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A deterministic model with an optimal control framework is formulated to analyse the cost-
effectiveness of intervention measures used to control Fasciola hepatica in cattle populations. 
Using the Volterra-Lyapunov stability method, it is noted that the model is globally stable at the 
endemic equilibrium point. The Pontryagin maximum principle has been applied to determine 
optimal disease control conditions, including strategies such as pasture management, treatment 
of infected cattle, and molluscicide use. Numerical simulations for the optimum problem show 
that double and triple controls have significant effects on reducing disease transmission. The 
results indicate that for optimal impact, the molluscicide control parameter should always be 
at its highest possible value. The incremental cost-effectiveness ratio (ICER) analysis of strategies 
to reduce the disease shows that pasture management combined with molluscicide use will be the 
most effective and least expensive option. The molluscicide intervention rate should always be 
at its maximum value for better control of the disease. Educational programs for proper pasture 
management conditions and sufficient use of molluscicides can significantly reduce the spread of 
Fasciola hepatica among cattle and humans.

1. Introduction

Fascioliasis infections are caused by parasitic flatworms known as liver flukes, specifically, Fasciola hepatica and Fasciola gigantic 
[1–4]. These parasites primarily assault the liver of a wide variety of animals, particularly domesticated cattle, sheep, goats, and 
other ruminants. It is a worldwide disease except in places like Antarctica. However, it often hits very high prevalence in certain wet 
and marshy areas due to the fact that such conditions favour the survival of these parasites [5–7]. While Fasciola hepatica prevails in 
temperate regions of Europe, the Americas, and Oceania, it usually infects cattle and sheep, although it may occur in other domestic 
and wild mammals [8,9].

Fasciola hepatica is a foodborne zoonosis transmitted via contaminated water and food; its presence requires that the lymnaeid 
snails as intermediate hosts for the development [2,10]. The infection is caused by ingestion of the metacercaria stage of the parasite. 
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It has a complex life cycle involving snails and mammals, which causes extensive damage to the liver, and the symptoms include 
hepatomegaly, abdominal pain, high fever, anaemia, jaundice, and loss of body weight. They can eventually lead to hepatic failure 
[6]. The life cycle of the liver fluke involves freshwater snails of the genera Galba and Lymnaea as intermediate hosts. Eggs excreted 
by adult flukes in mammalian hosts contaminate the water bodies and hatch into miracidia larvae. The larvae penetrate certain snails 
and follow several developmental stages [11]. After leaving the snails, they become infective metacercariae, which grazing animals 
ingest through contaminated water or vegetation [12]. The clinical signs and incubation period vary among host species in several 
factors [13]. However, the incubation period for fascioliasis in humans and cattle usually ranges 2 − 4 months [11].

Differential diagnoses for bovine fascioliasis include clinical signs, grazing history and seasonal patterns, faecal analysis, post-
mortem examinations and detection of the flukes in the liver [14,15]. Diagnosis by these methods is entirely accurate, hence the 
selection of appropriate treatment and control measures to lower the disease’s impact on the concerned livestock. Avoidance of 
contaminated water and plants or parts thereof, deworming, management of pastures, snail control, and sanitation are all measures 
for prevention. The drug of choice for treatment is triclabendazole, but there is no vaccine against this disease [16]. Intermediate 
host populations must be reduced or treated with anthelmintics for effective control [15,17].

Fasciola hepatica is increasingly becoming a significant concern to animal and public health, having enormous economic and 
medical impacts. Globally, it affects 600-700 million animals and threatens 180 million people [18], an estimated cost of over $3.2 
billion annually in the lost productivity of animals [19]. The disease reduces milk and meat production by 8% to 80% [20,21]. Such 
effective control, early detection, and treatment are essential. Modelling is critical to understanding and managing its spread; various 
models were developed to simulate the transmission and control measures [7,22–27].

A nine-dimensional Fasciola mathematical model was studied by M. Diaby et al. [7]. Their results showed that quarantining 
or treatment alone has little to do with controlling this disease, whereas these two measures could control the further spread of 
the disease. Turner et al. [23] discussed the partial protection of vaccinations against Fasciola hepatica; this study mainly included 
their impact on the life cycle and transmission dynamics of the parasite. In his work, Oluwatayo [28] applied the optimal control 
analysis to preventive measures, hygiene practices, and environmental sanitation that are time-dependent. It was noticed that the 
combined implementation of these strategies was far more effective in reducing the prevalence of diseases in domestic animals, hence 
emphasizing the need to apply the above-stated strategies inclusively.

Previous studies focused on the dynamics of the disease. This current research is designed to analyse a deterministic mathematical 
model with an optimal control framework, considering strategies such as pasture management, treatment of infected cattle, and 
molluscicide use to derive new insights into the transmission and control of the Fasciola hepatica epidemic. This study will investigate 
the cost-effectiveness and efficacy of intervention strategies in the spread of Fasciola hepatica.

2. Model formulation and description

We develop a model describing the transmission dynamics of Fasciola hepatica. It considers various life stages of the parasite, the 
free-living larval stage and intermediate snail host, together with epidemiological conditions in cattle. It provides an overview of the 
different phases in the life cycle of the disease. First, we consider the cattle population to consist of three subpopulations: susceptible, 
infected, and treated, denoted by 𝑆𝐶 (𝑡), 𝐼𝐶 (𝑡), and 𝑇𝐶 (𝑡), respectively. Also, there are two classes of snail populations: susceptible 
snails, denoted by 𝑆𝑆 (𝑡), and infected snails, denoted by 𝐼𝑆 (𝑡). Lastly, the fasciola larvae population is categorized as miracidium and 
metacercariae, 𝑀(𝑡) and 𝑃 (𝑡), respectively. The model derives from the following assumptions:

(1) There is no direct disease transmission between the cattle and snail populations.
(2) Climate change does not impact the transmission of the disease.
(3) Treatment leads to recovery but does not provide immunity against reinfection.
(4) The population dynamics of hosts are unaffected by the number of miracidia or metacercariae entering them.
(5) Metacercariae are uniformly distributed across the entire pasture.
(6) Treated cattle are considered non-infectious, meaning they do not contribute to the production of miracidia eggs.

The movement of the cattle population between different classes occurs as their health status changes and the disease progresses. 
Susceptible cattle are infected when they ingest metacercariae, which can be either encysted on vegetation or freely present in water. 
Further, susceptible cattle have the potential to contract the disease but have not yet been infected. Infected cattle are those that have 
consumed metacercariae. Treated cattle encompass those that have undergone treatment for the disease. Here are some additional 
details of the transition of the disease:

1. Susceptible to infected transition: Susceptible cattle progress to the infected state at a rate of 𝛾𝑐 . This transition occurs when the 
susceptible cattle consume metacercariae, which is the infectious stage of the parasite found on the pasture.

2. Treatment and recovery: Infected cattle undergo treatment at a rate of 𝛿𝑐 . The treatment aims to combat the infection. Treated 
cattle then recover from the disease at a rate of 𝜆, indicating their transition back to a susceptible state.

3. Recruitment rates: New cattle and snails are added to the populations through birth rates, Λ𝑐 and Λ𝑐 , respectively.
4. Natural death rate: All cattle compartments: susceptible, infected, and treated cattle experience a natural death rate denoted by 
2

𝜇𝑐 . This accounts for the regular mortality within the cattle population.



Heliyon 10 (2024) e38540D.T. Yihunie, J.Y.T. Mugisha, D.M. Gebru et al.

Fig. 1. Transfer diagram for Fasciola hepatica disease.

Table 1

The values and explanations of the parameters used in the model (1).

Parameter Epidemiological Description Value Source

Λ𝑐 Rate of cattle recruitment 67/day [7]
Λ𝑠 Rate of snail recruitment 3000/day [29]
𝛾𝑚 Rate of cattle produce miracidia 6.96 / cattle/day [29]
𝛾𝑝 Rate of snail produce metacercariae 2.6 / snail/day [29]
𝛾𝑐 Per capita infection rate of cattle 0.000000015 /metacer /day Assumed
𝛾𝑠 Per capita infection rate of snails 0.000000012 /miracidia/day Assumed
𝛿𝑐 The rate at which infected cattle are being treated 0.65/day Assumed
𝜆 The effectiveness of the treatment in improving the health of infected cattle 0.9567/day [7]

𝜇𝑐 The natural mortality rate of cattle 0.0185/day [7]
𝜇𝑠 The natural mortality rate of snails. 0.001644/day [7]
𝜇𝑚 Natural death rate for miracidia larvae 0.9/day [29,30]
𝜇𝑝 Natural death rate for metacercariae larvae 0.6452/day [7]

5. Miracidia release and snail penetration: The infected cattle release eggs, which develop into miracidia, a larval form of the 
parasite. The release of miracidia occurs at a rate of 𝛾𝑚 . A portion of the miracidia population penetrates snails at a rate of 𝛾𝑠 , 
initiating the next stage of the parasite’s life cycle.

Fig. 1 illustrates a graphical overview of the disease’s spread and its interactions with the cattle population. Table 1 gives a 
summary of the system parameters.

