
RESEARCH ARTICLE

On the effectiveness of graph matching

attacks against privacy-preserving record

linkage

Youzhe HengID
1*, Frederik Armknecht1☯, Yanling Chen2☯, Rainer SchnellID

2☯

1 School of Business Informatics and Mathematics, University of Mannheim, Mannheim, Baden-
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Abstract

Linking several databases containing information on the same person is an essential step of

many data workflows. Due to the potential sensitivity of the data, the identity of the persons

should be kept private. Privacy-Preserving Record-Linkage (PPRL) techniques have been

developed to link persons despite errors in the identifiers used to link the databases without

violating their privacy. The basic approach is to use encoded quasi-identifiers instead of

plain quasi-identifiers for making the linkage decision. Ideally, the encoded quasi-identifiers

should prevent re-identification but still allow for a good linkage quality. While several PPRL

techniques have been proposed so far, Bloom filter-based PPRL schemes (BF-PPRL) are

among the most popular due to their scalability. However, a recently proposed attack on

BF-PPRL based on graph similarities seems to allow individuals’ re-identification from

encoded quasi-identifiers. Therefore, the graph matching attack is widely considered a seri-

ous threat to many PPRL-approaches and leads to the situation that BF-PPRL schemes are

rejected as being insecure. In this work, we argue that this view is not fully justified. We

show by experiments that the success of graph matching attacks requires a high overlap

between encoded and plain records used for the attack. As soon as this condition is not ful-

filled, the success rate sharply decreases and renders the attacks hardly effective. This nec-

essary condition does severely limit the applicability of these attacks in practice and also

allows for simple but effective countermeasures.

Introduction

For many research problems, linking records on the same person from different databases is

required [1]. An example would be the linkage of health information from different hospitals

and death registries. If no unique personal identification number is available in all databases

involved in the linkage, error-prone quasi-identifiers such as names, dates of birth, or

addresses have to be used to identify a person.
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However, records may contain sensitive information; therefore, the quasi-identifiers used

for linkage should not be revealed to other persons, including the owners of the other data-

bases. Privacy-preserving techniques are becoming more and more important in many real-

world applications. Private cloud services and telecare medical information system(TMIS) are

two examples where users’ privacy is considered as a vital aspect when designing such systems

[2, 3].

Privacy-preserving record linkage (PPRL) is the research area driven by the need of linking

sensitive data while not revealing the quasi-identifiers of the persons in the databases. These

rely on shifting the linkage process from plain (quasi-)identifiers to encoded (quasi-)

identifiers.

The past decade has seen a sharp increase in research on PPRL methods. PPRL techniques

are usually classified as either secure multi-party computation (SMC) based or perturbation

based [4]. SMC based techniques are provably secure and accurate but impose high communi-

cation and computation costs. Therefore perturbation based techniques are mostly considered

better suited for real-world applications.

Due to the efficiency, Bloom filter based PPRL schemes (BF-PPRL) are among the most

popular perturbation based PPRL techniques and have been used in practice [5, 6]. They

deploy an encoding technique that derives a kind of fingerprint of a set such that set member-

ship can be tested for given elements (up to some probability). In a nutshell, a BF-PPRL first

expresses the quasi-identifiers as a set and then computes its Bloom filter.

However, researchers have shown that it can be attacked by different approaches. The most

successful attacks so far are pattern mining attacks [7] and graph matching attacks [8]. While

there exist several ideas for protecting against pattern mining attacks [9, 10], no countermea-

sures are known for graph matching attacks. Hence, these attacks are commonly considered to

be a serious threat to PPRL.

The idea of using graph matching for attacks on BF-PPRL was proposed in [11], which

showed that encoded names could be re-identified accurately under the assumption of com-

plete knowledge of how a string is encoded. In the same year, [12] presented another attack on

a different encoding (keyed-hash message authentication code, HMAC) scheme using sub-

graph matching. The attack was targeted on the PPRL methods used by the Office of National

Statistics in the UK (ONS).

