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Abstract: Venezuelan equine encephalitis virus (VEEV) is a re-emerging virus of human, agriculture,
and bioweapon threat importance. No FDA-approved treatment is available to combat Venezuelan
equine encephalitis in humans, prompting the need to create a vaccine that is safe, efficacious,
and cannot be replicated in the mosquito vector. Here we describe the use of a serotype ID VEEV
(ZPC-738) vaccine with an internal ribosome entry site (IRES) to alter gene expression patterns.
This ZPC/IRES vaccine was genetically engineered in two ways based on the position of the IRES
insertion to create a vaccine that is safe and efficacious. After a single dose, both versions of
the ZPC/IRES vaccine elicited neutralizing antibody responses in mice and non-human primates
after a single dose, with more robust responses produced by version 2. Further, all mice and
primates were protected from viremia following VEEV challenge. These vaccines were also safer in
neonatal mice than the current investigational new drug vaccine, TC-83. These results show that
IRES-based attenuation of alphavirus genomes consistently produce promising vaccine candidates,
with VEEV/IRES version 2 showing promise for further development.
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1. Introduction

Venezuelan equine encephalitis (VEE) is a re-emerging disease of equids and people with a long
history of explosive, mosquito-borne outbreaks as well as endemic disease. Major outbreaks occur
when equine-amplification-competent strains emerge from enzootic, sylvatic progenitors that circulate
among rodents transmitted by arboreal mosquitoes [1]. These epizootics/epidemics, typically involving
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subtype IAB and IC strains of VEE virus (VEEV) occur periodically when enzootic, subtype ID strains
mutate to gain the equine-amplification-competent and equine-virulent phenotypes [2]. These subtypes
are primarily based upon similar serological differences but also upon their ability to cause epidemics.
The last major outbreak occurred in Venezuela and Colombia in 1995, affecting approximately 100,000
people and large numbers of equids [3]. However, an estimated 10,000 human cases also occur annually
via endemic spillover from the rodent-mosquito cycles that occur in forests, but also periurban areas
throughout much of Latin America [4,5].

Unlike many arboviral diseases, VEE typically causes symptomatic infection, ranging from a
nonspecific flu-like illness that resolves in about one week to a more severe form seen in 5–15% of cases
that involves the central nervous system, especially in children. This severe form is often accompanied
by permanent neurologic sequelae or death, and infection also leads to severe immunosuppression.
Overall case-fatality rates are typically less than 1%, but teratogenic effects also result in many stillborn
deaths during outbreaks [6]. In addition to being a deadly re-emerging virus, VEEV is also a highly
efficient biological weapon capable of disabling large populations due to its high degree of stability
when delivered as an aerosol and its high degree of infectivity via the respiratory route. It was therefore
highly developed by both the United States and the former Soviet Union during the cold war [7].

Despite its importance as a re-emerging and biothreat virus, no licensed products exist to prevent
or treat VEEV infection. Although experimental vaccines have been developed for many decades,
only three have been used in clinical trials. The attenuated TC-83 strain of VEEV, developed by serial cell
culture passage of the epidemic Trinidad donkey (TRD) strain [8], has been used as an Investigational
New Drug (IND) product in humans for several decades and both live forms and inactivated forms
have been used for nearly 50 years in humans and equids (licensed for the latter). Although considered
highly effective in equids [9,10], TC-83 is reactogenic in humans and a single dose often fails to induce
seroconversion, requiring a boost with an inactivated vaccine form called C-84 [11]. Vaccines report a
variety of adverse events, some severe, like rapid fever onset, headache, photophobia. TC-83 also has a
number of exclusion criteria, including having egg allergies, being pregnant, or having a first relative
diagnosed with diabetes. Interestingly, alternations in glucose metabolism have been modeled in TC-83
vaccinated Golden Syrian hamsters [12] and rhesus macaques [13]. Due to the high level of severe
adverse events, TC-83 is only used for laboratory scientists at high risk of infection. The reactogenicity
of TC-83 probably results from the reliance on only two point mutations for attenuation [14]. The second
vaccine to enter clinical trials, called strain V3526, was a rationally attenuated version of the TRD
strain with a PE2 viral polyprotein cleavage-signal mutation, combined with a second-site suppressor
mutation [15] (Figure 1). This vaccine, although more stably attenuated than TC-83 [16], also proved
reactogenic in a Phase 1 clinical trial, with adverse events including headache, fever, malaise, and sore
throat [17].

More recently, a DNA vaccine that expresses codon-optimized versions of the E3-E2-6K-E1
structural protein genes of VEEV strain TRD was developed. This vaccine induces high levels of
neutralizing antibodies in rodents and nonhuman primates and protects against VEEV challenge [18].
In a Phase 1 trial, 2–3 doses of the DNA administered intramuscularly or intradermally with an
electroporation device were well-tolerated, and induced neutralizing antibodies responses in volunteers
receiving low or high doses [19].

