% yield, 0.1 mmol scale). ¹H-NMR δ = 7.14–8.12 (m, ~12H); 4.43–5.18 (br.m, 2H); 2.48 (br.m, 2H); 2.08 (dm, *J* = 9.3 Hz, 2H); 1.27 (br.s, ~18H). HRMS: calcd for C₃₄H₃₆N₂NaO₅ [M + Na]⁺: 575.2522; found: 575.2526.

Attempted deprotection of 11 and 12: To epoxide 11 (32 mg, 0.06 mmol) in DCM (2 mL) was added TFA (19 µL). After 22 h the reaction was neutralized (NaHCO₃) and extracted. MPLC (MeOH($0 \rightarrow 5\%$)/DCM) afforded 23 mg of 13 (80–90% purity). ¹H-NMR δ = 7.98 (d, *J* = 8.8 Hz, 1H); 7.97 (d, *J* = 8.7 Hz, 1H); 7.88 (br.d, *J* = 8.1 Hz, 1H); 7.85 (br.d, *J* = 8.1 Hz, 1H); 7.46 (d, *J* = 8.7 Hz, 1H); 7.43 (ddd, *J* = 8.1, 6.7, 1.3 Hz, 1H); 7.40 (ddd, *J* = 8.0, 6.7, 1.1 Hz, 1H); 7.32 (d, *J* = 8.7 Hz, 1H); 7.21 (ddd, *J* = 8.6, 6.6, 1.3 Hz, 1H); 7.16 (dm, *J* = 8.7 Hz, 1H); 7.10 (ddd, *J* = 8.6, 6.8, 1.4 Hz, 1H); 6.85 (br.s, 1H); 6.83 (br.d, *J* = 8.7 Hz, 1H); 4.78 (ddd, *J* = 8.8, 5.7, 1.9 Hz, 1H); 4.51 (t, *J* = 9.2 Hz, 1H); 4.43 (dd, *J* = 15.0, 1.9 Hz, 1H); 4.00–4.03 (m, 1H); 3.95 (dd, *J* = 9.3, 2.1 Hz, 1H); 3.81 (dd, *J* = 15.0, 3.6 Hz, 1H); 0.56 (s, 9H). ¹³C-NMR δ = 152.8 (C); 138.8 (C); 134.2 (C); 133.59 (C); 133.55 (C); 132.1 (C); 131.8 (C); 130.7 (C); 130.2 (CH); 129.9 (CH); 128.6 (CH); 128.3 (CH); 128.0 (CH); 127.9 (C); 127.5 (CH); 126.52 (CH); 126.45 (CH); 126.2 (CH);125.8 (CH); 123.7 (CH); 82.8 (C); 72.7 (CH); 68.6 (CH); 56.4 (CH₂); 49.2 (CH₂); 27.2 (CH₃). HRMS: calcd for C₃₀H₂₈N₂NaO₅ [M + Na]⁺: 519.1896; found: 519.1897.

Similar treatment of epoxide 12 (TFA, DCM, r.t., 22 h) afforded a mixture of diaminoepoxide 14 and hydroxyaziridine 15: (1aR*,17aR*)-1a,2,3,16,17,17a-Hexahydrodinaphtho[2,1-b:1',2'-d]oxireno[2,3-

h][1,6]*diazecine* (14): 9 mg (31% yield, 0.08 mmol scale); colorless oil. ¹H-NMR δ = 7.96 (d, *J* = 8.8 Hz, 2H); 7.91 (br.d, *J* = 8.1 Hz, 2H); 7.41–7.45 (m, 2H); 7.42 (d, *J* = 8.6 Hz, 2H); 7.35 (ddd, *J* = 8.3, 6.7, 1.4 Hz, 2H); 7.28 (dm, *J* = 8.4 Hz, 2H); 3.56 (dd, *J* = 13.7, 3.0 Hz, 2H); 2.88 (br.s, 2H); 2.63–2.72 (br.m, 2H); 2.03–2.08 (m, 2H). ¹³C-NMR δ = 144.6 (C); 133.7 (C); 130.3 (C); 129.9 (CH); 128.3 (CH); 127.5 (CH); 125.0 (CH); 124.8 (CH); 124.6 (C); 123.7 (CH); 55.1 (CH); 52.2 (CH₂). HRMS: calcd for C₂₄H₂₁N₂O [M + H]⁺: 353.1648; found: 353.1651.