From Fig. 1 and the description of terms given in Table 1, the dynamics of the model are as given in the system of equations (1):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑆′
𝐶
(𝑡) = Λ𝑐 − 𝛾𝑐𝑆𝐶 (𝑡)𝑃 (𝑡) − 𝜇𝑐𝑆𝐶 (𝑡) + 𝜆𝑇𝐶 (𝑡),

𝐼 ′
𝐶
(𝑡) = 𝛾𝑐𝑆𝐶 (𝑡)𝑃 (𝑡) − (𝛿𝑐 + 𝜇𝑐)𝐼𝐶 (𝑡),

𝑇 ′
𝐶
(𝑡) = 𝛿𝑐𝐼𝐶 (𝑡) − (𝜆+ 𝜇𝑐)𝑇𝐶 (𝑡),

𝑀 ′(𝑡) = 𝛾𝑚𝐼𝐶 (𝑡) − 𝜇𝑚𝑀(𝑡),
𝑆′
𝑆
(𝑡) = Λ𝑠 − 𝛾𝑠𝑆𝑆 (𝑡)𝑀(𝑡) − 𝜇𝑠𝑆𝑆 (𝑡),

𝐼 ′
𝑆
(𝑡) = 𝛾𝑠𝑆𝑆 (𝑡)𝑀(𝑡) − 𝜇𝑠𝐼𝑆 (𝑡),

𝑃 ′(𝑡) = 𝛾𝑝𝐼𝑆 (𝑡) − 𝜇𝑝𝑃 (𝑡),

(1)

where initial conditions, 𝑆𝐶 (0) ≥ 0, 𝐼𝐶 (0) ≥ 0, 𝑇𝐶 (0) ≥ 0, 𝑀(0) ≥ 0, 𝑃 (0) ≥ 0, 𝑆𝑆 (0) ≥ 0, and 𝐼𝑆 (0) ≥ 0.
3
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3. Model analysis

3.1. Positive invariant region of the model

We aim to ensure the biological relevance and accurate presentation of the model (1) by rigorously verifying that all fundamental 
state components start with and maintain positive values throughout the simulation.

Lemma 1. If all the initial values, 𝑆𝐶 (0), 𝐼𝐶 (0), 𝑇𝐶 (0), 𝑆𝑆 (0), 𝐼𝑆 (0), 𝑃 (0), and 𝑀(0), are positive, then the solutions to the model (1) will 
remain non-negative for any positive value of t.

Proof. We establish this by using the method of reduction to absurdity, considering the set {𝑆𝐶 (𝑡), 𝐼𝐶 (𝑡), 𝑇𝐶 (𝑡), 𝑀(𝑡), 𝑆𝑆 (𝑡), 𝐼𝑆 (𝑡),
𝑃 (𝑡)} and defining  = 𝑚𝑖𝑛{𝑆𝐶 (𝑡), 𝐼𝐶 (𝑡), 𝑇𝐶 (𝑡), 𝑀(𝑡), 𝑆𝑆 (𝑡), 𝐼𝑆 (𝑡), 𝑃 (𝑡)}. Contradict the validity of the conclusion presented in 
Lemma 1. Hence, there is 𝜏 > 0 such that (𝜏) = 0, (𝑡) > 0, for 𝑡 ∈ [0, 𝜏), and (𝜏+) < 0, for 𝜏+ > 𝜏 .

If (𝜏) = 𝑆𝐶 (𝜏), then all other components of  become positive. From the first equation of model (1), we obtain

𝑑𝑆𝐶 (𝜏)
𝑑𝑡

=Λ𝑐 − 𝛾𝑐𝑆𝐶 (𝜏)𝑃 (𝜏) − 𝜇𝑐𝑆𝐶 (𝜏) + 𝜆𝑇𝐶 (𝜏) = Λ𝑐 + 𝜆𝑇𝐶 (𝜏) > 0.

Since 𝑑𝑆𝐶 (𝜏)
𝑑𝑡

> 0, by applying the property of monotonic functions, it can be concluded that 𝑆𝐶 (𝜏+) > 0 for 𝜏+ > 𝜏 . The obtained 
result contradicts the fact that 𝑆𝐶 (𝜏+) < 0 for 𝜏+ > 𝜏 .

Therefore, 𝑆𝐶 (𝑡) remains positive for any positive value of t. Furthermore, for any positive value of t, the other state variables 
also consistently maintain positive values.

Lemma 2. All possible solutions to model (1) remain within a uniformly bounded region:

Ω=
{
(𝑆𝐶, 𝐼𝐶 , 𝑇𝐶 ,𝑀,𝑆𝑆, 𝐼𝑆 ,𝑃 ) ∈ℝ7 ∶𝑁𝐶 ≤ Λ𝑐

𝜇𝑐
,𝑁𝑆 ≤ Λ𝑠

𝜇𝑠
,𝑀 ≤ 𝛾𝑚Λ𝑐

𝜇𝑐𝜇𝑚
,𝑃 ≤ 𝛾𝑝Λ𝑠

𝜇𝑠𝜇𝑝

}
, (2)

where, 𝑁𝐶 (𝑡) = 𝑆𝐶 (𝑡) + 𝐼𝐶 (𝑡) + 𝑇𝐶 (𝑡), and 𝑁𝑆 (𝑡) = 𝑆𝑆 (𝑡) + 𝐼𝑆 (𝑡) are the total cattle and snail population at time t.

Proof. Consider the total cattle population in the model (1),

𝑑𝑁𝐶

𝑑𝑡
= Λ𝑐 − 𝜇𝑐𝑁𝐶. (3)

Solving the differential equation (3) leads to the solution

𝑁𝐶 (𝑡) =
Λ𝑐

𝜇𝑐
−
(
Λ𝑐 − 𝜇𝑐𝑁𝐶 (0)

𝜇𝑐

)
𝑒−𝜇𝑐 𝑡.

As 𝑡 →∞, 𝑁𝐶 (𝑡) converges to Λ𝑐

𝜇𝑐
. If 0 ≤𝑁𝐶 (0) ≤ Λ𝑐

𝜇𝑐
, then

0 ≤𝑁𝐶 (𝑡) ≤ Λ𝑐

𝜇𝑐
.

Applying a similar approach to the snail population results in,

0 ≤𝑁𝑆 (𝑡) ≤ Λ𝑠

𝜇𝑠
.

Furthermore, using this approach and the inequalities 0 ≤ 𝑁𝐶 (𝑡) ≤ Λ𝑐

𝜇𝑐
and 0 ≤𝑁𝑆 (𝑡) ≤ Λ𝑠

𝜇𝑠
for the miracidia and metacercaria 

populations, we obtain

0 ≤𝑀(𝑡) ≤ 𝛾𝑚Λ𝑐

𝜇𝑐𝜇𝑚
,

0 ≤ 𝑃 (𝑡) ≤ 𝛾𝑝Λ𝑠

𝜇𝑠𝜇𝑝
.

This completes the proof, confirming that Ω in (2) defines the feasible region of the system. Therefore, the model is suitable for 
an epidemiological study [31].

3.2. Disease-free equilibrium (DFE)

The disease-free equilibrium of Fasciola hepatica is a state without infection. This state is denoted as 𝐸0 , and is given by( 0 0 0 0 0 0 0) (
Λ𝑐 Λ𝑠

)

4

𝐸0 = 𝑆
𝐶
, 𝐼

𝐶
, 𝑇

𝐶
,𝑀 ,𝑆

𝑆
, 𝐼

𝑆
,𝑃 =

𝜇𝑐
,0,0,0,

𝜇𝑠
,0,0 .
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3.3. Fasciola hepatica reproduction number

The next-generation matrix method, as described by [32], determines the reproduction number in a compartmental model by 
constructing and analysing a matrix of transitions and interactions between compartments. This method was used and described by 
the authors in the study [31,33]. In model (1), the compartments 𝐼𝐶 , 𝑇𝐶 , 𝑀 , 𝐼𝑆 , and 𝑃 represent various stages or categories of 
individuals within the infected population. Therefore, the system of differential equations governing these disease compartments can 
be described as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐼 ′
𝐶
(𝑡) = 𝛾𝑐𝑆𝐶 (𝑡)𝑃 (𝑡) − (𝛿𝑐 + 𝜇𝑐)𝐼𝐶 (𝑡),

𝑇 ′
𝐶
(𝑡) = 𝛿𝑐𝐼𝐶 (𝑡) − (𝜆+ 𝜇𝑐)𝑇𝐶 (𝑡),

𝑀 ′(𝑡) = 𝛾𝑚𝐼𝐶 (𝑡) − 𝜇𝑚𝑀(𝑡),
𝐼 ′
𝑆
(𝑡) = 𝛾𝑠𝑆𝑆 (𝑡)𝑀(𝑡) − 𝜇𝑠𝐼𝑆 (𝑡),

𝑃 ′(𝑡) = 𝛾𝑝𝐼𝑆 (𝑡) − 𝜇𝑝𝑃 (𝑡).

(4)

We can express equation (4) as:

𝑑
𝑑𝑦

= 𝑔() − 𝑓 (),

where 𝑔() represents the incidence rate of new incidents appearing in the disease compartments and 𝑓 () represents the rate 
at which individuals are moved into and out of the compartments. The variable  represents the disease subclass of the system, 
 = (𝐼𝐶 , 𝑇𝐶 , 𝑀, 𝐼𝑆 , 𝑃 ),

𝑔 =

⎛⎜⎜⎜⎜⎜⎝

𝛾𝑐𝑆𝐶𝑃

0
0

𝛾𝑠𝑆𝑠𝑀

0

⎞⎟⎟⎟⎟⎟⎠
, and 𝑓 =

⎛⎜⎜⎜⎜⎜⎝

(𝛿𝑐 + 𝜇𝑐)𝐼𝐶
−𝛿𝑐𝐼𝐶 + (𝜆+ 𝜇𝑐)𝑇𝐶

−𝛾𝑚𝐼𝐶 + 𝜇𝑚𝑀

𝜇𝑠𝐼𝑆
−𝛾𝑝𝐼𝑆 + 𝜇𝑝𝑃

⎞⎟⎟⎟⎟⎟⎠
.