Although the DNA vaccine described above could be useful in some situations, the requirement
for multiple doses is not optimal for controlling an explosive arboviral outbreak or for responding to a
biothreat situation. We therefore have focused mainly on live-attenuated vaccines for VEE, starting
with chimeric alphaviruses [20], and later progressing to attenuation via alterations to the expression
patterns of the alphavirus open reading frames (Figure 1). These include: (1) inactivation of the
subgenomic promoter to eliminate the molar excess of subgenomic RNA that results in high levels of
structural protein expression, combined with the introduction of a picornavirus (encephalomyocarditis
virus) internal ribosome entry site (IRES) to allow for translation of the structural polyprotein from
genomic RNA (Version 1), and; (2) translocation of the capsid protein gene to a separate open reading
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frame downstream of the envelope glycoprotein genes and behind the IRES to downregulate expression
of capsid only (Version 2). This approach was first used with the TC-83 live-attenuated VEE vaccine
strain [21]. The subgenomic RNA was eliminated as expected, and mosquito infectivity was also
eliminated because the IRES is not efficiently recognized by insect ribosomes. This Version 2 of
VEEV/IRES was slightly more immunogenic [22].

Vaccines 2020, 8, x 2 of 16 

 

when equine-amplification-competent strains emerge from enzootic, sylvatic progenitors that 
circulate among rodents transmitted by arboreal mosquitoes [1]. These epizootics/epidemics, 
typically involving subtype IAB and IC strains of VEE virus (VEEV) occur periodically when 
enzootic, subtype ID strains mutate to gain the equine-amplification-competent and equine-virulent 
phenotypes [2]. These subtypes are primarily based upon similar serological differences but also 
upon their ability to cause epidemics. The last major outbreak occurred in Venezuela and Colombia 
in 1995, affecting approximately 100,000 people and large numbers of equids [3]. However, an 
estimated 10,000 human cases also occur annually via endemic spillover from the rodent-mosquito 
cycles that occur in forests, but also periurban areas throughout much of Latin America [4,5]. 

Unlike many arboviral diseases, VEE typically causes symptomatic infection, ranging from a 
nonspecific flu-like illness that resolves in about one week to a more severe form seen in 5–15% of 
cases that involves the central nervous system, especially in children. This severe form is often 
accompanied by permanent neurologic sequelae or death, and infection also leads to severe 
immunosuppression. Overall case-fatality rates are typically less than 1%, but teratogenic effects also 
result in many stillborn deaths during outbreaks [6]. In addition to being a deadly re-emerging virus, 
VEEV is also a highly efficient biological weapon capable of disabling large populations due to its 
high degree of stability when delivered as an aerosol and its high degree of infectivity via the 
respiratory route. It was therefore highly developed by both the United States and the former Soviet 
Union during the cold war [7]. 

Despite its importance as a re-emerging and biothreat virus, no licensed products exist to 
prevent or treat VEEV infection. Although experimental vaccines have been developed for many 
decades, only three have been used in clinical trials. The attenuated TC-83 strain of VEEV, developed 
by serial cell culture passage of the epidemic Trinidad donkey (TRD) strain [8], has been used as an 
Investigational New Drug (IND) product in humans for several decades and both live forms and 
inactivated forms have been used for nearly 50 years in humans and equids (licensed for the latter). 
Although considered highly effective in equids [9,10], TC-83 is reactogenic in humans and a single 
dose often fails to induce seroconversion, requiring a boost with an inactivated vaccine form called 
C-84 [11]. Vaccines report a variety of adverse events, some severe, like rapid fever onset, headache, 
photophobia. TC-83 also has a number of exclusion criteria, including having egg allergies, being 
pregnant, or having a first relative diagnosed with diabetes. Interestingly, alternations in glucose 
metabolism have been modeled in TC-83 vaccinated Golden Syrian hamsters [12] and rhesus 
macaques [13]. Due to the high level of severe adverse events, TC-83 is only used for laboratory 
scientists at high risk of infection. The reactogenicity of TC-83 probably results from the reliance on 
only two point mutations for attenuation [14]. The second vaccine to enter clinical trials, called strain 
V3526, was a rationally attenuated version of the TRD strain with a PE2 viral polyprotein cleavage-
signal mutation, combined with a second-site suppressor mutation [15] (Figure 1). This vaccine, 
although more stably attenuated than TC-83 [16], also proved reactogenic in a Phase 1 clinical trial, 
with adverse events including headache, fever, malaise, and sore throat [17]. 

 
Figure 1. Schematic diagram of the ZPC/IRES vaccine constructs. The subgenomic promoter ablation 
mutations are shown as lower-case letters. The corresponding amino acid sequence confirming 
noncoding mutations is shown between the wild type and mutant sequences. The inserted stop codon 

Figure 1. Schematic diagram of the ZPC/IRES vaccine constructs. The subgenomic promoter ablation
mutations are shown as lower-case letters. The corresponding amino acid sequence confirming
noncoding mutations is shown between the wild type and mutant sequences. The inserted stop codon
is shown in bold. * indicates stop codon mutated from ochre to opal. ** indicates an inserted ochre stop
codon. Genomic schematics of versions 1 and 2 show the locations of the IRES insertion in lieu of the
subgenomic promoter or just upstream of the capsid gene, respectively.