(13*R**,13a*S**)-12,13,13a,14-Tetrahydro-11H-azirino[1,2-a]dinaphtho[2,1-f:1',2'-h][1,5]diazonin-13-ol (15): 9 mg (30% yield, 90% purity, 0.08 mmol scale). ¹H-NMR δ = 7.94 (d, *J* = 8.8 Hz, 1H); 7.93 (d, *J* = 8.7 Hz, 1H); 7.90 (br.d, *J* = 8.3 Hz, 1H); 7.84 (br.d, *J* = 8.0 Hz, 1H); 7.47 (d, *J* = 8.9 Hz, 1H); 7.39 (ddd, *J* = 8.0, 5.3, 2.7 Hz, 1H); 7.25-7.27 (m, 3H); 7.25 (d, *J* = 8.8 Hz, 1H); 7.16 (ddd, *J* = 8.1, 6.7, 1.2 Hz, 1H); 6.88 (d, *J* = 8.4 Hz, 1H); 3.33–3.40 (m, 2H); 2.86 (td, *J* = 9.3, 4.5 Hz, 1H); 2.86 (br.s, ~1H); 2.34 (d, *J* = 4.6 Hz, 1H); 2.23 (d, *J* = 3.0 Hz, 1H); 2.12 (ddd, *J* = 8.8, 4.5, 3.0 Hz, 1H). ¹³C-NMR δ = 145.6 (C); 145.4 (C); 134.3 (C); 132.7 (C); 130.4 (C); 130.3 (C); 129.9 (CH); 129.3 (CH); 128.1 (CH); 128.0 (CH); 127.1 (CH); 126.7 (CH); 126.01 (C); 125.1 (CH); 124.8 (CH); 124.6 (CH); 124.0 (CH); 122.4 (CH); 120.5 (CH); 73.8 (CH); 55.2 (br.CH₂); 44.4 (CH); 29.2 (CH₂). HRMS: calcd for C₂₄H₂₁N₂O [M + H]⁺: 353.1648; found: 353.1651.

Di-tert-butyl (9*S**,10*S**)-9,10-dihydroxy-8,9,10,11-tetrahydrodinaphtho[2,1-b:1',2'-d][1,6]diazecine-7,12-dicarboxylate (16): To a solution of *trans*-5d (54 mg, 0.1 mmol) in THF/water (10:1, 2 mL) was added 2 equ. of NMO (50% in water, 25 mg) and K₂OsO₄·H₂O (0.01 mmol, 3.7 mg). After stirring for 24 h at r.t., solid Na₂S₂O₃ (17 mg) was added and stirring was continued for 1 h. The mixture was diluted with DCM (19 mL), dried (MgSO₄), filtered, and concentrated. MPLC (EtOAc(50→100%)/heptane) afforded 48 mg (85%) of 16 as colorless solid; m.p.: 201–205 °C. ¹H-NMR δ = 7.94 (br.d, *J* = 8.6 Hz, 2H); 7.87 (d, *J* = 7.9 Hz, 2 H); 7.45 (ddd, *J* = 8.3, 6.2, 2.0 Hz, 2H); 7.33–7.46 (br.m, 2H); 7.19–7.26 (br. m, 4H); 3.40–3.86 (br.m, 4H); 3.31 (br.s, 2H); 2.27–2.95 (br.s, 2H); 1.18 (br.s, 18H). ¹³C-NMR δ = 138.9 (br.C); 133.1 (C); 132.3 (C); 129.3 (br.CH); 127.8 (br.CH); 127.5 (br.CH); 126.2 (2CH); 126.1 (CH); 80.7 (CH₂); 73.9 (br.CH); 28.0 (CH₃). HRMS: calcd for C₃₄H₃₈N₂NaO₆ [M + Na]⁺: 593.2628; found: 593.2624.