Computing the derivatives of 𝑔 and 𝑓 to the disease variables and evaluating them at the disease-free equilibrium yield the Jacobian 
matrices 𝐺 and 𝐹 .

𝐺 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 𝛾𝑐Λ𝑐

𝜇𝑐

0 0 0 0 0
0 0 0 0 0
0 0 𝛾𝑠Λ𝑠

𝜇𝑠
0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
, and 𝐹 =

⎛⎜⎜⎜⎜⎜⎝

𝛿𝑐 + 𝜇𝑐 0 0 0 0
−𝛿𝑐 𝜆+ 𝜇𝑐 0 0 0
−𝛾𝑚 0 𝜇𝑚 0 0
0 0 0 𝜇𝑠 0
0 0 0 −𝛾𝑝 𝜇𝑝

⎞⎟⎟⎟⎟⎟⎠
.

We define 𝑅0 as the maximum eigenvalue of 𝐺𝐹−1 . Thus, the threshold quantity is given by 𝑅0 = 𝜌(𝐺𝐹−1). The Fasciola hepatica 
reproduction number is given as:

𝑅0 =

√
𝛾𝑐𝛾𝑚𝛾𝑠𝛾𝑝Λ𝑐Λ𝑠

𝜇𝑐(𝛿𝑐 + 𝜇𝑐)𝜇𝑚𝜇𝑝𝜇2
𝑠

.

3.4. Global stability of disease-free equilibrium

Lemma 3. Castillo-Chávez et al. [34] introduced a novel approach to ascertain the global steady state of the Disease-Free Equilibrium within 
the positive real domain, Ω ∈𝑅7

+. The model (1) in this context is represented as follows:{
𝑑𝑋

𝑑𝑡
=𝑅(𝑋,𝑌 ),

𝑑𝑌

𝑑𝑡
=𝑄(𝑋,𝑌 ),𝑄(𝑋,0) = 0.

(5)

Here, 𝑋 = (𝑆𝐶, 𝑆𝑆 ) represents the disease-free subgroups, and 𝑌 = (𝐼𝐶 , 𝑇𝐶 , 𝑀, 𝐼𝑆 , 𝑃 ) represents the infectious subgroups.

If the following requirements (𝐶1) and (𝐶2) are met, then the global stability of 𝐸0 is guaranteed when 𝑅0 < 1.

𝐶1 : For 𝑑𝑋
𝑑𝑡

=𝑅(𝑋, 0), the equilibrium point 𝑋∗ is guaranteed to be stable on a global scale.

𝐶2 : 𝑄(𝑋, 𝑌 ) =𝐵𝑌 − 𝑄̂(𝑋, 𝑌 ), 𝑄̂(𝑋, 𝑌 ) ≥ 0 for (𝑋, 𝑌 ) ∈Ω,

with 𝐵 = 𝐷𝑌 𝑄(𝑋∗, 0) is an M-matrix where the off-diagonal entries of B are nonnegative. The domain Ω represents the set of values for 
(𝑋, 𝑌 ) where the model is feasible.
5

Theorem 1. The disease-free equilibrium is globally asymptotically stable if 𝑅0 < 1 and unstable otherwise.
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Proof. We prove this by applying Lemma 3. Beginning with equation (5), we can derive the following:

𝑅(𝑋,0) =
(
Λ𝑐 − 𝜇𝑐𝑆𝐶

Λ𝑠 − 𝜇𝑠𝑆𝑆

)
. (6)

From the disease class system of differential equation (4), we have:

𝑄(𝑋,𝑌 ) =𝐵𝑋 − 𝑄̂(𝑋,𝑌 ),

where,

𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎝

−(𝛿𝑐 + 𝜇𝑐) 0 0 0 𝛾𝑐Λ𝑐

𝜇𝑐

𝛿𝑐 −(𝜆+ 𝜇𝑐) 0 0 0
𝛾𝑚 0 −𝜇𝑚 0 0
0 0 𝛾𝑠Λ𝑠

𝜇𝑠
−𝜇𝑠 0

0 0 0 𝛾𝑠 −𝜇𝑝

⎞⎟⎟⎟⎟⎟⎟⎠
.

𝑄̂(𝑋,𝑌 ) =

⎛⎜⎜⎜⎜⎜⎜⎝

𝑃𝛾𝑐(
Λ𝑐

𝜇𝑐
−𝑆𝐶 )

0
0

𝑀𝛾𝑠(
Λ𝑠

𝜇𝑠
− 𝑆𝑆 )

0

⎞⎟⎟⎟⎟⎟⎟⎠
. (7)

The global asymptote of equation (6) is 𝑋∗ = (Λ𝑐

𝜇𝑐
, Λ𝑠

𝜇𝑠
) thereby satisfying the condition 𝐶1. Additionally, according to equation (7), 

𝑄̂(𝑋, 𝑌 ) ≥ 0 for 𝑆𝐶 ≤ Λ𝑐

𝜇𝑐
and 𝑆𝑆 ≤ Λ𝑠

𝜇𝑠
. Consequently, 𝑄̂(𝑋, 𝑌 ) ≥ 0, for all (𝑋, 𝑌 ) within the set Ω, confirming condition 𝐶2. The 

non-diagonal entries of 𝐵 are non-negative, establishing 𝐵 as an M-matrix. This proves that the DFE is globally stable whenever 
𝑅0 < 1.

3.5. Existence and global stability of endemic equilibrium

The endemic equilibrium point of the model (1) is

𝐸∗
𝑒
= (𝑆∗

𝐶
, 𝐼∗

𝐶
,𝑇 ∗

𝐶
,𝑀∗, 𝑆∗

𝑆
, 𝐼∗

𝑆
,𝑃 ∗),

where

𝑆∗
𝐶
=

(𝛿𝑐 + 𝜇𝑐)𝜇𝑝𝜇𝑠(𝛾𝑚𝛾𝑠Λ𝑐(𝜆+ 𝜇𝑐) + 𝜇𝑐(𝜆+ 𝛿𝑐 + 𝜇𝑐)𝜇𝑚𝜇𝑠)
𝛾𝑚𝛾𝑠𝜇𝑐(𝛾𝑐𝛾𝑝Λ𝑠(𝜆+ 𝛿𝑐 + 𝜇𝑐) + (𝜆+ 𝜇𝑐)(𝛿𝑐 + 𝜇𝑐)𝜇𝑝𝜇𝑠)

,

𝐼∗
𝐶
=

𝐴(𝜆+ 𝜇𝑐)(𝑅2
0 − 1)

𝛾𝑚𝛾𝑠𝜇𝑐(𝛾𝑐𝛾𝑝Λ𝑠(𝜆+ 𝛿𝑐 + 𝜇𝑐) + (𝜆+ 𝜇𝑐)(𝛿𝑐 + 𝜇𝑐)𝜇𝑝𝜇𝑠)
,

𝑇 ∗
𝐶
=

𝛿𝑐𝐴(𝑅2
0 − 1)

𝛾𝑚𝛾𝑠𝜇𝑐(𝛾𝑐𝛾𝑝Λ𝑠(𝜆+ 𝛿𝑐 + 𝜇𝑐) + (𝜆+ 𝜇𝑐)(𝛿𝑐 + 𝜇𝑐)𝜇𝑝𝜇𝑠)
,

𝑀∗ =
𝐴(𝜆+ 𝜇𝑐)(𝑅2

0 − 1)
𝛾𝑠𝜇𝑐𝜇𝑚(𝛾𝑐𝛾𝑝Λ𝑠(𝜆+ 𝛿𝑐 + 𝜇𝑐) + (𝜆+ 𝜇𝑐)(𝛿𝑐 + 𝜇𝑐)𝜇𝑝𝜇𝑠)

,

𝑆∗
𝑆
=
𝜇𝑐𝜇𝑚(𝛾𝑐𝛾𝑝Λ𝑠(𝜆+ 𝛿𝑐 + 𝜇𝑐) + (𝜆+ 𝜇𝑐)(𝛿𝑐 + 𝜇𝑐)𝜇𝑝𝜇𝑠)

𝛾𝑐𝛾𝑝(𝛾𝑚𝛾𝑠Λ𝑐(𝜆+ 𝜇𝑐) + 𝜇𝑐(𝜆+ 𝛿𝑐 + 𝜇𝑐)𝜇𝑚𝜇𝑠)
,

𝐼∗
𝑆
=

𝐴(𝜆+ 𝜇𝑐)(𝑅2
0 − 1)

𝛾𝑐𝛾𝑝𝜇𝑠(𝛾𝑚𝛾𝑠Λ𝑐(𝜆+ 𝜇𝑐) + 𝜇𝑐(𝜆+ 𝛿𝑐 + 𝜇𝑐)𝜇𝑚𝜇𝑠)
,

𝑃 ∗ =
𝐴(𝜆+ 𝜇𝑐)(𝑅2

0 − 1)
𝛾𝑐𝜇𝑝𝜇𝑠(𝛾𝑚𝛾𝑠Λ𝑐(𝜆+ 𝜇𝑐) + 𝜇𝑐(𝜆+ 𝛿𝑐 + 𝜇𝑐)𝜇𝑚𝜇𝑠)

,

such that 𝐴 = 𝜇𝑐(𝛿𝑐 + 𝜇𝑐)𝜇𝑚𝜇𝑝𝜇2
𝑠
. This proves that the disease becomes endemic if 𝑅0 > 1.