Although the original IRES-based attenuation was not successful in terms of immunogenicity
using the attenuated TC-83 backbone, the application of this approach to wild-type VEEV strains
demonstrated a high degree of attenuation, immunogenicity, and efficacy. Starting with an enzootic
subtype IE VEEV strain that represents the cause of extensive endemic human VEE in Mexico and
Central America [4,23], IRES-based, live-attenuated vaccine candidates proved highly attenuated
and immunogenic after a single immunization of mice, and provided full protection against lethal
challenge [24]. Version 1 of this vaccine produced no detectable disease in cynomolgus macaques
(Macaca fascicularis), the preferred nonhuman primate model for VEE, and protected against aerosol
challenge including fever and viremia (this nonhuman primate model, like most human infections,
is not lethal) [25].

Although VEEV subtype IE is an important human and sometimes also an equine pathogen [26],
its southern distribution ends in western Panama, where enzootic subtype ID occurs southward
through eastern Panama, Venezuela, Colombia, Ecuador, Peru, and Bolivia [4]. Furthermore,
subtype ID strains are the progenitors of subtype IAB and IC strains, which are responsible for
all major epizootics/epidemics ever documented [27]. There is also significant antigenic divergence
between subtypes ID and IE, as reflected in weak cross-neutralizing antibody titers after infection or
vaccination [28,29]. Furthermore, although the subtype IAB-based V3526 vaccine strain protects mice
against aerosol challenge with a subtype IE VEEV strain, it did not significantly limit challenge virus
replication [29].

Based on the potential limitations of a subtype IE-based vaccine to protect against subtypes IAB, IC,
and ID, we developed additional VEE vaccines based on these same IRES-based attenuation approaches
but using ID strain ZPC738 [30], a close relative of subtypes IAB and IC [31,32]. Here, we describe the
safety, immunogenicity and efficacy of these vaccines as determined in mice and cynomolgus macaques.
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2. Materials and Methods

2.1. Cell Lines and Viruses

Vero-76 cells were maintained in Dulbecco’s Minimal Essential Media (DMEM) supplemented with
5% fetal bovine serum (FBS) and 1% penicillin/streptomycin (P/S) within a 37 ◦C incubator containing
5% CO2. All viruses used in this study were rescued from infectious cDNA clones. ID ZPC-738
VEEV [32] and IC 3908 VEEV [33] were rescued from cDNA clones as described below.

2.2. Creating the IRES Vaccines and Rescue

Creating the ZPC/IRES vaccines was done by modifying the original cDNA clone of the
ZPC full-length infectious clone pMI-738 using standard molecular techniques as previously
descried [24]. For ZPC/IRESv1, site-directed mutagenesis of the nsP4-subgenomic promoter
region was done using a fusion PCR reaction conducted with the following primer set:
5′gATtACgtTgTAtGGaTgAtaaAACGTTACTGGCCGAAGCCGCTTGGAA3′ and 5′TTttaTcAtCCaTA
cAacGTaATcGGGGCCCCTCTCAGGTAGCTGAAT3′. The lower-case letters denote mutations.
The EMCV IRES sequence was obtained from the VEEV TC-83/IRESv1 clone previously made [21,22].
Naturally occurring SwaI and AflII sites were used to insert the mutated subgenomic promoter and
IRES into the pMI-738 cDNA clone. ZPC/IRESv2 was created by fusing the EMCV IRES between the
E1 and capsid genes. A TAA stop codon was inserted immediately after E1 followed by a short 3′ UTR
sequence upstream of the start of the IRES sequence. A start codon was inserted immediately before
the capsid gene. Naturally occurring AvrII, NdeI, and NotI restriction sites in the pMI-738 cDNA were
used to assemble the fusion PCR fragments. ZPC/IRES vaccines with individual mutations were also
engineered using similar methods using plasmids encoding the desired mutation.

All ZPC/IRES vaccine cDNA clones were fully sequenced by Sanger sequencing and the contigs
were assembled into a consensus sequence to ensure only the inserted sequences were present.
Viral RNA was obtained by in vitro transcription using an SP6 promoter (mMessage mMachine SP6
transcription kit, Invitrogen, Carlsbad, CA, USA) on a NotI-linearized cDNA template. Vero cells
were electroporated with viral RNA as previously described [24]. Supernatant was collected when
cytopathic effects were observed and was clarified by centrifugation prior to aliquoting samples and
storing at −80 ◦C.