In [8], the authors reported the results of graph matching attacks on different databases. In

the experimental evaluation of the attacks, almost all encoded records were correctly identi-

fied. However, their experiments considered a setting where an attacker has access to the

encoded database and the corresponding plaintext database. Hence, one could say that the

attack boiled down to linking these records of two copies of the same database—one given in

plaintext, the other being encoded. Even though one can assume that in practice an attacker

may have access to a plaintext database (for instance a town registry) that is related to the

encoded database, most likely it will not be identical (in the sense of what individuals are

stored). In most settings, the population covered by the encoded database of interest (for

example, a medical registry) will not be the same population covered by the available plaintext

database (for example, an insurance database). In the best case, an attacker may hope that the

population of the encoded database is a subset of the population covered by the plaintext data-

base. In general, even this may not be true. Although the intersection of their sets of records

might be substantial, their set of different records, i.e., records that appear in one database

only, will not be empty.

In this paper, the effect of the size of the overlap between the databases used for the attack

on the attack’s success is systematically studied. We show that with decreasing overlap, the suc-

cess probability sharply decreases. Furthermore, we discuss one method to harden PPRL

PLOS ONE On the effectiveness of graph matching attacks against privacy-preserving record linkage

PLOS ONE | https://doi.org/10.1371/journal.pone.0267893 September 22, 2022 2 / 15

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0267893


schemes against graph matching attacks. We conclude that while graph matching represents

without doubt an important attack method, it should not be used as an argument against the

application of PPRL techniques in practice.

Privacy-preserving record linkage

Record linkage refers to the task of identifying records in different data sets, containing differ-

ent information on the same individual. Being already a challenge by itself, the situation

becomes even more challenging when privacy regulations need to be respected. That is, such

regulations usually forbid exposing records of data sets to other parties.

Privacy-Preserving Record Linkage (PPRL) schemes aim to link records of individuals

from different databases such that a re-identification of the individuals is not possible for the

linking party. The process is initiated by a data analyst C, who aims to conduct an analysis of

certain features of individuals. To this end, it intends to involve (data of) records stored in

some external databases, e.g., the database of patients of a hospital. For privacy reasons, it is

not acceptable to send the full records to C as this would allow for direct identification of the

individuals. Therefore, one assumes that records can be divided into two parts: linkage data

and microdata. Linkage data refers to identifiers such as name, birthday, etc., i.e., information

that may be used to re-identify individuals.

To keep the following description simple, we focus on the case of two databases (the exten-

sion of the description to�3 databases is straightforward). That is, we consider two database

holders A and B. Each database holder is in possession of a data set of records. Here, we

assume that any record rec can be represented as

rec ¼ ðID; l;mÞ ð1Þ

where ID is some randomly chosen, unique identifier, λ is the linkage data such as name that

will be used for linking records, and μ is the microdata that is relevant for the analysis.

Following the so-called separation principle, we assume a fourth party, the linkage unit L,

who is responsible only for linking the records. In the separation principle, each party in a

linkage protocol does only have access to the data it needs to perform its role in the protocol.

That is, those parties involved in the actual linkage of records (here: L) can only see the quasi-

identifiers, while those involved in the analysis of the linked data (here: C) only obtain micro-

data without direct identifiers. That is, L only gets access (indirectly) to the linkage data while

the data analyst C gets only access to the microdata.

PPRL uses an encoding algorithm that transforms the plain linkage data λ into an encoded

linkage data, referred to as [λ]. Database holder A applies this algorithm to the linkage data of

any record stored in its database and sends the encoded linkage data to the linkage unit L.

That is, given a record recA ¼ ðIDA; lA; mAÞ, the linkage data λA is encoded into [λA] and the

tuple ðIDA; ½lA�Þ is sent to L. In parallel, the tuple ðIDA; mAÞ is sent to the data analyst C. Data-

base owner B proceeds analogously.