To determine the global stability of 𝐸∗
𝑒
, we will check if matrix Q from Equation (9) meets the Volterra-Lyapunov stability 

conditions. We review the necessary criteria, definitions, and theorems and then construct the Lyapunov function.

Lemma 4. Suppose 𝑄 is a square matrix with n rows and columns, where all the entries are real numbers. If every eigenvalue of 𝑄 has a 
6

negative (positive) real part, then there exists a positive definite matrix H such that the matrix 𝐻𝑄 +𝑄𝑇𝐻𝑇 is negative (positive) definite.
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Definition 3.1. An 𝑛 × 𝑛 matrix 𝑄 is considered to be Volterra-Lyapunov if there is a positive diagonal matrix M of the same size, 
such that the expression 𝑀Q+Q𝑇𝑀𝑇 results in a negative definite matrix.

Definition 3.2. If there exists a diagonal matrix M containing only positive values such that the expression 𝑀Q+Q𝑇𝑀𝑇 results in a 
positive definite matrix, then a square matrix 𝑄 is considered to be diagonally stable or positive stable.

Lemma 5. [35–37] For a non-singular matrix 𝐷 = [𝑑𝑖𝑗 ] with dimensions 𝑛 × 𝑛 where 𝑛 ≥ 2 and a positive diagonal matrix 𝑀 =
𝑑𝑖𝑎𝑔(𝑚1, 𝑚2, ..., 𝑚𝑛) with dimensions 𝑛 × 𝑛, let 𝐸 = 𝐷−1. If 𝑑𝑛𝑛 > 0, 𝑀̄𝐸̄ + (𝑀̄𝐸̄)𝑇 > 0 and 𝑀̄𝐷̄ + (𝑀̄𝐷̄)𝑇 > 0, it is possible to select 
a value of 𝑚𝑛 > 0 such that 𝑀𝐷 +𝐷𝑇𝑀𝑇 > 0.

It should be noted that to obtain the matrix denoted by 𝐴̃ from an 𝑛 x 𝑛 matrix 𝐴, one should eliminate its final row and final 
column, which produces a matrix whose size is (𝑛 − 1) × (𝑛 − 1).

Lemma 6. If matrix A is diagonally stable, then its transpose matrix, 𝐴𝑇 , and inverse matrix, 𝐴−1, will also be diagonally stable [38].

Consider the following Lyapunov function:

𝐿 = 1
2
[𝑘1(𝑆𝐶 −𝑆∗

𝐶
)2 + 𝑘2(𝐼𝐶 − 𝐼∗

𝐶
)2 + 𝑘3(𝑇𝐶 − 𝑇 ∗

𝐶
)2 + 𝑘3(𝑀 −𝑀∗)2+

𝑘4(𝑆𝑆 −𝑆∗
𝑆
)2 + 𝑘6(𝐼𝑆 − 𝐼∗

𝑆
)2 + 𝑘7(𝑃 − 𝑃 ∗)2],

where 𝑘𝑖 ’s are constants with positive values.

𝑑𝐿

𝑑𝑡
= 𝑘1(𝑆𝐶 −𝑆∗

𝐶
)
𝑑𝑆𝐶

𝑑𝑡
+ 𝑘3(𝐼𝐶 − 𝐼∗

𝐶
)
𝑑𝐼𝐶

𝑑𝑡
+ 𝑘4(𝑇𝐶 − 𝑇 ∗

𝐶
)
𝑑𝑇𝐶

𝑑𝑡
+ 𝑘5(𝑀 −𝑀∗)𝑑𝑀

𝑑𝑡

+ 𝑘6(𝑆𝑆 − 𝑆∗
𝑆
))
𝑑𝑆𝑆

𝑑𝑡
+ 𝑘8(𝐼𝑆 − 𝐼∗

𝑆
))
𝑑𝐼𝑆

𝑑𝑡
+ 𝑘9(𝑃 − 𝑃 ∗))𝑑𝑃

𝑑𝑡
.

(8)

Simplifying Equation (8) gives,

𝑑𝐿

𝑑𝑡
= 𝑌 (𝑊𝑄+𝑄𝑇𝑊 𝑇 )𝑌 𝑇 ,

where, 𝑌 = (𝑆𝐶 −𝑆∗
𝐶
, 𝐼𝐶 − 𝐼∗

𝐶
, 𝑇𝐶 − 𝑇 ∗

𝑇
, 𝑀 −𝑀∗, 𝑆𝑆 − 𝑆∗

𝑆
, 𝐼𝑆 − 𝐼∗

𝑆
, 𝑃 − 𝑃 ∗), 𝑊 = 𝑑𝑖𝑎𝑔(𝑤1, 𝑤2, ..., 𝑤𝑛), and

𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−𝑃 ∗𝛾𝑐 − 𝜇𝑠 0 𝛾 0 0 0 −𝑆𝐶𝛾𝑐
𝑃 ∗𝛾𝑐 −𝛿𝑐 − 𝜇𝑐 0 0 0 0 𝑆𝐶𝛾𝑐
0 𝛿𝑐 −𝜆− 𝜇𝑐 0 0 0 0
0 𝛾𝑚 0 −𝜇𝑚 0 0 0
0 0 0 −𝑆𝑆𝛾𝑠 −𝜇𝑠 −𝑀∗𝛾𝑠 0 0
0 0 0 𝑆𝑆𝛾𝑠 𝑀∗𝛾𝑠 −𝜇𝑠 0
0 0 0 0 0 𝛾𝑝 −𝜇𝑝

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (9)

Theorem 2. The matrix 𝑄 stated in Equation (9) is Volterra–Lyapunov stable.

Proof. An entry in the last row and column is a positive value. We get the matrix from a 𝑛 × 𝑛 matrix Q, first deleting its last row and 
column. We need to prove that Lemma 6 holds by showing the diagonal stability of both the matrix 𝐷 = −𝑄̃ in Equation (9) and its 
inverse 𝐷−1.

𝐷 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝑃 ∗𝛾𝑐 + 𝜇𝑠 0 𝛾 0 0 0
−𝑃 ∗𝛾𝑐 𝛿𝑐 + 𝜇𝑐 0 0 0 0

0 −𝛿𝑐 𝜆+ 𝜇𝑐 0 0 0
0 −𝛾𝑚 0 𝜇𝑚 0 0
0 0 0 𝑆𝑆𝛾𝑠 𝜇𝑠 +𝑀∗𝛾𝑠 0
0 0 0 −𝑆𝑆𝛾𝑠 −𝑀∗𝛾𝑠 𝜇𝑠

⎞⎟⎟⎟⎟⎟⎟⎠
. (10)

Based on Lemma 5, we assert and provide evidence that both 𝐷 = −𝑄̃ and 𝐷−1 exhibit diagonal stability. This confirms the 
Volterra-Lyapunov stability of the matrix 𝑄.

Theorem 3. The matrix D described in equation (10) is diagonally stable.

Proof. Based on Lemma 5, if we take any sub-matrices, 𝐷̃6×6-𝐷̃3×3, from a matrix 𝑄 by excluding the last row and columns, they will 
contain a positive diagonal element, 𝑑𝑛𝑛 > 0 (where 3 ≤ 𝑛 ≤ 6). These sub-matrices exhibit diagonal stability, which can be confirmed 
7

deductively. Furthermore, their inverses also possess diagonal stability according to Lemma 6. As a result, the matrix 𝐷̃ mentioned 
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Table 2

Normalized forward sensitivity indices.

Parameters Γ𝑅0
𝜃

Sensitivity indices

Λ𝑐
1
2

+0.5

Λ𝑠
1
2

+0.5

𝜇𝑐 −(𝛿𝑐 + 2𝜇𝑐 )∕(2(𝛿𝑐 + 𝜇𝑐 )) -0.5023
𝜇𝑠 -1 -1

𝜇𝑚 - 1
2

-0.5

𝜇𝑝 - 1
2

-0.5

𝛾𝑚
1
2

+0.5

𝛾𝑝
1
2

+0.5

𝛾𝑐
1
2

+0.5

𝛾𝑠
1
2

+0.5

𝛿𝑐 −𝛿𝑐∕2(𝛿𝑐 + 𝜇𝑐 ) -0.4977

in Equation (10) is guaranteed to be diagonal stable. The fact that the matrix 𝐷̃ = −𝑄̃ is diagonally stable means that, according 
to Definition 3.2, there is a positive diagonal matrix M such that 𝑀𝐷̃ + 𝐷̃𝑇𝑀𝑇 > 0. Additionally, replacing 𝐷̃ with −𝑄̃ shows that 
𝑀𝑄̃+ 𝑄̃𝑇𝑀𝑇 is less than zero, indicating that Q is Volterra-Lyapunov stable based on Definition 3.1.

As a result of the following three conditions satisfied:
(i) 𝑎11 = −𝑃 ∗𝛾𝑐 − 𝜇𝑠 < 0, (ii) 𝑎22 = −𝛿𝑐 − 𝜇𝑐 < 0, and (iii) 𝑑𝑒𝑡(𝑄2×2) = (𝑃 ∗𝛾𝑐 − 𝜇𝑠)(−𝛿𝑐 − 𝜇𝑐) > 0, the matrix

𝑄̃2×2 =
(
−𝑃 ∗𝛾𝑐 − 𝜇𝑠 0

−𝑃 ∗𝛾𝑐 −𝛿𝑐 − 𝜇𝑐

)
,

which is found from a matrix 𝑄 is Voltera Lyapunov stable.
The matrix 𝐷̃2×2, which is equal to the negation of 𝑄̃2×2, demonstrates diagonal stability. This implies that both the matrix 𝐷

from Equation (10) and its inverse matrix also possess diagonal stability. Therefore, the matrix 𝑄 mentioned in Equation (9) can be 
considered Volterra-Lyapunov stable. In summary, the following theorem can be derived from the previous discussions.