2.3. Titrations

VEEV virus and vaccine titrations were done as previously described [24]. Briefly, Vero cell
monolayers in 6- or 12-well plates were infected with serial dilutions of virus supernatant or serum in
DMEM supplemented with 2% FBS and 1% P/S. After 1-hour adsorption, monolayers were overlaid
with dilution media supplemented with 0.4% agarose and incubated in a 37 ◦C incubator containing
5% CO2. Monolayers were fixed with formalin and plaques were visualized using a crystal violet
stain after removing the agarose overlay. Plaques were counted in each well and titers are reported as
plaque forming units (pfu)/milliliter (mL).

2.4. Plaque Reduction Neutralization Tests

Plaque reduction neutralization tests were performed using sera from vaccinated mice as described
in Rossi et al. [24]. Briefly, samples were diluted 1/10 in PBS prior to heat inactivation at 56 ◦C for
1 h. Serial two-fold dilutions of sera were performed in media prior to adding 800 pfu of virus.
After incubating the sera and viruses for an hour at 37 ◦C, the mixture was added to a monolayer
of Vero cells for hour. An overlay containing 0.4% agarose in media was added to each well and
incubated for 48 h. Plaques were visualized by crystal violet staining. Average un-neutralized plaque
counts varied between 24 and 35, from which the 50% (PRNT50) and 80% (PRNT80) neutralization
levels were calculated.
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2.5. Replication Curves

Semiconfluent Vero monolayers in T25 flasks were infected with either TC-83, ZPC-738,
ZPC/IRESv1, or ZPC/IRESv2 at a multiplicity of infection (MOI) equal to 0.1 in triplicate. After 1 h,
the infection was washed thrice with cell culture media and a sample was taken to determine the level
of residual virus after infection. At 6, 12, 24, and 48 h post infection, a small sample was removed from
the flask and frozen at −80 ◦C. To create the growth curve, the initial inoculum and all samples were
titrated on Vero monolayers in 12-well plates [24].

2.6. Serial Passage in Vero Cells

ZPC/IRESv1 was serially passaged in triplicate in T25 flasks of Vero cells at an MOI of 0.1 Forty-eight
hours after infection, each replicate was titrated prior to reseeding a new set of Vero cells into a T25 at
an MOI of 0.1 to initiate the next passage. At the end of 10 passages, viral RNA was isolated following
TRIzol (Invitrogen, Carlsbad, CA, USA) extraction of supernatant. The entire coding region was Sanger
sequenced to identify consensus mutations. Mutations observed in the E2 protein, either alone or
together, were incorporated into the ZPC/IRESv1 and ZPC/IRESv2 cDNAs.

2.7. Mouse Studies

All animal handling was conducted at UTMB in accordance with the UTMB Institutional Animal
Care and Use Committee approval (IACUC #0209068). Female CD1 mice were purchased from Charles
River Laboratories (Wilmington, MA, USA). Adult mice (aged 6–8 weeks) were used for vaccination
and immunogenicity studies similar to previous studies [24]. For vaccination, mice were anesthetized
with inhaled isoflurane, then injected subcutaneously in the scruff of the back with 100 µL of virus
diluted in DMEM supplemented with 2% FBS and 1% P/S. Vaccination dose was confirmed by back
titration of inocula to be 1 × 105 pfu/mouse. Challenge was achieved by delivering VEEV 3908 strain
diluted in PBS either subcutaneously (1 × 105 pfu/mouse) or intranasally (1 × 104 pfu, anesthetized
mice aspirated 20 µL of virus through the nares). Following vaccination and challenge, mice were
observed daily for signs of illness, which included lethargy, ruffled fur, hunched posture, and anorexia.
Individuals’ weights were also measured to quantify illness. Any mouse that exhibited signs of
neurological infection, including tremors, failure to right and partial hindlimb paralysis, or were unable
to reach food or water were humanely euthanized. Euthanized animals were recorded as having died
the following day.

To acquire serum to determine viremia or neutralizing antibody levels, blood was collected
from anesthetized mice by retro-orbital puncture with a heparinized micro-hematocrit capillary tube
(Fisher Scientific, Pittsburgh, PA, USA). In some cases, blood was collected into microfuge tubes
containing 225 µL of PBS to achieve a 1:10 dilution of plasma. Blood was centrifuged for 5 min at
3380× g, then diluted plasma was removed and frozen at −80 ◦C until needed.

Neurovirulence safety studies were done in six-day-old CD1 pups from litters randomized among
dams. These pups were inoculated intracranially with 20 µL of virus at a titer of 1 × 104 pfu/mouse,
and monitored daily for survival.

2.8. Nonhuman Primate Studies

Nonhuman primate (NHP) cynomologous macaques (Macaca fascicularis) were housed at Tulane
National Primate Research Center (TNPRC), which is an AAALAC-accredited facility. All work was
approved by the Tulane Institutional Animal Care and Use Committee (Protocol P0171).