Given these tuples, the linkage unit L starts the linkage process by executing the linkage

algorithm on pairs (IDA,[λA]) and (IDB,[λB]). If the algorithm flags the pair as to be linked, the

IDs ðIDA; IDBÞ are sent to C. The data analyst can now lookup in his internal data the entries

ðIDA; mAÞ and ðIDB; mBÞ and can conclude that with high probability, the two sets of microdata

stem from the same individual. The whole process is shown in Fig 1.

The linkage algorithm is based on two similarity functions: sim and sim
�
. sim is the simi-

larity function applied to pairs of linkage data in plaintext and sim
�

on pairs of encoded link-

age data. The record linkage scheme decides that two records ðID; l; mÞ and ðID
0
; l
0
; m0Þ should

be linked if simðl;l
0
Þ is above a certain threshold. Likewise, in a PPRL the linkage process
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suggests that two records should be linked if sim
�
ð½l�; ½l

0
�Þ is sufficiently large. For example,

BF-PPRL has been suggested with Dice similarity for the sim and the Hamming distance for

sim
�
.

PPRL schemes need to be effective, correct, and secure. Effective means that the effort of

encoding and linkage should scale well with the data set sizes.

Correct means that the linkage process executed on the encoded records should come to

the same results (with high probability) as if executed on the plain records. In other words, the

linkage process executed on [λA] and [λB] should suggest that the underlying records recA and

recB should be linked if and only if the underlying plain records recA and recB refer to the same

individual with high probability.

Finally, secure means that it should not be possible to re-identify individuals from the

encoded records. To this end, one assumes that all parties A, B, L, and C are honest-but-curi-
ous. This means that each party faithfully executes the protocols but may analyze the data to

learn information about individuals represented in the data sets that are not under control.

Moreover, one cannot exclude that certain meta-information about the data sets are known,

e.g., that they belong to a specific hospital, the individuals are residents of a certain area, etc.

Fig 1. Privacy-preserving record linkage process.

https://doi.org/10.1371/journal.pone.0267893.g001
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Graph matching attack

A graph matching attack [8] considers a scenario as shown in Fig 2. The attacker has access to

a plaintext database D and an encoded database D�. The attacker’s goal is to identify elements

Fig 2. Graph matching attack description.

https://doi.org/10.1371/journal.pone.0267893.g002
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in D� that can be linked to records in D. As the latter are given in plaintext, this would result

into a re-identification of the individual encoded in D�. Such scenario is motivated by the fact

that quite often, an attacker has some information about a super-set of the records contained

in D�. For example, D� may contain patient records from a hospital while D may be the pub-

licly available phone book.

Going into more technical details, the plaintext database D contains several records rec =

(λ, μ) while D� is a collection of encoded linkage data [λ]. The latter are bitstrings, being the

Bloom filters computed from λ. To simplify the following descriptions, we will write λ 2 D to

express that D contains a record (λ, μ) and likewise [λ] 2 D�. Moreover, as the encoding pro-

cess is usually deterministic (once the parameters are fixed), we will write λ 2 D� to express

that [λ] 2 D�.
For linking λ 2 D and [λ] 2 D�, the attacker exploits the fact that many existing PPRL

schemes use an encoding scheme that preserves the level of similarity. That is, it holds for any

pair of plaintext records (rec, rec0) that simðrec; rec0Þ scales with sim
�
ð½rec�; ½rec0�Þ and vice

versa. Thus, if several records in D are also contained in D� (in encoded form), the relation

between them in terms of similarity should have a similar structure in both databases. For

example, if three records reci = (λi, μi)2D, i = 1, 2, 3, are considered to be similar with respect

to sim, then the encoded records [λ1], [λ2], [λ3] are likewise rather similar with respect to

sim
�
. If a fourth record rec4 = (λ4, μ4) has a low similarity to rec1, rec2, and rec3, then this holds

also for [λ4] with respect to [λ1], [λ2], [λ3], and so on. In a graph matching attack, these infor-

mation are encoded into so-called similarity graphs.