Theorem 4. The endemic equilibrium 𝐸∗
𝑒

of Model (1) is globally asymptotically stable for 𝑅0 > 1.

Proof. According to Theorem 2, a positive diagonal matrix 𝑌 exists such that the expression 𝑌 𝐴 +𝐴𝑇 𝑌 𝑇 is negative. Therefore, if 𝑋, 
in Equation (8), is not equal to the endemic equilibrium point 𝐸∗

𝑒
, then the derivative of the Lyapunov function 𝑑𝐿

𝑑𝑡
will be negative. 

This ensures the global stability of the endemic equilibrium point.

4. Sensitivity analysis

Sensitivity analysis is a crucial tool in epidemiology that allows researchers to understand the relative importance of different 
parameters in a model and their impact on critical outcomes [39]. One commonly used metric for this analysis is the normalized 
sensitivity index, denoted as Γ𝑅0

𝜃
, which quantifies the percentage change of 𝑅0 to the parameter 𝜃 [40]. It is given by

Γ𝑅0
𝜃

=
𝜕𝑅0
𝜕𝜃

.
𝜃

𝑅0
.

The sensitivity analysis results, as presented in Table 2 and illustrated in Fig. 2, provide valuable insights into the parameters 
influencing the basic reproduction number (𝑅0) of fasciola hepatica infection in cattle. The analysis identifies several key findings. 
Firstly, recruitment rates, miracidia, and metacercariae production rates, and transmission rates between cattle and snails are the 
most sensitive parameters directly impacting 𝑅0 . These parameters play a significant role in shaping the severity and transmission 
dynamics of the infection in cattle. Additionally, the sensitivity analysis highlights the indirect effects of mortality rates in miracidia, 
metacercariae, and snail populations and the treatment rate of infected cattle on 𝑅0 . Among these factors, the snail mortality rate 
emerges as the most influential parameter with an indirect effect on 𝑅0 . To effectively control the spread of fasciola hepatica in 
cattle, stakeholders should focus on increasing treatment rates and implementing measures to control mortality rates within the 
snail, miracidia, and metacercariae populations. By targeting these influential parameters, it is possible to mitigate the burden of the 
infection and prevent its further transmission among cattle.

5. Optimal control analysis

Optimal control theory is an area of mathematics that seeks optimal techniques to govern a dynamic system over time to optimize 
an objective function [41]. After analysing the sensitivity results, we concentrate on the control variable 𝑢1(𝑡), which represents 
pasture management aimed at reducing the risk of cattle infection from metacercariae. Similarly, 𝑢2(𝑡) pertains to measures for 
treating cattle, and 𝑢3(𝑡) quantifies efforts to control snails using molluscicide to mitigate Fasciola hepatica disease. By integrating 
8

these control variables into the model, we derive the following formulation:
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Fig. 2. Parameter sensitivity analysis.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑆′
𝐶
(𝑡) = Λ𝑐 − (1 − 𝑢1(𝑡))𝛾𝑐𝑆𝐶 (𝑡)𝑃 (𝑡) − 𝜇𝑐𝑆𝐶 (𝑡) + 𝜆𝑇𝐶 (𝑡),

𝐼 ′
𝐶
(𝑡) = (1 − 𝑢1(𝑡))𝛾𝑐𝑆𝐶 (𝑡)𝑃 (𝑡) − (𝛿𝑐 + 𝑢2(𝑡) + 𝜇𝑐)𝐼𝐶 (𝑡),

𝑇 ′
𝐶
(𝑡) = (𝛿𝑐 + 𝑢2(𝑡))𝐼𝐶 (𝑡) − (𝜆+ 𝜇𝑐)𝑇𝐶 (𝑡),

𝑀 ′(𝑡) = 𝛾𝑚𝐼𝐶 (𝑡) − 𝜇𝑚𝑀(𝑡),

𝑆′
𝑆
(𝑡) = Λ𝑠 − 𝛾𝑠𝑆𝑆 (𝑡)𝑀(𝑡) − (𝜇𝑠 + 𝑢3(𝑡))𝑆𝑆 (𝑡),

𝐼 ′
𝑆
(𝑡) = 𝛾𝑠𝑆𝑆 (𝑡)𝑀(𝑡) − (𝜇𝑠 + 𝑢3(𝑡))𝐼𝑆 (𝑡),

𝑃 ′(𝑡) = 𝛾𝑝𝐼𝑆 (𝑡) − 𝜇𝑝𝑃 (𝑡),

(11)

subject to initial conditions of the model (1).
Nonlinear control interventions are used because of the nonlinear costs of healthcare prevention measures [28,42]. We aim to 

decrease the number of infected cattle, manage the snail population, and minimize the costs of these interventions. The objective 
function, representing the cost of these interventions, is defined as follows:

𝐽 (𝑢1, 𝑢2, 𝑢3) =

𝑡𝑓

∫
0

(𝐴1𝐼𝐶 +𝐴2𝑁𝑆 + 1
2
𝐶1𝑢

2
1 +

1
2
𝐶2𝑢

2
2 +

1
2
𝐶3𝑢

2
3)𝑑𝑡, (12)

where 𝐴1 and 𝐴2 are positive weights used to balance the factors related to the number of infected cattle, and the total snail population, 
respectively. Likewise, 𝐶1, 𝐶2, and 𝐶3 denote the weights assigned to the costs of the control programs throughout 𝑡𝑓 days, which 
represents the time frame for implementing the control strategy.

The objective is to identify the optimal controls, 𝑢∗1 , 𝑢∗2 , and 𝑢∗3 that satisfy the following condition:

𝐽 (𝑢∗1 , 𝑢
∗
2 , 𝑢

∗
3) = lim 𝐽 (𝑢1, 𝑢2, 𝑢3), (13)

where the control set  is Lebesgue measurable, and it is defined as follows:

 = {𝑢 ∶ 0 ≤ 𝑢1(𝑡) ≤ 1,0 ≤ 𝑢2(𝑡) ≤ 1,0 ≤ 𝑢3(𝑡) ≤ 1, for 𝑡 ∈ [0, 𝑡𝑓 ]}.

5.1. Existence of an optimal control

Theorem 5. For Equation (13) to be valid, it is required to fulfil the following conditions 𝐴–𝐷. These conditions are necessary to identify an 
optimal control (𝑢∗1, 𝑢

∗
2 , 𝑢

∗
3) that minimizes the objective functional 𝐽 (𝑢1, 𝑢2, 𝑢3) while satisfying the constraints of the control model (11).

(A) The admissible control set  must be both convex and closed.

(B) The control system must be bounded by a linear function involving the state and control variables.
9

(C) The integrand of the objective functional in (12) must exhibit convexity with respect to the controls.
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(D) The Lagrangian must be bounded below by

𝑎0

( 3∑
𝑖=1

|𝑢𝑖|2) 𝑎2
2
− 𝑎1,

where 𝑎0 > 0, 𝑎1 > 0, and 𝑎2 > 1.

Proof. To establish the existence of an optimal control (𝑢∗1 , 𝑢
∗
2 , 𝑢

∗
3), we assign the right-hand side of the system (11) as 𝑓 (𝑡,  , 𝑢), where 

 = (𝑆𝐶, 𝐼𝐶 , 𝑇𝐶 , 𝑀, 𝑆𝑆, 𝐼𝑆 , 𝑃 ), 𝑢 = (𝑢1, 𝑢2, 𝑢3) ∈ = [0, 1] × [0, 1] × [0, 1] and

𝑓 (𝑡, , 𝑢) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Λ𝑐 − (1 − 𝑢1(𝑡))𝛾𝑐𝑆𝐶 (𝑡)𝑃 (𝑡) − 𝜇𝑐𝑆𝐶 (𝑡) + 𝜆𝑇𝐶 (𝑡)
(1 − 𝑢1(𝑡))𝛾𝑐𝑆𝐶 (𝑡)𝑃 (𝑡) − (𝛿𝑐 + 𝑢2(𝑡) + 𝜇𝑐)𝐼𝐶 (𝑡)

(𝛿𝑐 + 𝑢2(𝑡))𝐼𝐶 (𝑡) − (𝜆+ 𝜇𝑐)𝑇𝐶 (𝑡)
𝛾𝑚𝐼𝐶 (𝑡) − 𝜇𝑚𝑀(𝑡)

Λ𝑠 − 𝛾𝑠𝑆𝑆 (𝑡)𝑀(𝑡) − (𝜇𝑠 + 𝑢3(𝑡))𝑆𝑆 (𝑡)
𝛾𝑠𝑆𝑆 (𝑡)𝑀(𝑡) − (𝜇𝑠 + 𝑢3(𝑡))𝐼𝑆 (𝑡)

𝛾𝑝𝐼𝑆 (𝑡) − 𝜇𝑝𝑃 (𝑡)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (14)

Following the approach outlined in [43], we proceed to verify the satisfaction of the essential conditions.
(A) By definition, it is clear that the control set  exhibits the property of closure.