(9*S**,10*S**)-7,8,9,10,11,12-Hexahydrodinaphtho[2,1-b:1',2'-d][1,6]diazecine-9,10-diol (17): To a solution of diol 16 (57 mg, 0.1 mmol) in DCM (1 mL) was added TFA (1 mL) and the reaction was stirred for 2 h at r.t. The mixture was concentrated under reduced pressure and the residue was dissolved in EtOAc (10 mL). Solid Na₂CO₃ was added and the mixture was stirred for 30 min. After filtration and evaporation of solvent the crude material was purified by MPLC (EtOAc(50 \rightarrow 100%)/heptane) to afforded 32 mg (86%) of 17 as colorless crystalline solid; m.p: >165 °C (dec.). ¹H-NMR (DMSO-*d*₆) δ = 7.82 (d, *J* = 9.1 Hz, 2H); 7.77 (dd, *J* = 8.0, 1.1 Hz, 2H); 7.49 (d, *J* = 9.2 Hz, 2H); 7.14 (ddd, *J* = 7.9, 6.6, 1.2 Hz, 2H); 7.09 (ddd, *J* = 8.4, 6.7, 1.4 Hz, 2H); 6.79 (br.d, *J* = 8.4 Hz, 2H); 5.01–5.04 (m, 2H); 4.54 (d, *J* = 11.8 Hz, 2H); 4.11 (s, 2H); 3.80 (br.dd, *J* = 14.8, 12.6 Hz, 2H); 3.31 (d, *J* = 14.9 Hz, 2H). ¹³C-NMR (DMSO-*d*₆) δ = 145.9 (C); 133.7 (C); 128.4 (CH); 128.0 (CH); 127.3 (C); 125.8 (CH); 124.0 (CH); 121.3 (CH); 117.6 (CH); 111.9 (C); 72.9 (CH); 48.0 (CH₂). HRMS: calcd for C₂₄H₂₃N₂O₂ [M + H]⁺: 371.1760; found: 371.1745.

Di-tert-butyl (9*R**,10*S**)-9,10-dihydroxy-8,9,10,11-tetrahydrodinaphtho[2,1-b:1',2'-d][1,6]diazecine-7,12-dicarboxylate (18): A procedure similarly as described for 16 was applied to give 18; 51 mg (89% yield, colorless solid, 0.1 mmol scale); m.p.: 133–135 °C. ¹H-NMR δ = 7.96 (d, *J* = 8.9 Hz, 1H); 7.94 (d, *J* = 8.9 Hz, 1H); 7.86 (d, *J* = 6.2 Hz, 1H); 7.84 (d, *J* = 6.2 Hz, 1H); 7.56 (br.d, *J* = 8.2 Hz, 1H); 7.39–7.45 (m, 2H); 7.29 (br.d, *J* = 8.7 Hz, 1H); 7.15–7.22 (m, 2H); 7.09–7.14 (br.m, 1H); 3.9–4.6 (br.s, ~2H); 4.04 (dd, *J* = 13.6, 4.6 Hz, 1H); 3.72–3.85 (m, 2H); 3.20–3.33 (m, 1H); 2.6–3.8 (br.s, ~2H); 1.01 (s, 9H); 0.93 (s, 9H). ¹³C-NMR δ = 140.0 (C); 137.3 (br.C); 133.7 (C); 133.5 (C); 132.5 (C); 132.0 (C); 131.8 (C); 130.1 (CH); 129.3 (CH); 128.7 (br.CH); 128.6 (br.CH); 127.5 (CH); 126.03 (CH); 125.95 (CH); 125.9 (CH); 125.7 (CH); 125.2 (br.CH); 80.8 (C); 80.7 (C); 54.5 (CH₂); 48.3 (br.CH₂); 27.9 (CH₃); 27.7 (CH₃). HRMS: calcd for C₃₄H₃₈N₂NaO₆ [M + Na]⁺: 593.2628; found: 593.2618.

(9*R**,10*S**)-7,8,9,10,11,12-Hexahydrodinaphtho[2,1-b:1',2'-d][1,6]diazecine-9,10-diol (19): A procedure as described similarly for 17 was applied to give 19; yield: 21 mg (72%, colorless solid, 0.08 mmol scale); m.p.: 240-245 °C (dec.). ¹H-NMR (DMSO-*d*₆) δ = 7.93 (d, *J* = 9.0 Hz, 1H); 7.83 (dm, *J* = 7.9 Hz, 1H); 7.81 (d, *J* = 9.1 Hz, 1H); 7.78 (dm, *J* = 7.9 Hz, 1H); 7.49 (d, *J* = 9.1 Hz, 1H); 7.48 (d, *J* = 9.1 Hz, 1H); 7.09–7.21 (m, 4H); 6.83 (dm, *J* = 8.4 Hz, 1H); 6.79 (dm, *J* = 8.3 Hz, 1H); 5.01 (d, *J* = 4.1 Hz, 1H); 4.79 (d, *J* = 4.4 Hz, 1H); 4.07 (dd, *J* = 12.0, 2.3 Hz, 1H); 3.91 (ddd, *J* = 14.6, 12.0, 2.6 Hz, 1H); 3.71–3.79 (m, 2H); 3.59–3.68 (m, 1H); 3.06–3.14 (m, 2H). ¹³C-NMR (DMSO-*d*₆) δ = 146.2 (C); 144.9 (C); 134.0 (C); 133.6 (C); 129.4 (CH); 128.3 (CH); 128.2 (CH); 128.0 (CH); 127.8 (C); 127.6 (C); 126.1 (CH); 125.9 (CH); 123.9 (CH); 123.7 (CH); 121.7 (CH); 121.6 (CH); 118.5 (CH); 116.5 (CH); 113.7 (C); 112.6 (C); 79.7 (CH); 70.1 (CH); 50.1 (CH₂); 47.7 (CH₂). HRMS: calcd for C₂₄H₂₃N₂O₂ [M + H]⁺: 371.1760; found: 371.1754.