The graph matching attack is composed of four steps, as shown in Fig 3. The concrete work-

ing principle of these steps is not relevant for our analysis. Therefore, we explain the main

ideas for each step only and refer to [8] for a detailed description.

In the first step, two similarity graphs G and G� are constructed—one over D using sim and

one over D� using sim
�
. Recall that a graph is defined by two sets, the set of vertices and the set

of edges where each edge connects two vertices. For the first graph G = (V, E), the set of verti-

ces is defined as V = {λ|λ 2 D}. Moreover, edges are defined for any pairs λ, λ0 2 D with λ 6¼ λ0

and simðl;l
0
Þ being above some threshold value τ. That is, a record is connected to other rec-

ords (within G) only if they are sufficiently similar. Moreover, any edge (λ, λ0)2E is labelled

with the similarity score simðl;l
0
Þ of the vertices it connects. G� = (V�, E�) is defined

analogously.

Recall that the basic idea is that if some [λ0] 2 V� is the encoding of some λ 2 V, their levels

of similarity to neighbouring nodes should have a similar structure. The task of step two in the

attack is to represent the considered structure of the neighbourhood by a feature vector. The

considered features of the node are divided into three categories, namely node based, edge

based, and structural based. Naturally, the list of features is different for the vertices in G and

G�. Table 1 lists a selection of features from which the feature vector for each node is gener-

ated. One example is the ‘Length’ feature. The ‘Length’ of a node λ in G is the number of q-

grams in λ, while the ‘Length’ of a node [λ] in G� is the number of 1-bits in [λ]. The ‘Max. Sim’

of λ is the maximum value of the edges connected to λ. We refer to [8] for a full, detailed list of

the considered features.

A special case are nodes that are connected to only few other nodes (or no nodes at all,

being so-called singletons). For these, the features are not sufficiently characteristic to be help-

ful for the attack. Therefore, these kind of nodes are discarded and not considered anymore in

the next steps.

The aim for steps three and four is to match similar structures from both graphs. To accel-

erate the attack, in step three the nodes are divided into smaller group so that the search for
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Fig 3. Flowchart of graph matching attack.

https://doi.org/10.1371/journal.pone.0267893.g003
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matches can be restricted to those. Finally, step four applies some graph matching algorithm to

match vertices from the two graphs. Examples of the algorithms are symmetric highest match-

ing, Hungarian matching, and stable marriage algorithms. Symmetric highest matching is to

choose edges with highest similarities for both of the nodes. Hungarian algorithm aims for

finding the minimum cost based assignments for a given connected component. Stable mar-

riage algorithm is to find the most stable edges throughout the graph.

Experimental evaluation of graph matching attacks

Overlap rate

In [8], the authors showed that graph matching attacks can be highly effective under the

assumption that for any true matches, the corresponding nodes in G and G�, respectively, are

the center of similar sub-graphs. True matches are record pairs from D×D� where the linkage

data are sufficiently similar (and hence where the records probably refer to the same person).

We refer by MatchesðD;D�Þ to the set of true matches. Note that true matches are the only

pairs of records that should/can be linked. Thus, the larger the size of MatchesðD;D�Þ in com-

parison to the size of the databases, the higher the fraction of records that are re-identified.

To this end, the authors defined the notion of the overlap rate:

OverlapRate ¼
2 � jMatchesðD;D�Þj

jD�j þ jDj
ð2Þ

The overlap rate ranges from 0% to 100%, the latter being the case if D equals D�. In [8], it was

demonstrated that graph matching attacks are very powerful if the overlap rate is high, i.e.,

very close to 100%. However, as this condition is rarely given in practice, it raises the following

question: How do graph matching attacks perform if the overlap rate is not close to 100%?