Let 𝑣 = (𝑣1, 𝑣2, 𝑣3), and 𝑤 = (𝑤1, 𝑤2, 𝑤3) represent arbitrary elements belonging to  . Consequently, based on the definition of a 
convex set, it can be inferred that

(1 − 𝑡)𝑣+ 𝑡𝑤 ∈ for all 𝑡 ∈ [0,1].

Let’s take two arbitrary corresponding coordinates, 𝑣𝑖 and 𝑤𝑖, such that 0 ≤ 𝑣𝑖 ≤ 1 and 0 ≤𝑤𝑖 ≤ 1. For any value of 𝑡 between 0 and 
1, the convex combination (1 − 𝑡) ∗ 𝑣𝑖 + 𝑡 ∗𝑤𝑖 lies within the interval [0, 1]. As a result, the expression (1 − 𝑡)𝑣 + 𝑡𝑤 belongs to  , 
indicating the convexity of  .

(B) It can be demonstrated that there are functions 𝑔 and ℎ such that

𝑓 (𝑡, , 𝑢) = 𝑔(𝑡,) + ℎ(𝑡,)𝑢, (15)

where, 𝑓 (𝑡,  , 𝑢) is in (14), and

𝑔(𝑡,) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Λ𝑐 − 𝛾𝑐𝑆𝐶 (𝑡)𝑃 (𝑡) − 𝜇𝑐𝑆𝐶 (𝑡) + 𝜆𝑇𝐶 (𝑡)
𝛾𝑐𝑆𝐶 (𝑡)𝑃 (𝑡) − (𝛿𝑐 + 𝜇𝑐)𝐼𝐶 (𝑡)
𝛿𝑐𝐼𝐶 (𝑡) − (𝜆+ 𝜇𝑐)𝑇𝐶 (𝑡)
𝛾𝑚𝐼𝐶 (𝑡) − 𝜇𝑚𝑀(𝑡)

Λ𝑠 − 𝛾𝑠𝑆𝑆 (𝑡)𝑀(𝑡) − 𝜇𝑠𝑆𝑆 (𝑡)
𝛾𝑠𝑆𝑆 (𝑡)𝑀(𝑡) − 𝜇𝑠𝐼𝑆 (𝑡)

𝛾𝑝𝐼𝑆 (𝑡) − 𝜇𝑝𝑃 (𝑡)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

ℎ(𝑡, , 𝑢) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝛾𝑐𝑆𝐶 (𝑡)𝑃 (𝑡) 0 0
−𝛾𝑐𝑆𝐶 (𝑡)𝑃 (𝑡) −𝐼𝐶 (𝑡) 0

0 𝐼𝐶 (𝑡) 0
0 0 0
0 0 −𝑆𝑆 (𝑡)
0 0 −𝐼𝑆 (𝑡)
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Applying the norm inequality stated in Equation (15) yields that

|𝑓 (𝑡, , 𝑢)| ≤ |𝑔(𝑡,)|+ |ℎ(𝑡,)||𝑢|.
The functions 𝑔 and ℎ are continuous for the state variables, and each state variable is constrained; it becomes evident that both |𝑔| and |ℎ| are bounded functions. This implies that there exist numbers 𝑎 and 𝑏 such that |𝑔| ≤ 𝑎 and |𝑔| ≤ 𝑏.
This provides,

|𝑓 (𝑡, , 𝑢)| ≤ |𝑔(𝑡,)|+ |ℎ(𝑡,)||𝑢|
≤ 𝑎+ 𝑏|𝑢|
≤𝑀𝑎𝑥{𝑎, 𝑏}(1 + |𝑢|).

Therefore, ||𝑓 (𝑡,  , 𝑢)|| ≤ 𝑐(1 + |𝑢|), where 𝑐 =𝑚𝑎𝑥{𝑎, 𝑏}. This demonstrates that condition (B) is fulfilled.
(C) Initially, it is important to observe that the objective function (12), possesses an integrand with characteristics similar to that 
10

of the Lagrangian form.
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 =𝐴1𝐼𝐶 +𝐴2𝑁𝑆 + 1
2
𝐶1𝑢

2
1 +

1
2
𝐶2𝑢

2
2 +

1
2
𝐶3𝑢

2
3. (16)

Assume 𝑣 = (𝑣1, 𝑣2, 𝑣3) and 𝑤 = (𝑤1, 𝑤2, 𝑤3) be to arbitrary elements of  , 𝜆 ∈ [0, 1] then it is necessary to prove that

(𝑡, , (1 − 𝜆)𝑣+ 𝜆𝑤) ≤ (1 − 𝜆)(𝑡, , 𝑣) + 𝜆((𝑡, ,𝑤).

(𝑡, , (1 − 𝜆)𝑣+ 𝜆𝑤) =𝐴1𝐼𝐶 +𝐴2𝑁𝑆 + 1
2

3∑
𝑖=1

(
𝐶𝑖((1 − 𝜆)𝑣𝑖 + 𝜆𝑤𝑖)

)2
. (17)

Also, we have,

(1 − 𝜆)(𝑡, , 𝑣) + 𝜆((𝑡, ,𝑤) =𝐴1𝐼𝐶 +𝐴2𝑁𝑆 + 1
2
(1 − 𝜆)

3∑
𝑖=1

𝐶𝑖𝑣
2
𝑖
+ 1

2
𝜆

3∑
𝑖=1

𝐶𝑖𝑤
2
𝑖
. (18)

Subtracting equation (18) from equation (17)

(𝑡, , (1 − 𝜆)𝑣+ 𝜆𝑤) −
(
(1 − 𝜆)(𝑡, , 𝑣) + 𝜆((𝑡, ,𝑤)

)
= 1

2
(𝜆2 − 𝜆)

3∑
𝑖=1

𝐶𝑖(𝑣𝑖 −𝑤𝑖)2 ≤ 0

Since 𝜆 is in the interval [0, 1], the right-hand side of the equation is nonpositive. Therefore,  is a convex function.
(D) Furthermore, it is evident that there exists a value 𝑎2 > 1, along with positive numbers 𝑎1 and 𝑎0, which satisfy the given 

conditions:

 =𝐴1𝐼𝐶 +𝐴2𝑁𝑆 + 1
2
𝐶1𝑢

2
1 +

1
2
𝐶2𝑢

2
2 +

1
2
𝐶3𝑢

2
3 ≥ 1

2
(𝐶1𝑢

2
1 +𝐶2𝑢

2
2 +𝐶3𝑢

2
3)

≥ 1
2
𝑚𝑖𝑛{𝐶1,𝐶2,𝐶3}

(
𝑢21 + 𝑢22 + 𝑢23

)
≥ 1

2
𝑚𝑖𝑛{𝐶1,𝐶2,𝐶3}

(
𝑢21 + 𝑢22 + 𝑢23

)
− 𝑎1

= 𝑎0

(
𝑢21 + 𝑢22 + 𝑢23

) 𝑎2
2
− 𝑎1,

where 𝑎2 = 2, 𝑎1 > 0, and 𝑎0 =
1
2 min{𝐶1, 𝐶2, 𝐶3}. This implies that

 ≥ 𝑎0

(
𝑢21 + 𝑢22 + 𝑢23

) 𝑎2
2
− 𝑎1.

Therefore, the Lagrangian is bounded below by 𝑎0
(∑3

𝑖=1 |𝑢𝑖|2)
𝑎2
2
− 𝑎1, where 𝑎0 > 0, 𝑎1 > 0, and 𝑎2 > 1.

5.2. Characterization of the optimal control problem

To solve the above-formulated problem of optimal control, we use Pontryagin’s maximum principle, described in studies [44,45]. 
This principle provides the necessary conditions for optimal control. With this principle, we can convert differential equations (11) and 
(16) into problems of Hamiltonian minimization concerning control variables (𝑢1, 𝑢2, 𝑢3), which gives the conditions for optimality 
of control. This generally involves the search for a control strategy that minimizes a cost function subject to some constraints; this 
can be rephrased in terms of a Lagrangian function 𝐿 as defined by (16), which includes both the cost function and the constraints. 
Using a Hamiltonian function , the control problem can be expressed as:

 =+ 𝛿1
𝑑𝑆𝐶

𝑑𝑡
+ 𝛿2

𝑑𝐼𝐶

𝑑𝑡
+ 𝛿3

𝑑𝑇𝐶

𝑑𝑡
+ 𝛿4

𝑑𝑀

𝑑𝑡
+ 𝛿5

𝑑𝑆𝑆

𝑑𝑡
+ 𝛿6

𝑑𝐼𝑆

𝑑𝑡
+ 𝛿7

𝑑𝑃

𝑑𝑡
.

The notation 𝛿𝑖 for 𝑖 = 1 to 7 indicates seven adjoint variables corresponding to the state equations 𝑆𝐶 , 𝐼𝐶 , 𝑇𝑐 , 𝑀 , 𝑆𝑆 , 𝐼𝑆 , and 𝑃 . 
Simplifying the Hamiltonian function results in a more concise form.