Healthy NHPs weighing between 3–6 kg were screened and free of prior infection against
alphaviruses (Venezuelan and eastern equine encephalitis viruses, Sindbis, Semliki Forest,
and chikungunya viruses) as well as simian immunodeficiency virus, simian type D retrovirus
and simian T-lymphotropic virus. NHPs were housed in open metal caging allowing visual contact
with others in the room. A standard primate chow and fresh fruits and vegetables were provided daily.
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An intramuscular injection of ketamine hydrochloride for anesthetization was given prior to collecting
blood samples or vaccination.

Prior to the start of the study, some NHPs were implanted with a telemetric device as previously
described (Konigsberg Instruments, Pasadena, CA, USA) [25]. Buprenorphine was given during and
after the procedure for analgesia. Post-surgery, NHPs were monitored for signs of infection, lethargy,
anorexia, dehydration, and device rejection. Core body temperature was recorded wirelessly and
reported in one-hour observation intervals. Baseline temperatures were recorded for 6 days prior to
the aerosol challenge. Baseline data over a 24-h period were averaged to determine the temperature
threshold and deviations were recorded as 1.5 times higher or lower than the standard deviation for
each time. Each NHP served as its own temperature control through the use of collected pre-exposure
baseline data. NHPs that were not monitored telemetrically had rectal temperatures taken only daily
when anesthetized during a procedure.

NHPs assigned to the control group (N = 2) were given saline and those assigned the vaccine group
(N = 5) were given 1 × 105 pfu of ZPC/IRESv1, both in the upper deltoid with a single subcutaneous
injection of 100 µL. No signs of disease and distress were noted following vaccination. Blood samples
were taken by venipuncture on days 1, 10, 23, and 35 to determine neutralizing antibody levels.
Sera were clarified from this blood by centrifugation to determine PRNT titer.

Aerosol exposure to VEEV 3908 was performed on day 35 post vaccination. A head-only 16-liter
dynamic inhalation aerosol exposure was used to challenge each NHP as previously reported [34].
Collision and AGI samples were used to determine the infectious dose received by each NHP, which fell
in the range between 8 × 105 and 9 × 106 pfu. Animals were observed for signs of illness and
telemetrically monitored for temperature changes. Blood was taken for the first 3 days following
challenge to determine viremia. On day 24 post challenge, NHPs were euthanized by a pre-dose of
ketamine hydrochloride followed by an overdose of sodium pentobarbital. Necropsies were performed
to determine any gross pathological changes.

2.9. Statistical Analyses

All graphs and statistical analyses were created and performed using GraphPad software v8.0.
Significance in growth curve titers was determined by a two-way ANOVA with Tukey posthoc tests
to compare multiple groups. Vaccine viremia and NHP fever-hours were compared individually
using Student’s t-test. For values below or above the LOD, one-half of the limit of detection (LOD)
was recorded and statistics were conducted. Survival significance was determined by Log-rank
(Mantel-Cox) test comparing two groups.

3. Results

3.1. Creation and Characterization of VEEV ZPC/IRES Vaccines

Based on the success of other IRES-containing alphavirus vaccines [24,35,36], the ID VEEV strain
was chosen for additional characterization. The parental pMI-738 infectious clone encoding the
ZPC-738 virus was chosen as it is well characterized in vitro and in vivo [32]. Two variations of
the ZPC/IRES vaccine were constructed using standard molecular cloning techniques, varying in
the functionality of the subgenomic promoter and location of the inserted IRES sequence (Figure 1).
In ZPC/IRESv1 (Version 1), the subgenomic promoter was inactivated with the maximum possible
number of synonymous mutations while preserving the amino acid sequence of the essential nsP4
protein. An additional stop mutation was also engineered into the construct. This eliminated
production of subgenomic RNA, which is normally synthesized in molar excess compared to the
genomic RNA. An IRES from encephalomyocarditis virus was inserted between the open reading
frames (ORFs) to allow for translation of the structural proteins from the genomic RNA. In ZPC/IRESv2
(Version 2), the subgenomic promoter was left intact for efficient production of the subgenomic RNA
transcript encoding the structural genes. The highly immunogenic envelope glycoproteins E3-E1 were
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not manipulated. Rather, the IRES sequence was inserted between E1 and capsid genes and capsid
was shifted to the end of the genome to prevent its expression in insect cells.