Di-tert-butyl 8,9,10,11-tetrahydrodinaphtho[2,1-b:1',2'-d][1,6]diazecine-7,12-dicarboxylate (20): To a solution of *cis*- or *trans*-5d (54 mg, 0.1 mmol) in THF/water (3 + 3 mL) was added Pd/C (10%, 5 mg) and the mixture was stirred under H₂ (2 bar) at r.t. for 2 h. After filtration and concentration, the crude product was purified by MPLC (EtOAc(25→40%)/heptane) to afforded 49 mg (92% from *cis*-5d), and 51 mg (94% from *trans*-5d) of 20, respectively as colorless crystaline solid; m.p.: 172–173 °C. ¹H-NMR δ = 7.93 (d, *J* = 8.7 Hz, 2H); 7.84 (br.d, *J* = 8.1 Hz, 2H); 7.33–7.44 (br.m, 4H); 7.14–7.21 (br.m, 4H); 3.84–3.93 (br.m, 2H); 3.50–3.66 (br.m, 2H); 1.78 (br.s, 2H); 1.52–1.63 (br.m, 2H); 0.99 (s, 18H). ¹³C-NMR δ = 139.0 (br.C); 133.8 (C); 132.9 (br.C); 132.1 (C); 129.3 (CH); 128.9 (br.CH); 127.2 (br.CH); 125.6 (CH); 125.5 (CH); 125.1 (br.CH); 79.9 (CH₂); 48.9 (CH₂); 27.9 (CH₃). HRMS: calcd for C₃₄H₃₉N₂O₄ [M + H]⁺: 539.2910; found: 539.2909.

7,8,9,10,11,12-Hexahydrodinaphtho[**2,1-b**:**1**′,**2**′-**d**][**1**,6]**diazecine** (**21**): To **20** (53 mg, 0.1 mmol) dissolved in DCM (1 mL) was added TFA (1 mL) and the solution was stirred at r.t. for 2 h. The solvents were removed under vacuum and the crude product was dissolved in DCM (10 mL). Solid Na₂CO₃ was added and the mixture was stirred for 30 min. After filtration and concentration the pure product was obtained by MPLC (EtOAc(10→80%)/heptane); yield: 27 mg (81%, colorless crystals); m.p.: 275–278 °C. ¹H-NMR δ = 7.92 (d, *J* = 8.9 Hz, 2H); 7.82 (dm, *J* = 7.9 Hz, 2H); 7.40 (d, *J* = 8.9 Hz, 2H); 7.28 (ddd, *J* = 8.1, 6.8, 1.3 Hz, 2H); 7.19 (ddd, *J* = 8.4, 6.8, 1.4 Hz, 2H); 7.08 (dm, *J* = 8.4 Hz, 2H); 4.00 (br.d, *J* = 11.7 Hz, 2H); 3.74 (br.t, *J* = 12.7 Hz, 2H); 2.76 (br.t, *J* = 13.5 Hz, 2H); 1.69–1.78 (m, 2H); 1.32–1.40 (m, 2H). ¹³C-NMR δ = 144.3 (C); 134.5 (C); 129.8 (CH); 129.0 (C); 128.0 (CH); 126.8 (CH); 124.7 (CH); 123.1 (CH); 117.9 (CH); 117.7 (C); 46.5 (CH₂); 25.9 (CH₂). HRMS: calcd for C₂₄H₂₃N₂ [M + H]⁺: 339.1861; found: 339.1855.