 =𝐴1𝐼𝐶 +𝐴2𝑁𝑆 + 1
2
[𝐶1𝑢

2
1 +𝐶2𝑢

2
2 +𝐶3𝑢

2
3] + 𝛿1[Λ𝑐 − (1 − 𝑢1)𝛾𝑐𝑆𝐶𝑃 − 𝜇𝑐𝑆𝐶 + 𝜆𝑇𝐶 ]

+ 𝛿2[(1 − 𝑢1)𝛾𝑐𝑆𝐶𝑃 − (𝛿𝑐 + 𝑢2 + 𝜇𝑐)𝐼𝐶 ] + 𝛿3[(𝛿𝑐 + 𝑢2)𝐼𝐶 − (𝜆+ 𝜇𝑐)𝑇𝑐]

+ 𝛿4[𝛾𝑚𝐼𝐶 − 𝜇𝑚𝑀] + 𝛿5[Λ𝑠 − 𝛾𝑠𝑆𝑆𝑀 − (𝜇𝑠 + 𝑢3)𝑆𝑆 ]

+ 𝛿6[𝛾𝑠𝑆𝑆𝑀 − (𝜇𝑠 + 𝑢3)𝐼𝑆 ] + 𝛿7[𝛾𝑝𝐼𝑆 − 𝜇𝑝𝑃 ].

(19)

Theorem 6. The optimal control variables, 𝑢∗1(𝑡), 𝑢
∗
2(𝑡), and 𝑢∗3(𝑡), along with the solutions  ∶= (𝑆𝐶, 𝐼𝐶 , 𝑇𝐶 , 𝑀, 𝑆𝑆, 𝐼𝑆 , 𝑃 ) of the state 
11

system in equation (1), are associated with adjoint variables 𝛿𝑖 (where 𝑖 ranges from 1 to 7), which satisfy
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𝑑𝛿

𝑑𝑡
= − 𝜕(𝑡, , 𝑢, 𝛿)

𝜕 ,

with transversality conditions 𝛿𝑖(𝑡𝑓 ) = 0, 𝑖 = 1, 2, ..., 7.

Additionally, the optimality conditions for the problem are given by

𝑢∗1 =𝑚𝑎𝑥{0,𝑚𝑖𝑛{1,
(𝛿2 − 𝛿1)𝛾𝑐𝑆𝐶𝑃

𝐶1
}}

𝑢∗2 =𝑚𝑎𝑥{0,𝑚𝑖𝑛{1,
(𝛿2 − 𝛿3)𝐼𝐶

𝐶2
}}

𝑢∗3 =𝑚𝑎𝑥{0,𝑚𝑖𝑛{1,
(𝛿5𝑆𝑆 + 𝛿6𝐼𝑆 )

𝐶3
}}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Proof. If ( , 𝑢) denotes an optimal solution for an optimal control problem, then the existence of a nontrivial vector function 𝛿 =
(𝛿1, 𝛿2, 𝛿3, 𝛿4, 𝛿5, 𝛿6, 𝛿7) is guaranteed. This vector function satisfies the following set of equations.

𝑑𝛿

𝑑𝑡
= − 𝜕(𝑡, , 𝑢, 𝛿)

𝜕 ,

where  = (𝑆𝐶, 𝐼𝐶 , 𝑇𝐶 , 𝑀, 𝑆𝑆, 𝐼𝑆 , 𝑃 ), with transversality conditions: 𝛿𝑖(𝑡𝑓 ) = 0, 𝑖 = 1, 2, ..., 7.
Therefore, the corresponding adjoint system can be expressed as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝛿1
𝑑𝑡

= 𝛾𝑐(1 − 𝑢1)𝑃 (𝛿1 − 𝛿2) + 𝜇𝑐𝛿1,

𝑑𝛿2
𝑑𝑡

= −𝐴1 + (𝛿𝑐 + 𝑢2 + 𝜇𝑐)𝛿2 − (𝛿𝑐 + 𝑢2)𝛿3 − 𝛾𝑚𝛿4,

𝑑𝛿3
𝑑𝑡

= −𝜆𝛿1 + (𝜆+ 𝜇𝑐)𝛿3,
𝑑𝛿4
𝑑𝑡

= 𝜇𝑚𝛿4 + (𝛾𝑠𝑆𝑆 )(𝛿5 − 𝛿6),
𝑑𝛿5
𝑑𝑡

= −𝐴2 + 𝛾𝑠𝑀(𝛿5 − 𝛿6) + (𝜇𝑠 + 𝑢3)𝛿5,
𝑑𝛿6
𝑑𝑡

= −𝐴2 + (𝜇𝑠 + 𝑢3)𝛿6 − 𝛾𝑝𝛿7,

𝑑𝛿7
𝑑𝑡

= 𝛾𝑐(1 − 𝑢1)(𝛿1 − 𝛿2)𝑆𝐶 + 𝜇𝑝𝛿7.

To derive the optimality conditions, we calculate the derivative of the Hamiltonian function (19) for the control variables and solve 
for the point where the derivative is zero.

𝜕(𝑡, , 𝑢, 𝛿)
𝜕𝑢

= 0.

This leads to the following expression:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕
𝜕𝑢1

= 𝐶1𝑢1 + (𝛿1 − 𝛿2)𝛾𝑐𝑆𝐶𝑃 = 0,

𝜕
𝜕𝑢2

= 𝐶2𝑢2 + (𝛿3 − 𝛿2)𝐼𝐶 = 0,

𝜕
𝜕𝑢3

= 𝐶1𝑢1 − 𝛿5𝑆𝑆 − 𝛿6𝐼𝑆 = 0.

Solving the equations for 𝑢∗1(𝑡), 𝑢
∗
2(𝑡), and 𝑢∗3(𝑡), we can draw the following conclusion:

𝑢∗1 =𝑚𝑎𝑥{0,𝑚𝑖𝑛{1,
(𝛿2 − 𝛿1)𝛾𝑐𝑆𝐶𝑃

𝐶1
}},

𝑢∗2 =𝑚𝑎𝑥{0,𝑚𝑖𝑛{1,
(𝛿2 − 𝛿3)𝐼𝐶

𝐶2
}},

𝑢∗3 =𝑚𝑎𝑥{0,𝑚𝑖𝑛{1,
(𝛿5𝑆𝑆 + 𝛿6𝐼𝑆 )

𝐶3
}}.

6. Numerical simulations and discussions

We will present the results of numerical simulations performed to analyse both the local and global stabilities of the non-control 
12

model, as well as simulations addressing the optimal control problem. Additionally, we will compare the outcomes under two different 
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Fig. 3. The global stability of the dynamics of infected cattle in the absence of intervention strategies: (a) Global stability of disease-free equilibrium and (b) Global 
stability of endemic equilibrium.

scenarios: one incorporating optimal control and the other involving no control at all. The simulations were conducted using the 
parameter values specified in Table 1.

6.1. Global stability in the absence of intervention strategies

The model was analysed in the absence of intervention strategies to ascertain the progression of the disease dynamics in cattle. 
Fig. 3 indicates that both the Fascia-free equilibrium and the endemic equilibrium demonstrate global stability. The global stability 
of the Fasciola hepatica-free equilibrium implies that the parasitic liver fluke cannot establish or maintain an infection in cattle over 
time. This suggests that the factors affecting the parasite’s transmission and survival are not conducive to its spread or persistence. 
The global stability of the Fasciola hepatica endemic equilibrium indicates that the parasite has established a long-term relationship 
with its hosts, likely evolving strategies to ensure its survival without causing severe harm.

6.2. Optimal control simulation

The fourth-order Runge-Kutta backward scheme is used to solve the control model numerically. The optimal control simulation is 
conducted for 100 days. The values for weight constants and cost constants used in the simulations are 𝐴1 = 800, 𝐴2 = 500, 𝐶1 = 100, 
𝐶2 = 85, and 𝐶3 = 90. To see the impact that each control measure has on the eradication of the Fasciola hepatica disease, we assessed 
the efficiency of four control strategies. Our objective was to determine the most favourable mix of such interventions.

Strategy A: Pasture management (𝑢1) and cattle treatment (𝑢2).
Strategy B: Pasture management (𝑢1) and molluscicides (𝑢3).
Strategy C: Cattle treatment (𝑢2) and molluscicides (𝑢3).
Strategy D: Combine all three controls.

6.2.1. Strategy A: optimal use of pasture management and cattle treatment

In this case, shown in Fig. 4, pasture management (𝑢1) and treatment of infected cattle (𝑢2) will optimize the objective function 
𝐽 while setting the value of the molluscicide control (𝑢3) at zero. Fig. 4(a) indicates that the simultaneous implementation of pasture 
management and cattle treatment interventions results in an elevated number of susceptible cattle compared to the non-control group. 
In contrast, Fig. 4(b) illustrates that the implementation of these combined interventions leads to a decrease in the number of cattle 
infected with the disease. Fig. 4(c) shows that the number of treated cattle initially increases over the first five days but then gradually 
decreases to zero. Fig. 4(e) indicates that this approach necessitates maintaining maximum cattle treatment throughout almost the 
entire intervention period, while pasture management should be at its peak during the initial 50 days and then gradually diminish to 
zero. Studies [46,47] confirm that effective pasture management and regular anthelmintic treatment for infected cattle significantly 
reduce disease prevalence and transmission.

6.2.2. Strategy B: optimal use of pasture management (𝑢1) and molluscicides (𝑢3)

Fig. 5 presents the simulation results of the optimal use of pasture management (𝑢1) and molluscicides (𝑢3). Fig. 5(a) highlights a 
significant contrast in the count of susceptible cattle between the control and non-control models, underscoring the effectiveness of 
this strategy. The observations from Figs. 5(b), 5(c) and 5(d) further support this, showing a substantial reduction in the total number 
of infected cattle (𝐼𝐶 ), treated cattle (𝑇𝐶 ) and the total snail population (𝑁𝑆 ) are significantly reduced when the optimal controls 
13

are employed, in contrast to in the absence of controls. As shown in Fig. 5(e), this strategy requires maintaining the control profile 
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Fig. 4. The optimal combined effect of implementing pasture management (𝑢1(𝑡)) and cattle treatment (𝑢2(𝑡)) for: (a) susceptible cattle, (b) infected cattle, (c) treated 

cattle, (d) total snail, and (e) control profile.
14
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for pasture management (𝑢1) and the use of molluscicides (𝑢3) at their maximum levels for approximately 90% and 95% of the 100 
days, respectively.