To determine the replication kinetics of the ZPC/IRES vaccines and ensure the IRES insertion did
not render a replication-defective vaccine, Vero cells were infected at multiplicity of infection (MOI)
equal to 0.1 along with the TC-83 and ZPC-738 controls. TC-83 replicated to the highest titers at all
timepoints tested significantly higher than all other groups with the exception of immediately after
infection (1 h post infection [hpi], Figure 2). ZPC-738 amplified to high titers but about 10-fold lower
than TC-83, with a peak of 8.3 log10 pfu/mL at 24 hpi. By 48 hpi, there was no statistical difference
between ZPC-738, ZPC/IRESv1, or ZPC/IRESv2. At all timepoints tested, IRES vaccines replicated to
lower levels than either TC-83 or ZPC-738 with max titers of approximately 7.3 log10 pfu/mL. The only
statistical differences between ZPC/IRESv1 and ZPC/IRESv2 were noted at 6 hpi (p < 0.05) and 12 hpi
(p < 0.05).
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Figure 2. Log10-transformed in vitro replication curves. ZPC/IRES vaccine versions 1 and 2 (square
and diamond, respectively), ZPC-738 (X) or TC-83 vaccine (open circles) were amplified in Vero cells
in triplicate at an MOI of 0.1. Error bars denote standard error. Titers between ZPC/IRESv1 and
ZPC/IRESv2 were compared and significant differences are denoted by an asterisk (*, 2-way ANOVA
with Tukey multiple comparisons post-hoc test).

3.2. VEEV ZPC/IRES Are Immunogenic and Protective in Mice

To determine the immunogenicity in vivo, adult CD1 mice, which are commonly used for VEEV
vaccine testing, were used [24]. Mice were injected subcutaneously with 1 × 105 pfu of virus or
vaccine and monitored for loss of weight or signs of neurovirulence. Weights were measured daily
as they directly correlate with disease in this model; the only weight loss was measured in VEEV
ZPC-infected mice (Figure 3A). Blood was taken on days 1 and 2 post infection to determine viremia
levels. While ZPC-738 generated a high viremia on days 1 and 2, the ZPC/IRES vaccines produced
significantly lower viremia (Figure 3B, p > 0.001). Only 1 of 10 mice showed a low-level viremia
on days 1 and 2, in 10 mice on day 2. The viremia detected in ZPC/IRESv2-vaccinated mice was
significantly higher on both days 1 (p = 0.001) and 2 (p = 0.027) compared to ZPC/IRESv1-vaccinated
mice, and occurred in a higher percentage in the group (6 of 8 on day 1, and 5 of 7 on day 2). Mice were
subcutaneously challenged with 1 × 105 pfu of the lethal subtype IC strain 3908, isolated from a
1995 human case during an epidemic in Venezuela [3], 4 weeks after a single vaccination. All mice
retained their weight (Figure 3C), and failed to show any signs of disease and survived (Figure 3D).
In contrast, mock-vaccinated mice readily succumb to lethal infection following by a steady loss in
weight, resulting in euthanasia based upon humane endpoints.
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Figure 3. Vaccine efficacy in adult CD1 mice (A,B) Percent weight change following injection or
vaccination or lethal challenge with VEEV 3908 from a representative experiment. The key for panels
(A,B) are the same. (C) Viremia following virus infection or vaccination. Serum from blood collected
on days 1 or 2 was analyzed and data from 2 independent experiments are combined. Significance
directly comparing two groups was determined by unpaired t-tests; * p > 0.5, ** p > 0.01, *** p > 0.001.
The solid line grouping with the data points represents the mean. The dashed line represents the assay
limit of detection. (D) Survival in vaccinated groups following lethal challenge with VEEV 3908 from a
representative experiment.

Alphaviruses like VEEV that cause neurovirulent disease are often also highly infectious by the
respiratory route. To test whether the ZPC/IRES vaccine candidates can also protect against this
highly lethal route, adult CD1 mice were vaccinated with 1 × 105 pfu subcutaneously and challenged
intranasally with 1 × 104 pfu of 3908 one month later (Figure 4). Similar to a subcutaneous challenge,
all vaccinated mice were fully protected whereas mock-vaccinated mice succumbed to disease between
days 7 and 8 post-challenge.
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Figure 4. Survival in vaccinated mice following lethal intranasal 3908 challenge.
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In order to differentiate further the attenuation between ZPC/IRESv1 and ZPC/IRESv2,
murine neonatal neurovirulence and safety testing was performed. VEEV viruses are known to
be neurovirulent in neonates and any delay or lack of death is a measure of attenuation. Six-day-old
pups were injected intracranially with ZPC/IRES vaccines, PBS, TC-83, or ZPC-738, and survival was
recorded (Figure 5). As expected, no pups (0/12) survived ZPC-738 infection with uniform lethality
occurring on 2 dpi. Surprisingly, ZPC/IRESv2 also caused uniform lethality with all but one pup
succumbing by day 3 (0/12). Despite the curve similarity, there was a significant difference in the timing
of mortality between ZPC-738 and ZPC/IRESv2 (p > 0.001). Another clustering of survival occurred
between TC-83 and ZPC/IRESv1. Although no pups in either vaccination group survived, there was
no statistical difference between these curves, indicating that ZPC/IRESv1 has a neurovirulence profile
similar to the IND vaccine TC-83. One of the twelve pups injected with PBS died on day 1, presumably
the result of the inoculation procedure.
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Figure 5. Survival following intracranial injection in neonatal murine pups.