To address this question, we conduct a number of experiments to evaluate the attack for a

varying set of overlap rates. The parameter choices will be discussed below. Moreover, for each

attack different parameter settings (about 80 in total) of different matching methods are tested.

For each combination, the experiment is repeated five times and the maximum accuracy is

reported.

Here, the accuracy is determined as follows follows. For each parameter setting, a bi-partite

graph GB = (V, V�, EB) is generated. This means that each edge connects a node from V with a

node from V�. Recall that the nodes in V and V� represent records in D and D�, respectively.

The edges are labelled with a similarity confidence of the attack algorithm for each pair of rec-

ords. The higher this value, the higher the probability that the considered pair represents a true

match. Thus, a natural metric for the level of success is to how often high similarity confidence

values refer to true matches. To this end, a list LB of edges ordered by decreasing similarity

confidence is considered. In other words, the first edge in LB connects the pairs of records

from D×D� where the attack algorithm sees the highest probability that these should be linked,

and so on. As the ground truth is known in our experiments, it allows us to check how many

Table 1. Features for nodes (CC: Connected Component; Avg: Average; Std: Standard Deviation).

Node based Edge based Structural based

Frequency Degree CC Degree

Length Max. Sim CC Density

Min. Sim Betweenness Centrality

Avg. Sim Degree Centrality

Std. Sim . . .

https://doi.org/10.1371/journal.pone.0267893.t001
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of the pairs with maximum similarity confidence are indeed true matches, referring to a cor-

rect re-identification. For instance, assume for one attack that 8 records are correctly re-identi-

fied for the top 10 encoded records. Then the accuracy of this attack for top-10 re-

identification is defined as 80%. The evaluation process of the attack is shown in Fig 4.

Dataset

The dataset to be used is a synthetic dataset produced for record-linkage training by Eurostat

and is therefore denoted as Eurostat dataset (available at: https://ec.europa.eu/eurostat/cros/

content/job-training_en). It includes names, birthdays, addresses, and other attributes for

25,343 simulated people. For the experiments, the encoded database and the plaintext database

are subsets of the Eurostat dataset with a specified overlap rate.

Environment

The experiments of the attack are implemented using the Python code from [8]. Python 3.8.5

is used on an Ubuntu 20.04 server with 64-bit Intel Core i7-10750H 2.6GHz CPUs and 32

GBytes of memory. The initial attack by [8] was using Python 2.7 and running on a server with

64-bit Xeon 2.1 GHz 16-Core CPU, 512 GBytes of memory, and Ubuntu 18.04.

Simulation parameters and outcomes

In the experiments, three different scenarios are simulated:

• In the first scenario, a random sample of 4000 records from the Eurostat database is used for

encoding the resulting D�. The plaintext database D consists of the identical 4000 records

and an additional number of randomly selected other records from Eurostat.

• In the second scenario, a sample of 4000 records according to their geographical addresses is

chosen and encoded. The sample is a complete enumeration of all records within a geo-

graphical neighbourhood. This case would reflect the situation of a local registry, for exam-

ple, a local health care provider. The attack database consists of the identical records and—

Fig 4. Result and evaluation of the attack. Each pair ðvj; v�j Þ refers to same individual in the example.

https://doi.org/10.1371/journal.pone.0267893.g004
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with decreasing overlap—an increase in the number of records not contained in the 4000

records but in their geographical proximity.

• In the third scenario, two cases are considered: either the encoded database is a subset of the

plaintext database or the other way around. Slightly abusing the notation, the former case is

denoted as D�⊊D and the latter case is denoted as D�⊋D. The larger database is also sampled

randomly. This is motivated by the fact that even if the overlap rate is not high, an attacker

could in principle re-identify all records contained in the smaller database. So investigating

these cases may help to understand whether a low overlap rate automatically makes the

attack ineffective.