6.2.3. Strategy C: optimal use of treatment (𝑢2) and molluscicides (𝑢3)

In order to minimize the objective functional 𝐽 , we perform simulations in Fig. 6 representing the treatment of infected cattle 
(𝑢2) combined with molluscicide use while setting the pasture management (𝑢3) practice to zero. It is noted from Fig. 6(a) that the 
number of susceptible cattle rises due to controls in comparison with a model with no controls. Furthermore, Fig. 6(b) shows that 
under control, the number of cattle infected by fasciola hepatica drops dramatically. It is also evident from Fig. 6(c) that the number 
of treated cattle increases tremendously in the case with controls, especially within a very short time. Fig. 6(d) illustrates a substantial 
decline in the snail population when implementing this control strategy. Fig. 6(e) additionally illustrates the control profiles for the 
treatment of infected cattle (𝑢2) and molluscicides (𝑢3). The analysis suggests that the treatment control consistently maintains its 
upper bound of 100% for 95 days. On the other hand, the molluscicide control reaches its maximum level of 100% throughout the 
entire implementation period.

6.2.4. Strategy D: optimal use of pasture management, treatment, and molluscicides

Under this strategy shown in Fig. 7, we use all three controls, namely 𝑢1 , 𝑢2, and 𝑢3, to optimize the objective function 𝐽 . Fig. 7(a) 
depicts the use of controls in the model solution results in a more pronounced rise in the number of susceptible cattle compared 
to the non-control model solution. Including recovered cattle within the susceptible population can account for this phenomenon. 
Figs. 7(b), 7(c), and 7(d) illustrate that all three of these optimal controls must be used in concert in order to eradicate the disease in 
both the cattle and snail populations. In Fig. 7(e), in which pasture management is maintained strictly at a maximum level of 100% 
for 95 days, administering treatment is at a maximum of 100% for 52 days. The possibility of molluscicide control continuously stays 
at a maximum level of 100% until the end of 100 days, when the optimum solution may be attained. It is highly effective when these 
three controls are put together to reduce infected cattle, compared to a combination of two control measures.

6.3. Cost-effectiveness analysis

The cost-effectiveness analysis will balance the costs against outcomes to guide resource allocation and policy decision-making 
for infection control by Fasciola hepatica in cattle. An incremental cost-effectiveness ratio was used in a cost-effectiveness analysis 
comparing the differences in total costs with a view to indicating the best strategy for controlling Fasciola hepatica in cattle. The ICER 
may be defined as the ratio of the difference in cost between strategies 𝑖 and 𝑗, divided by the difference in the number of averted 
infections between those strategies [48,49]. Hence, when two competing strategies are being compared, strategy with 𝑖 and strategy, 
say with 𝑗, where strategy is more effective than strategy, the computation of ICER values is as follows:

𝐼𝐶𝐸𝑅 = 𝑇𝐶(𝑖)
𝑇𝐴(𝑖)

.

𝐼𝐶𝐸𝑅(𝑗) = 𝑇𝐶(𝑗) − 𝑇𝐶(𝑖)
𝑇𝐴(𝑗) − 𝑇𝐴(𝑖)

.

Here the total costs (𝑇𝐶) and the total cases averted (𝑇𝐴), during a given period for strategy 𝑖 for 𝑖 =𝐴, 𝐵, 𝐶, 𝐷.
Based on the simulation results, we arrange the control strategies in ascending order of effectiveness in terms of infections averted. 

This ranking procedure reveals that Strategy 𝐷 resulted in the lowest number of infections averted, followed by Strategies 𝐴, 𝐶 , and 
𝐵 (Table 3). Using this ranking, we initially compare the ICER between Strategy 𝐷 and Strategy 𝐴 as follows:

𝐼𝐶𝐸𝑅(𝐷) = 9.6074 × 105

5.1348 × 103
= 187.202.

𝐼𝐶𝐸𝑅(𝐴) = 6.2737 × 105 − 9.6074 × 105

5.1369 × 103 − 5.1348 × 103
= −15879.5238.

The lower ICER for strategy 𝐴 indicates that strategy 𝐷 is strongly dominated by strategy 𝐴. It can be inferred that Strategy 𝐴 is more 
cost-effective than Strategy 𝐷. As a result, Strategy 𝐷 is deemed unsuitable, and the analysis proceeds by evaluating the comparison 
between Strategy 𝐴 and Strategy 𝐶 .

𝐼𝐶𝐸𝑅(𝐴) = 6.2737 × 105

5.1369 × 103
= 122.087.

𝐼𝐶𝐸𝑅(𝐶) = 6.4329 × 105 − 6.2737 × 105

5.6423 × 103 − 5.1369 × 103
= 31.521.

Based on this inference, it can be concluded that Strategy 𝐴 is both more expensive and less effective compared to Strategy 𝐶 . 
Consequently, Strategy 𝐴 is eliminated from further analysis, and the focus shifts to comparing Strategy 𝐶 with Strategy 𝐵.

𝐼𝐶𝐸𝑅(𝐶) = 6.4329 × 105

5.6423 × 103
= 113.989.

7.1606 × 105 − 6.4329 × 105
15

𝐼𝐶𝐸𝑅(𝐵) =
1.2289 × 104 − 5.6423 × 103

= 12.88.
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Fig. 5. The optimal combined effect of implementing pasture management (𝑢1(𝑡)) and molluscicides (𝑢3(𝑡)) for: (a) susceptible cattle, (b) infected cattle, (c) treated 

cattle, (d) total snail, and (e) control profile.
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Fig. 6. The optimal combined effect of implementing cattle treatment (𝑢2(𝑡)) and molluscicides (𝑢3(𝑡)) for: (a) susceptible cattle, (b) infected cattle, (c) treated cattle, 

(d) total snail, and (e) control profile.
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Fig. 7. The optimal combined effect of implementing pasture management (𝑢1(𝑡)), cattle treatment (𝑢2(𝑡)) and molluscicides (𝑢3(𝑡)) for: (a) susceptible cattle, (b) 

infected cattle, (c) treated cattle, (d) total snail, and (e) control profile.
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Table 3

Total amount of Fasciola hepatica infection averted and total cost for all strategies.

Strategies Total infection averted Total cost ($)

Strategy 𝐷 (control 𝑢1, 𝑢2 and 𝑢3) 5.1348 × 103 9.6074 × 105

Strategy 𝐴 (control 𝑢1 and 𝑢2) 5.1369 × 103 6.2737 × 105

Strategy 𝐶 (control 𝑢2 and 𝑢3) 5.6423 × 103 6.4329 × 105

Strategy 𝐵 (control 𝑢1 and 𝑢3) 1.2289 × 104 7.1606 × 105

These results show that strategy 𝐵 is more cost-effective and efficient than strategy 𝐶 . Thus, Strategy 𝐵, including pasture management 
and molluscicides, becomes the best among the four strategies in that order, followed by strategies 𝐶 , 𝐴, and 𝐷.

7. Conclusion

A mathematical model for an optimal control model for fasciola hepatica disease in cattle populations was formulated and anal-
ysed. The model provides a more profound comprehension of disease transmission and explores potential preventative and control 
approaches to slow disease progression. The endemic equilibrium of the model is globally asymptotically stable for 𝑅0 > 1 and veri-
fied using the Volterra-Lyapunov approach. The sensitivity index of the Fasciola hepatica reproduction number to model parameters 
is calculated to assess the impact of each parameter. In the model, the most significant contributing parameter is the snail death rate, 
which indirectly affects the reproduction number of Fasciola hepatica.

The model considered three control measures in the optimum control problem: management of pastures, treatment of infected 
cattle, and the use of molluscicide. Necessary conditions for optimal control of the liver fluke disease are determined within the 
framework of Pontryagin’s maximum principle. The numerical simulations for both double and triple-control strategies are carried out. 
All strategies under consideration turn out to be effective while reducing the infected cattle population. However, combined pasture 
management and treatment along with molluscicide significantly reduced the diseases in cattle, compared with double strategies. 
This result confirms the findings of Madubueze et al. [39].

Furthermore, it is shown in simulations that the value of the control parameter for the molluscicide intervention should always be 
at its maximum value for better control. This proves that molluscicide use plays a significant role in the control of fasciola hepatica, 
and this agrees with a previously done study by Nur et al. [50]. This is further supported by a study [51], which indicated that in areas 
where fascioliasis is endemic, the control of the population of the intermediate snail host is very promising in reducing transmission. 
Again, molluscicides against the snail hosts have also been a prospective tool in the control of fluke infection [52].

The cost-effectiveness analysis was done using the incremental cost-effectiveness ratio (ICER) to see the level of benefit and cost-
effectiveness of these intervention strategies. The results indicate that combined pasture management and molluscicides were the most 
efficient and cost-effective strategies to eradicate Fasciola hepatic. The suggestions by the authors in [53] support the findings, where 
the use of different combinations of anthelmintics—probably by rotational strategies—will have better coverage against immature 
and adult flukes. We finally suggest that policymakers adopt a combined strategy involving pasture management and molluscicide 
intervention, as that will be the most cost-effective approach to controlling Fasciola hepatica disease.
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