3.3. In Vitro Stability

To assess the stability of the ZPC/IRES vaccine candidates, ZPC/IRESv1 was passaged serially
10 times in Vero cells in three replicates at low multiplicity (MOI = 0.1), and then sequenced by
RT-PCR amplification followed by Sanger sequencing to detect changes in the consensus sequence.
Each replicate gained 6 consensus mutations in the nsP2, snP4 (both synonymous), E2, and E1 genes.
These mutations were nonsynonymous where two uncharged amino acids were replaced with arginine
residues. One partial mutation (resulting in a mixed SNP) in the IRES sequence was also observed
(Table 1).

Table 1. Summary of consensus mutations following ZPC/IRESv1 passaging.

Position/Gene
(Element) 4449/nsP2 7242/nsP4 7995/IRES 9300/E2 9327/E2 10925/E1

Wild-type a GTA GTG A GAG CAC GAA
Replicate #1 GTt b GTa T/A mix c GcG CgC aAA
Replicate #2 GTt GTa T/A mix GcG CgC aAA
Replicate #3 GTt GTa T/A mix GcG CgC aAA

Mutation Gly→ Gly Val→ Val n/a Glu→ Ala His→ Arg Glu→ Lys
a Unpassaged ZPC/IRESv1; b lower case letter indicates mutation; c chromatogram indicated mixed population at
this position.

The nonsynonymous E2 mutations (position 9300 as A76 and position 9327 as R85) were placed into
the ZPC/IRESv1 and ZPC/IRESv2 infectious cDNA clones, either singly or in combination, then used
to vaccinate 6–8-week-old CD1 mice to determine whether the vaccine’s phenotype has been altered
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(Figures 6 and 7). All mice tolerated the vaccine well. Blood was taken on days 1 and 2 post vaccination
to determine vaccine viremia (Figure 6). In general, the mutations incorporated into each ZPC/IRES
vaccine did not alter the average viremia titers significantly except between parental ZPC/IRESv1
and ZPC/IRESv1 A76 (p > 0.05) or parental ZPC/IRESv2 and ZPC/IRESv2 A76 (p > 0.01) on day 1 or
parental ZPC/IRESv1 and ZPC/IRESv1 A76 R85 (p > 0.5) on day 2. Interestingly, vaccines expressing
the A76, and to a lesser extent the R85, mutation also generated a higher percentage of viremic mice
compared to their parental vaccines.
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Figure 6. Viremia following vaccination with mutated ZPC/IRES vaccines. Individual data points
are shown in log10-transformed titers. The mean is denoted by a bar in each group. ZPC/IRESv1
and ZPC/IRESv2 are included as grayed out open circles as a comparison from data in Figure 3B.
Dashed line denotes limit of detection = 1.81 log10 pfu/mL.
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Figure 7. Mutant vaccine efficacy in adult CD1 mice. (A,B) show the percent of initial weight and
survival from ZPC/IRESv1-derived vaccines, respectively. The same key is used for panels (A,B).
(C,D) show the percent of initial weight and survival from ZPC/IRESv2-derived vaccines, respectively.
Error bars denote standard error. The same key is used for panels (C,D).
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Among all mutant vaccines, only the ZPC/IRESv1 A76/R85 mutant failed to protect against weight
loss and a fatal outcome (Figure 7). Indeed, there was no statistical difference in survival between
MOCK and ZPC/IRESv1 A76 R85 (Figure 7B, p = 0.75). ZPC/IRESv1 A76 R85-vaccinated mice also
lost considerable weight with the exception of one mouse that maintained >90% of its weight during
the same time period. All other vaccines fully protected mice from lethal challenge weight loss
and morbidity.

Because neutralizing antibody levels directly correlate with protection from alphaviral disease,
determining PRNT titers post vaccination is critically important. Sera from mice vaccinated once,
either 4- or 20-weeks prior were analyzed for their ability to neutralize ZPC-738 (Table 2). Seroconversion
was detected in the majority of ZPC/IRESv1 and ZPC/IRESv2 mice by week 4 with an average PRNT80

titer of 40 and 60.7, respectively. When tested on week 20, average titers rose but 100% seroconversion
was detected only in the ZPC/IRESv2-vaccinated group. Vaccines with mutations yielded mixed
immunogenicity by week 4; both A76 and R85 together or A76-alone in either ZPC/IRES vaccine
reduced PRNT80 titers to undetectable or barely detectable levels. ZPC/IRES vaccines with the R85
mutation, however, retained their immunogenicity.

Table 2. PRNT80 neutralization titers following ZPC/IRES vaccination of mice.

