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Editorial 

Towards spatial representations of dose distributions to predict risk of normal tissue morbidity 
after radiotherapy     

Design of clinical trials and definition of new standards of care in 
radiotherapy have historically been driven by the balance between 
doses delivered to the target volume against doses delivered to the 
healthy organs surrounding the tumour. State-of-the-art high-precision 
radiotherapy, together with other advances in cancer therapy, have led 
to improved clinical outcomes [1]. 

In the setting of conventionally fractionated radiotherapy, dose 
distributions within target volumes are reasonably uniform [2]. In 
contrast, normal tissue dose distributions are highly non-uniform and 
their shape can be tailored while still achieving planning goals. These 
planning goals are typically formulated in terms of dose-volume con
straints which drive optimization towards treatment plans deemed best 
for each patient. Visual inspection of how isodose lines are shaped 
around target volumes and into normal tissues is an integral part of plan 
checking and approval. Most radiotherapy plan optimization, evalua
tion and outcome analysis have been based on summarizing 3D dose 
distributions into dose-volume histograms (DVH). This approach has 
been successfully used to describe and utilize dose-volume-response 
relationships [3]. 

Limitations of DVH-based outcome assessments are well known. The 
DVH strips away geometry information, i.e. every region of normal 
tissue is seen as equally important, and no cross-talk between regions is 
considered. Clinical data support existence of regional effects, although 
explanations for these effects remain elusive [4,5]. Commonly used 
rationale to justify more sophisticated approaches relies on one or more 
of the following, and to a certain extent overlapping, arguments: 1) 
functional burden is not uniformly distributed in normal tissues; 2) 
stem cells capable of rescuing normal tissue function are primarily 
concentrated in particular parts of normal tissue; 3) organs which are 
contoured as a whole are in fact anatomically/geometrically sub- 
structured, e.g., lobes in lung or tracts in brain, and risk of morbidity 
does depend on which substructures receive dose; 4) parts of an organ 
are differentially sensitive to radiation; 5) morbidity is related to ra
diation-induced damage to organs other than ones for which DVHs are 
evaluated; 6) spatial distribution matters, e.g. small hot spots spread 
out on the rectal surface might have different consequences compared 
to larger, spatially clustered patterns. 

Dose-volume-response relationships that also incorporate the geo
metrical information of dose distributions have therefore received 
considerable interest. The first studies including geometrical informa
tion in normal tissue complication probability (NTCP) models utilized 
dose surface maps (DSMs), and were focused on hollow organs, in 
particular to study bladder and rectum dose-volume-response re
lationships following radiotherapy for prostate cancer [6–8]. Therefore, 
utilization of DSMs has helped to demonstrate that the dose delivered to 

the caudal part together with shape and extension of the hot spots over 
rectal wall are related to an exacerbation of morbidity [9–13]. Simi
larly, doses delivered to the trigone area and the urethra were found to 
play a major role in the overall worsening of genito-urinary symptoms 
following radiotherapy for prostate cancer [14–18]. Overall, DSMs are 
often used in an empirical approach, exploiting significant differences 
in dose distribution patterns between patients with and without mor
bidity to identify regions which might correspond to substructures 
governing the dose response. In the search for methods to include 
geometrical information into NTCP models, a more theoretical or de
terministic approach can also be considered. A deterministic approach 
hypothesizes that an organ/tissue is composed by subunits with dif
ferent radiosensitivity, with one (or more) playing a major role in the 
manifestation of morbidity. Therefore, damage to an identified sub
structure(s) may trigger manifestation of the observed morbidity. 

This issue of the journal presents the first study describing the im
pact of dose to heart substructures on the overall survival rate [19]. 
Cardiac disease associated with radiation has been observed in cancer 
patients treated to thoracic and abdominal regions, i.e. breast cancer 
and lymphoma patients, because they are typically long-term survivors, 
providing most of the outcome data. The QUANTEC report on the heart 
provided dose-volume guidelines for two endpoints: pericarditis and 
long-term cardiac mortality [5]. For the former, mean dose  <  26 Gy 
and V30Gy  <  46% were suggested. Cardiac mortality, in contrast to 
pericarditis, appears to exhibit a weak volume effect. This observation 
has led to substantial changes in how radiotherapy is delivered to left- 
sided breast cancer patients. Heart blocks including the “no heart in 
beams-eye-view” policies have been adopted, deep inspiration breath 
hold and treating prone techniques have also been used to spare the 
heart. The QUANTEC heart paper proposed a V25Gy  <  10% constraint 
to control the “tail” of the DVH [5], however, this constraint has been 
later shown to not fully protect against the probability of cardiac 
mortality  <  1% in breast cancer patients [20]. This also underlines 
another deficiency in using DVH constraints. Various endpoints exhibit 
different dose-volume response. Consequently optimizing, e.g. mean 
dose, will reduce probability of pericarditis but is not sufficient to 
control the risk of cardiac mortality. Identifying an endpoint of the 
greatest concern or with the tightest constraints is one possible way but 
it may become too restrictive. 

For the heart also the initial definition and delineation of the organ 
at risk is challenging. Specifically, the whole heart can be contoured, 
while also the pericardium (often defined as a “shell” expansion of the 
heart contour), the left ventricle, coronary vessels or specifically the left 
anterior descending coronary artery are used in different protocols and 
institutions [5]. Different endpoints have been connected to anatomical 
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features and functionality, for example the pericardium is likely ap
propriate for pericardial effusion and the left anterior descending artery 
for ischemic heart disease [20]. However, dose-volume parameters for 
different structures behave in a correlated manner which complicates 
search for the “guilty” party, and a full mechanistic understanding of 
how morbidity develops is lacking. 