3.3. X-ray Structure Analysis

Suitable crystals were obtained by slow evaporation from solvent mixtures at r.t; DCM/heptane was used in for **11'** (Supplementary Materials), **12**, and **21** (Supplementary Materials), all other compounds crystallized from ethyl acetate/heptane. Details of X-ray structure analysis can be found in Tables 1 and 2. Solid state biaryl angles are summarized in Table 3.

	cis-1	trans-1	4a	4c	cis-5a	trans-5a
M [g/mol]	336.42	336.42	520.64	556.49	614.98	985.18
Space group	$P2_1/n$	$P2_12_12_1$	$P2_12_12_1$	C2/c	P-1	P2 ₁ /n
a [Å]	14.133(5)	10.5405(4)	9.7339(11)	13.8966(4)	10.7270(5)	10.8879(4)
b [Å]	11.145(3)	11.5662(5)	11.2343(11)	13.3655(4)	11.3356(5)	13.6381(5)
c [Å]	22.787(6)	14.4010(5)	22.750(3)	13.9480(4)	12.4265(6)	15.6689(5)
α[°]	90	90	90	90	86.543(2)	90
β[°]	105.704(13)	90	90	103.583(2)	81.059(3)	90.396(2)
$\gamma[^{\circ}]$	90	90	90	90	71.569(2)	90
V [Å ³]	3455.2(17)	1755.68(12)	2487.8(5)	2518.17(13)	1416.00(12)	2326.62(14)

Table 1. Crystal structure data of cis- and trans-1, 4a, 4c, and cis- and trans-5a.

12

	cis-1	trans-1	4a	4c	cis-5a	trans-5a
Z	8	4	4	4	2	2
D _{calc} [g/cm ³]	1.293	1.273	1.39	1.468	1.442	1.406
R _{int}	0.1641	0.0405	0.0988	0.0569	0.0303	0.0738
R _{sigma}	0.2728	0.0255	0.0577	0.0272	0.0152	0.0424
R1 (I $\geq 2\sigma$ (I))	0.0772	0.0333	0.0348	0.0439	0.0482	0.0406
wR2 (all data)	0.2084	0.0848	0.0829	0.1186	0.154	0.1039

Table 1. Cont.

	cis-5d	trans-5d	7	9	
/ 17					-

Table 2. Crystal structure data of *cis*- and *trans*-5d, 7, 9, and 12.

M [g/mol]	538.66	536.65	559.44	732.52	550.65
Space group	C2/c	C2/c	P2 ₁ /n	C2/c	C2/c
a [Å]	19.795(4)	19.7641(15)	9.4794(6)	23.929(2)	19.4742(11)
b [Å]	12.914(4)	12.6467(8)	21.6529(14)	12.375(2)	13.0437(11)
c [Å]	13.521(4)	14.2008(9)	12.2608(6)	24.078(3)	14.0412(12)
α[°]	90	90	90	90	90
β[°]	124.816(10)	127.156(3)	92.249(2)	111.178(4)	125.810(3)
$\gamma[^{\circ}]$	90	90	90	90	90
V [Å ³]	2837.5(12)	2828.9(3)	2514.7(3)	6648.4(15)	2892.5(4)
Z	4	4	4	8	4
D _{calc} [g/cm ³]	1.261	1.26	1.478	1.464	1.264
R _{int}	0.0515	0.0713	0.0683	0.0745	0.0549
R _{sigma}	0.0585	0.0879	0.0555	0.1078	0.0286
R1 (I $\geq 2\sigma$ (I))	0.0604	0.0583	0.0411	0.0483	0.0374
wR2 (all data)	0.1535	0.1557	0.0997	0.0975	0.0977

Table 3. Biaryl angles in crystal structures.

	cis-1	trans-1	4a	4c	cis-5a	trans- 5a	cis-5d	trans-5d	7	9	11	12	21
biaryl angle/° ¹	68.0/67.4 ²	98.9	72.2	77.8	96.3	97.3	95.8	101.1	66.5	70.0	68.0	99.9	73.2

¹ Defined as angle between binaphthyl planes, values rounded to one digit after decimal point. ² Two molecules in the asymmetric unit.

Supplementary Materials: The following are available online, containing ¹H- and ¹³C-NMR charts and details of crystal structure determinations.

Author Contributions: Synthesis and characterization of products was performed by M.L., M.A., and B.R.B. A.R. conducted crystal structure analyses, and M.W. conceived and designed the experiments and wrote the paper.

Funding: This research received no external funding.