The number of sampled records is chosen as it’s comparable to the original graph matching

attack paper [8] and it’s common in health and medical experimental settings. For the encod-

ing, bigrams with random hashing [13] and s = 15 hash functions are used. The linkage datais

mapped to binary vectors with CLKs (Cryptographic Long-term Keys, [13]). The length of the

bit array is n = 1000. For the comparison of plaintext records, we use the Dice coefficient. The

attributes used as linkage data are First Name, Last Name, and Street. All parameter choices

are according to [8].

As outcome measure, we used top-10, top-100, top-500 and top-1000 re-identifications. For

example, a ‘top-10’ re-identification is the correspondence between one of the top matched 10

record pairs (from the encoded database and the plaintext database) to a correct pairing. For

instance, there is a record pair (‘ls451gn025001’, ‘patrick’, ‘morrison’, ‘25 woodlands road’)

and (‘ls451gn025001’, ‘patrick’, ‘morrison’, ‘25 woodlands road’) within the top 10 most simi-

lar pairs. There could also be a record pair within the top 10 similar pairs, but with different

linkage keys. For instance, (‘isabelle’,’chapman’,’12 park road’) and (‘cameron’,‘robins’,‘20

park road’) is an incorrect pairing.

Results

First scenario: 4000 randomly selected records. The results of the experiments for this

scenario are shown in Fig 5. Each bar shows the maximum accuracy of five replications of the

experimental parameter settings, depending on the overlap rate. In total, it’s the maximum

accuracy of 400 outcomes for each parameter settings.

As one can see, the attack achieves perfect accuracy. for the graph-matching when the over-

lap rate is 100%. However, with decreasing overlap rate between 100% and 90%, all outcome

measures decreases sharply. When the overlap falls below 90%, we observe no correct re-iden-

tifications anymore.

Moreover, we want to emphasise that in our experiments, maximum accuracy was not

achieved by a single setting, but by a search given ground truth. Since so far no strategy is

known for choosing at least acceptable settings for an attack, it seems doubtful if reasonable

accuracy can be achieved by an attacker in practice.

Second scenario: 4000 non-randomly selected records. The results of the experiments

for this scenario are shown in Fig 6. Compared with the first scenario, the feature is quite simi-

lar. However, there are some differences. For 98% overlap (which is the second bar from the

left), the accuracy of top-10 and top-100 are nearly the same for both scenarios. For top-500

and top-1000 re-identifications, the accuracy remains high for non-randomly selected records

but not for randomly selected records. Even for the experiment with 88% overlap, the attack

still succeeds to some extent for the non-random records while the attack completely fails in

the case of random records.
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We conjecture that the reason is that people living at the same address tend to be family

members. Hence their last names, as well as addresses and zip-codes, are more similar. Thus

both graphs will have more edges that have high similarities than graphs using random rec-

ords. Therefore, the features of the nodes will be more distinguishable, and the bi-partite graph

matching task will be easier.

Third scenario: Proper subsets. As explained, in the third scenario we investigate the two

cases D�⊊D and D�⊋D. The results of high overlap rate has already been exploited in previous

scenarios, therefore we only consider the case where D�, D has a small overlap rate. The results

in Table 2 shows that the graph-matching attack never succeeds in such cases.

Discussion

Although the graph matching [8] is a powerful attack on PPRL schemes, at least for BF-PPRL

the accuracy of the attack decreases with decreasing overlap rate. When the overlap rate is

close to 100%, the attack results in highly accurate re-identifications. For all scenarios and cri-

teria considered, the accuracy of re-identification decreases sharply when the overlap rate gets

smaller.

Fig 5. Accuracy of re-identification depending on the overlap for randomly selected records.

https://doi.org/10.1371/journal.pone.0267893.g005
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This seems to be inevitable. In spite of the fact that all information in the encoded database

is contained in the plaintext database in our experimental settings, the differences of the fea-

ture matrices increase as the overlap rate between the two databases decreases. Thus the diffi-

culty of the bi-partite graph matching problem is amplified and the ability to correctly re-

identify records is diminished.