Searching for regional effects may provide us with a guide to se
lective sparing of either structures, or geometrically defined sections of 
the organ. Because multiple anatomically/geometrically defined struc
tures/regions must be analysed for different endpoints, automation 
might be required. Auto-contouring not only allows us to tackle a la
borious task of delineating structures which are not routinely deli
neated in clinical practice, it may also improve consistency [21]. Ad
ditionally, auto-contouring tools included in retrospective analysis will 
pave the way to interrogating outcomes data and will further promote 
prospective use for selective regional sparing [22]. 

An overall aim of dose-surface based outcome studies is to identify 
the substructures of the organ that play a key role in dose–response 
relationships, and from there provide robust metrics to be used in plan 
optimisation. Most studies in this field have applied a voxel-wise ana
lysis to quantify significant dose differences [10–15]. Voxel-based data 
mining of radiotherapy doses relies on the comparison of delivered dose 
distributions, aggregated over subgroups of patients with and without 
the morbidity endpoint of interest. Such aggregation requires a 
common frame of reference, which is chosen based on the anatomy of 
the organ and the nature of the endpoint of interest. For hollow organs 
simplified spherical or cylindrical geometries are common, allowing for 
an easy anatomical interpretation of results. In case such simplified 
geometries are unable to capture the relevant effects, more sophisti
cated methods based on validated deformable registration techniques 
may offer increased statistical power [15]. As these typically have much 
larger degrees of freedom, careful validations should be performed to 
prevent overfitting. A next challenge is the estimation of the actually 
delivered dose to tissues in the chosen frame of reference; often only 
treatment planning geometries and dose distributions are available, 
which in the case of a highly mobile organ may only offer a rough 
estimate. Leveraging treatment room imaging modalities (e.g. cone- 
beam computed tomography or magnetic resonance imaging guided 
systems) may improve these estimates and hence strengthen the sta
tistical associations between doses and the morbidity endpoints  
[9,12,23,24]. 

Estimation of the significance of an observed difference in popula
tion average doses over the outcome subgroups (controlling the mul
tiple testing issues introduced by the large numbers of voxels analysed) 
is generally established using a permutation-based approach, randomly 
re-shuffling patients between the morbidity and non-morbidity sub
groups [25]. The associated p-value indicates per voxel significant dose 
differences. One generally (ad-hoc) selects a seemingly relevant 
threshold of the test statistic (e.g. local dose difference divided by 
standard deviation) and selects voxels in the observation which exceed 
this value. It should be noted that all subsequent (statistical) modelling 
using these selected voxels should be interpreted with care; even for a 
subset of voxels which have a large dose difference merely by chance, 
subsequent modelling would lead to erroneous, but seemingly sig
nificant dose–effect relations and survival analyses. 

Attempts can be made to interpret the observed dose difference 
patterns in terms of an underlying anatomical or biological cause; a 
crucial, and likely the most difficult step of the dose data mining 
methodology. Suppose one would analyse a group of prostate cancer 
patients who had all been “ideally” irradiated, so with an optimal 
compromise between tumour control probability and risk of morbidity, 
and one would construct rectum morbidity dose difference maps. 
Patients with less favourable anatomy would have received high dose to 
a larger fraction of the rectum wall, leading to higher morbidity rates, 
and dose distributions might appear slightly shifted compared to those 
from patients with more favourable anatomy. These dose difference 

regions illustrate the well-known fact that dose causes morbidity, and 
merely pin-point the locations where dose variations exist due to pa
tient specific anatomies and limitations of the applied external beam 
radiotherapy modality [11,14,15]. Misinterpretation of these locations 
as dose avoidance regions, e.g. loading these patterns into a treatment 
planning system to steer dose elsewhere, could deteriorate the (already 
optimal) treatment plans and lead to less favourable clinical outcomes. 
Rather, observed patterns should serve as the basis for an informed 
hypothesis of the mechanisms underlying the clinical manifestation of 
morbidity; e.g. in the way these patterns align with potentially critical 
substructures of the organ. Next, prospective tests should be devised to 
validate these findings before being incorporated into NTCP models 
which may then improve radiotherapy for future patients. 

Further attention should be paid to the possible impact of differ
ences between planned and delivered doses, mainly driven by organ 
motion. In many cases statistically significant local dose effects are 
found in sub-regions where the positioning of organs is more stable  
[14,26]. This enhances the chance of finding statistically significant 
differences in the doses between patients with and without morbidity 
because in those more stable sub-regions the planned dose is similar to 
the delivered dose. An explicative situation is given by the non-isotropic 
motion of the bladder due to its variable filling, with the base being 
relatively stable while the cranial portion showing large variations. This 
fact entails lower systematic errors (planned vs. delivered dose) in the 
high dose region which corresponds to the bladder base [26]. Results on 
local dose effects for the bladder base/trigone could thus also be due to 
the higher reliability of the investigated features (doses at the pixel 
level) in the motion-stable region, with doses to the bladder dome 
coming out as not significant due to the limited correspondence be
tween planned and delivered doses. Systematic studies on organ motion 
and on differences between planned and delivered dose could help in 
discriminating between biologically relevant local dose effects and ef
fects driven by the inaccurate description of delivered doses in some 
regions [27,28]. 

DSMs might increase predictive power of normal tissue dose re
sponse relationships. New findings from voxel-based data mining 
should be accompanied by studies on organ motion, on estimation of 
differences between planned and delivered dose and on the possible 
biological role of the regions identified as significantly associated with 
an increased risk of radiation-induced morbidity. Finally, gen
eralisability studied on a suitable number of independent cohorts will 
pave the way to clinical applications of the results. 
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