Acknowledgments: Open Access Funding by the University of Vienna is grateful acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References and Notes

- Dong, H.-Q.; Xu, M.-H.; Feng, C.-G.; Sunc, X.-W.; Lin, G.-Q. Recent applications of chiral *N*-tert-butanesulfinyl imines, chiral diene ligands and chiral sulfur–olefin ligands in asymmetric synthesis. *Org. Chem. Front.* 2015, 2, 73–89. [CrossRef]
- Feng, X.; Du, H. Synthesis of Chiral Olefin Ligands and their Application in Asymmetric Catalysis. *Asian J.* Org. Chem. 2012, 1, 204–213. [CrossRef]
- 3. Shintani, R.; Hayashi, T. Chiral Diene Complexes for Asymmetric Catalysis. Aldrichim. Acta 2009, 42, 31–38.
- He, Z.-T.; Wei, Y.-B.; Yu, H.-J.; Sun, C.-Y.; Feng, C.-G.; Tian, P.; Lin, G.-Q. Rhodium/diene-catalyzed asymmetric arylation of N-Boc-protected α,β-unsaturated δ-lactam with arylboronic acids: Enantioselective synthesis of 4-aryl-2-piperidinones. *Tetrahedron* 2012, *68*, 9186–9191. [CrossRef]

- 5. Liu, Y.; Feng, X.; Du, H. Asymmetric synthesis of axially chiral anilides by Pd-catalyzed allylic substitutions with P/olefin ligands. *Org. Biomol. Chem.* **2015**, *13*, 125–132. [CrossRef] [PubMed]
- 6. Gandi, V.R.; Lu, Y.; Hayashi, T. A chiral phosphine–olefin ligand derived from L-hydroxyproline and its use in the rhodium-catalyzed asymmetric 1,4-addition. *Tetrahedron: Asymmetry* **2015**, *26*, 679–682. [CrossRef]
- 7. Vlahovic, S.; Schädel, N.; Tussetschläger, S.; Laschat, S. Tropanes as Scaffolds for Phosphorus–Olefin Ligands and Their Application in Asymmetric Catalysis. *Eur. J. Org. Chem.* **2013**, 1580–1590. [CrossRef]
- 8. Li, Y.; Xu, M.-H. Simple sulfur–olefins as new promising chiral ligands for asymmetric catalysis. *Chem. Commun.* **2014**, *50*, 3771–3782. [CrossRef]
- Chen, Q.; Li, L.; Guo, F.; Mao, Z. The first application of C₂-symmetric chiral sulfurous diamide as efficient sulfure olefin hybrid ligands for Rh-catalyzed asymmetric 1,4-addition reactions. *Tetrahedron* 2016, 72, 2632–2636. [CrossRef]
- 10. Kasák, P.; Arion, V.B.; Widhalm, M. A chiral phosphepine-olefin rhodium complex as an efficient catalyst for the asymmetric conjugate addition. *Tetrahedron: Asymmetry* **2006**, *17*, 3084–3090. [CrossRef]
- 11. Stemmler, R.; Bolm, C. Synthesis of Novel Chiral Phosphine-Olefin Complexes and Their Evaluation as Ligands in Rhodium-Catalyzed Asymmetric 1,4-Addition. *Synlett* **2009**, 1365–1370.
- 12. Liu, Z.; Du, H. Development of Chiral Terminal-Alkene-Phosphine Hybrid Ligands for Palladium-Catalyzed Asymmetric Allylic Substitutions. *Org. Lett.* **2010**, *12*, 3054–3057. [CrossRef] [PubMed]
- 13. Wang, H.-L.; Hu, R.-B.; Zhang, H.; Zhou, A.-X.; Yang, S.-D. Pd(II)-Catalyzed Ph₂(O)P-Directed C–H Olefination toward Phosphine–Alkene Ligands. *Org. Lett.* **2013**, *15*, 5302–5305. [CrossRef] [PubMed]