Although we can not assert with mathematical certainty that the attack will be unsuccessful

for all lower overlap rates, the accuracy will approach random agreement of record-pairs with

decreasing overlap rates.

Fig 6. Accuracy of re-identification depending on the overlap for non-randomly selected records.

https://doi.org/10.1371/journal.pone.0267893.g006

Table 2. Accuracy of re-identification for databases which form proper subsets.

|D�| |D| OverlapRate t = 10 t = 100 t = 500 t = 1000

D�⊊D 5,000 10,000 66.7% 0 0 0 0

D�⊊D 3,000 10,000 46.2% 0 0 0 0

D�⊊D 1,000 10,000 18.2% 0 0 0 0

D⊊D� 10,000 5,000 66.7% 0 0 0 0

D⊊D� 10,000 3,000 46.2% 0 0 0 0

D⊊D� 10,000 1,000 18.2% 0 0 0 0

https://doi.org/10.1371/journal.pone.0267893.t002
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Preventing the attack by decreasing overlap using fake record insertion

As previously shown, the overlap rate is essential for an evaluation of the success probability of

the attack. While we claim that an overlap rate close to 100% is unlikely to happen in practice,

such cases may exist. Given the high effectivity of graph matching attacks in such cases, there

is the need for appropriate countermeasures.

Recall that our experiments indicate that when the overlap rate falls below 90%, the success

probability of the attack quickly tends to zero. This even holds for cases where one database is

a proper subset of the other. Such a situation can be achieved by the insertion of fake records,

i.e., records that do not exist in the actual database. Note that fake records cannot be detected

by an attacker if these have been inserted into the encoded database.

More precisely, assume the case that the plaintext database D and the encoded database D�

which are equal, meaning an overlap rate of 100%. Before the encoded database is handed out,

α�|D�| fake records are inserted into the encoded database D, increasing its cardinality to (1 +

α)|D�|. A simple calculation shows that the overlap rate between the encoded database with

the fake records and plaintext database is at most

OverlapRate ¼
1

1þ a
:

We study the effect of inserting fake records on the graph matching attack by comparing its

accuracy before and after the insertion of fake records. In this experiment, the overlap rate of

two databases is 100% before insertion and 80% after insertion.

Fig 7 shows the effect of inserting fake records into the encoded database and making the

overlap rate OverlapRate = 80%, i.e. setting α = 0.25. Regardless whether the top 10 or the top

1000 records are used for comparison, the success rate drops from 100% to 0% after the inser-

tion of α = 25% fake records. Therefore, we consider fake records as an efficient countermea-

sure for preventing graph-matching attacks. Note that in [14], the authors likewise suggested

the use of fake records. However, their goal was to modify the frequency distribution to thwart

frequency attacks. Our experiments show the effectivity of this approach against a different

type of attack.

Conclusion

We conducted a study on the accuracy of the graph matching attack on privacy-preserving

record linkage (PPRL). Although the graph matching attack can re-identify sensitive record

values in an encoded database using a plaintext database, specific conditions rarely given in

practice are necessary for a successful attack. The re-identification is almost perfect when the

plaintext database has a high overlap with the encoded database. However, the accuracy of the

attack decreases sharply when the overlap rate of the encoded database and plaintext database

decreases. The overlap can be reduced by using fake records to make the graph matching

attack difficult in practice. Therefore, the theoretical existence of the graph matching attacks

do not prohibit the application of BF-PPRL under jurisdictions such as the European Data

Protection Regulation, requiring not absolute anonymity for research databases but demands

an irrational effort for already illegal re-identification attempts [1].

We see several directions for possible future work. For instance, the experiments reported

in this paper focus on BF-PPRL because they are widely used in practice. It could be interesting

to extend the studies to other PPRL methods. Moreover, it remains open to conduct theoretical

analysis on the relation between the accuracy of graph matching attacks and the overlap rate. If

this relation would be better understood, the impact of the attack in practice could be better

evaluated and more effective countermeasures could be designed.
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