- 14. Hahn, B.T.; Tewes, F.; Fröhlich, R.; Glorius, F. Olefin–Oxazolines (OlefOx): Highly Modular, Easily Tunable Ligands for Asymmetric Catalysis. *Angew. Chem. Int. Ed.* **2010**, *49*, 1143–1146. [CrossRef]
- 15. Cao, Z.; Du, H. Development of Binaphthyl Based Chiral Dienes for Rhodium(I)-Catalyzed Asymmetric Arylation of *N*,*N*-Dimethylsulfamoyl-Protected Aldimines. *Org. Lett.* **2010**, *12*, 2602–2605. [CrossRef]
- Xue, F.; Wang, D.; Lia, X.; Wan, B. Chiral olefin–sulfoxide as ligands for rhodium catalyzed asymmetric conjugate addition of arylboronic acids to unsaturated esters. *Org. Biomol. Chem.* 2013, 11, 7893–7898. [CrossRef]
- Zhu, T.-S.; Xu, M.-H. Chiral Sulfinamide-Olefin Ligands: Switchable Selectivity in Rhodium-Catalyzed Asymmetric 1,2-Addition of Arylboronic Acids to Aliphatic *α*-Ketoesters. *Chin. J. Chem.* 2013, *31*, 321–328.
 [CrossRef]
- 18. Liu, Y.; Du, H. Pd-Catalyzed Asymmetric Allylic Alkylations of 3' Substituted Indoles Using Chiral P/Olefin Ligands. *Org. Lett.* **2013**, *15*, 740–743. [CrossRef]
- 19. Chen, G.; Gui, J.; Cao, P.; Liao, J. Chiral sulfoxide-olefin ligands: Tunable stereoselectivity in Rh-catalyzed asymmetric 1,4-additions. *Tetrahedron* **2012**, *68*, 3220–3224. [CrossRef]
- 20. Feng, X.; Nie, Y.; Yang, J.; Du, H. Rh(I)-Catalyzed Asymmetric 1,2-Addition to α-Diketones with Chiral Sulfur-Alkene Hybrid Ligands. *Org. Lett.* **2012**, *14*, 624–627. [CrossRef]
- 21. *Note:* A literature search revealed that medium-sized diaza-macrocyles derived from *N*,*N* bridged BINAM are rather unimploied. Only one paper reported formation of a C₃ bridge (Ashokkumar, V.; Chithiraikumar, C.; Siva, A. Binaphthyl-based chiral bifunctional organocatalysts for water mediated asymmetric List–Lerner–Barbas aldol reactions. *Org. Biomol. Chem.* **2016**, *14*, 9021–9032.). No compounds with N-C₄-N bridge have been reported.
- 22. Groso, E.J.; Schindler, C. Recent Advances in the Application of Ring-Closing Metathesis for the Synthesis of Unsaturated Nitrogen Heterocycles. *Synthesis* **2019**, *51*, 1100–1114. [CrossRef]
- 23. Compain, P. Olefin Metathesis of Amine-Containing Systems: Beyond the Current Consensus. *Adv. Synth. Catal.* **2007**, *349*, 1829–1846. [CrossRef]
- 24. Toste, F.D.; Chatterjee, A.H.; Grubbs, R.H. Functional group diversity by ruthenium catalyzed olefin cross-metathesis. *Pure Appl. Chem.* **2002**, *74*, 7–10. [CrossRef]
- Sattely, E.S.; Cortez, G.A.; Moebius, D.C.; Schrock, R.S.; Hoveyda, A.H. Enantioselective Synthesis of Cyclic Amides and Amines through Mo-Catalyzed Asymmetric Ring-Closing Metathesis. *J. Am. Chem. Soc.* 2005, 127, 8526–8533. [CrossRef]
- 26. For recent examples of medium sized aza-macrocycles synthesized by olefin metathesis see: Mangina, N.S.V.M.R.; Guduru, R.; Karunakar, G.V. Synthesis of medium-sized aryl-fused nitrogenous heterocycles via sequential aryne aza-Claisen rearrangement/ring-closing metathesis. *Org. Biomol. Chem.* 2018, 16, 2134–2142.

- 27. Yus, M.; Ramón, D.J.; Prieto, O. Synthesis of new *C*₂-symmetrical bis(hydroxycamphorsulfonamide) ligands and their application in the enantioselective addition of dialkylzinc reagents to aldehydes and ketones. *Tetrahedron: Asymmetry* **2003**, *14*, 1103–1114. [CrossRef]
- 28. Zi, G.; Zhang, F.; Xiang, L.; Chen, Y.; Fang, W.; Song, H. Synthesis and characterization of group 4 metal amides with new *C*₂-symmetric binaphthyldiamine-based ligands and their use as catalysts for asymmetric hydroamination/cyclization. *Dalton Trans.* **2010**, *39*, 4048–4061. [CrossRef]
- Huang, H.; Okuno, T.; Tsuda, K.; Yoshimura, M.; Kitamura, M. Enantioselective Hydrogenation of Aromatic Ketones Catalyzed by Ru Complexes of Goodwin-Lions-type sp²N/sp³N Hybrid Ligands R-BINAN-R'-Py. *J. Am. Chem. Soc.* 2006, 128, 8716–8717. [CrossRef]
- See a selection for successful application of RCM with similar substrates: (a) Qadir, M.; Cobb, J.; Sheldrake, P.W.; Whittall, N.; White, A.J.P.; Hii, K.K.; Horton, P.N.; Hursthouse, M.B. Conformation Analyses, Dynamic Behavior and Amide Bond Distortions of Medium-sized Heterocycles. 1. Partially and Fully Reduced 1-Benzazepines. *J. Org. Chem.* 2005, *70*, 1545–1551. (b) Kotha, S.; Shah, V.R. Design and Synthesis of 1-Benzazepine Derivatives by Strategic Utilization of Suzuki–Miyaura Cross-Coupling, Aza-Claisen Rearrangement and Ring-Closing Metathesis. *Eur. J. Org. Chem.* 2008, 1054–1064. (c) Ye, K.-Y.; Dai, L.-X.; You, S.-L. Enantioselective synthesis of 2,5-dihydrobenzo[b]azepine derivatives via iridium-catalyzed asymmetric allylic amination with 2-allylanilines and ring-closing-metathesis reaction. *Org. Biomol. Chem.* 2012, *10*, 5932–5939.
- 31. With the hope to gain more information on the composition and nature of allylation products of **3c** this was also treated with Grubbs I, Grubbs II and Grubbs-Hoveyda catalyst in DCM or benzene but in all cases only starting material or minor amounts of partly deallylated substrate (after prolonged reaction time) was detected. We attribute this failure to interference of side products or inappropriate conformation of **4c** with preferred out-side orientation of both allyl substituents as such geometry was also found in the crystal structure (Figure 3).
- Abraham, M.; Reischl, W.; Kirchner, K.A.; Roller, A.; Veiros, L.F.; Widhalm, M. Tandem RCM–Claisen Rearrangement–[2+2] Cycloaddition of O,O'-(But-2-en-1,4-diyl)-bridged Binaphthols. *Molecules* 2012, 17, 14531–14554. [CrossRef]
- 33. Heating a sealed NMR sample of *trans-***1** in DMSO-*d*₆ above 170 °C (micro wave) resulted in an inseparable mixture of several products.
- 34. A similar reaction with carbamate attacking a bromonium ion has been reported: Mühlstädt, M.; Olk, B.; Widera, R. Cyclisierungsreaktionen β,γ-ungesättigter Kohlensäurederivate. IX. Regiochemie der elektrophilen Cyclofunktionalisierung β,γ-ungesättigter Carbamidsäureester mit Brom – Synthese von Oxazolidin-2-onen und Tetrahydro-2H-1,3-oxazin-2-onen. *J. Prakt. Chemie* **1986**, *328*, 163–172.
- 35. Proust, N.; Gallucci, J.C.; Paquette, L.A. Effect of Sulfonyl Protecting Groups on the neighboring Group Participation Ability of Sulfonamido Nitrogen. *J. Org. Chem.* **2009**, *74*, 2897–2900. [CrossRef]
- 36. *Cf*: Genet, J.P.; Denis, A.; Vilar, A.; Schoops, A.R.; Alard, P. Stereospecific syntheses of erythro and threo 5-(1',2'-dihydroxyethyl)-3-aryl-oxazolidin-2-ones. *Tetrahedron Lett.* **1990**, *31*, 515–518. [CrossRef]
- 37. Tietze, L.F.; Schuster, H.J.; von Hof, J.M.; Hampel, S.M.; Colunga, J.F.; John, M. Atropisomerism of Aromatic Carbamates. *Chem. Eur. J.* **2010**, *16*, 12678–12682. [CrossRef]
- 38. Yamamoto, Y.; Sakamoto, A.; Nishioka, T.; Oda, J.; Fukazawa, Y. Asymmetric Synthesis of 5- and 6- Membered Lactones from Cyclic Substrates Bearing a C₂-Chiral Auxiliary. *J. Org. Chem.* **1991**, *56*, 1112–1119. [CrossRef]
- Jamieson, J.Y.; Schrock, R.R.; Davis, W.M.; Bonitatebus, P.J.; Zhu, S.S.; Hoveyda, A.H. Synthesis of Molybdenum Imido Alkylidene Complexes Containing N,N'-Disubstituted 2,2'-Bisamido-1,1'-binaphthyl Ligands. Organometallics 2000, 19, 925–930. [CrossRef]
- 40. NMR signals of conformers A and B (approximately 6:4) could be only in part assigned due to overlapping; quarternary C are not assigned.

Sample Availability: Not available.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).