Vaccine PRNT80:
4-Weeks 1

% Group
Seroconvert N PRNT80:

20-Weeks
% Group

Seroconvert N

ZPC/IRESv1 40 ± 42.4 11/15 (73.3%) 15 142.2 ± 225 5/8 (62.5%) 8
ZPC/IRESv2 60.7 ± 55.7 12/15 (80%) 15 324 ± 241.8 10/10 (100%) 10

ZPC/IRESv1 A76, R85 <LOD 2 1/10 (10%) 10 ND 3 - -
ZPC/IRESv2 A76, R85 <LOD 0/10 (0%) 10 ND - -

ZPC/IRESv1 A76 31 ± 27 5/10 (50%) 10 ND - -
ZPC/IRESv2 A76 <LOD 1/10 (10%) 10 ND - -
ZPC/IRESV1 R85 172 ± 372 6/10 (60%) 10 ND - -
ZPC/IRESV2 R85 36 ± 46.5 4/10 (40%) 10 ND - -

1 average reciprocal titer ± Standard deviation; number of mice tested. 2 Average less than 20. 3 ND = not done.

3.4. VEEV ZPC/IRES Are Immunogenic and Protective in Cynomolgus Macaques

Finally, to assess the immunogenicity and efficacy of ZPC/IRESv1 in the superior cynomolgus
macaque model, five vaccinated animals (105 PFU in a 0.1 mL volume) weighing 3–6 kg, and two
MOCK (PBS)-vaccinated animals were bled prior to the study to confirm no prior immunity against
VEEV. On day 35 post vaccination, all were bled and PRNT titers were detected in four of the five
ZPC/IRESv1-vaccinated recipients (Table 3) albeit at lower levels than in mice. Expectedly, unvaccinated
NHPs had no anti-VEEV neutralizing antibodies.

Table 3. ZPC/IRESv1 vaccination and protection in cynomolgus macaques.

NHP # Vaccination
Status

PRNT80
1

35dpv
PRNT50
35dpv

Viremia 1
dpi (log10
PFU/mL)2

Viremia 2
dpi (log10
PFU/mL) 2

Viremia 3
dpi (log10
PFU/mL) 2

Fever
Hours

1 Sham-vaccinated <20 <20 4.30 3.78 2 150
2 Sham-vaccinated <20 <20 2.69 3.70 3.70 136
3 ZPC/IRESv1 <20 <20 <2 <2 <2 107
4 ZPC/IRESv1 <20 40 <2 <2 <2 10
5 ZPC/IRESv1 20 20 <2 <2 <2 110
6 ZPC/IRESv1 20 160 <2 <2 <2 0
7 ZPC/IRESv1 <20 20 <2 <2 <2 0

1 Reciprocal titer. LOD = 20. 2 Viremia titer LOD = 2 log10 pfu/mL serum. All samples less than the LOD are listed
as <2.

NHPs were challenged by aerosol exposure and monitored for changes in temperature and for
viremia. The back-titrated aerosol doses ranged from 5.9–6.9 log10 pfu/NHP (mean 6.34 ± 0.35 pfu
log10/NHP). Compared to pre-challenge baseline temperature data, both unvaccinated animals showed
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fever lasting for up to 6 days, with mean fever-hours of 145. In contrast, only 2 of 5 vaccinated animals
developed detectable fever, with a mean of 75 fever-hours for this cohort. This difference in fever hours
was significant (p < 0.01, one-tailed t-test). In addition to protection from disease, no vaccinated NHP
had a detectable viremia for the first 3 days following challenge. Interestingly, NHP #3, which had no
detectable PRNT titer, had a fever in the absence of a detectable viremia. NHP #5 had seroconverted
and was protected against viremia but not fever.

A second set of NHPs was vaccinated with ZPC/IRESv2 to determine if the immunogenicity
observed following ZPC/IRESv1 could be improved (Table 4). Here, NHPs were similarly vaccinated
and challenged but not implanted with a telemetric temperature device. As a result, fever hours could
not be calculated. Unlike ZPC/IRESv1 vaccination, all ZPC/IRESv2 vaccine recipients seroconverted.
PRNT titers for all ZPC/IRESv2-vaccinated primates were also substantially higher than their
ZPC/IRESv1-vaccinated counterparts, with a mean PRNT80 titer of 288. Further, all vaccinated
NHPs were protected against VEEV strain 3908 viremia, although one sham-vaccinated NHP (#9) also
failed to become viremic after aerosol challenge.

Table 4. ZPC/IRESv2 vaccination and protection in cynomolgus macaques.

NHP # Vaccination
Status

PRNT80
1 28

dpv
PRNT50 28

dpv

Viremia 1
dpi (log10
PFU/mL) 2

Viremia 2
dpi (log10
PFU/mL) 2

Viremia 3
dpi (log10
PFU/mL) 2

8 Sham-vaccinated <20 <20 3.6 3.3 <1.3
9 Sham-vaccinated <20 <20 <1.3 <1.3 <1.3

10 ZPC/IRESv2 320 >640 <1.3 <1.3 <1.3
11 ZPC/IRESv2 160 >640 <1.3 <1.3 <1.3
12 ZPC/IRESv2 320 >640 <1.3 <1.3 <1.3
13 ZPC/IRESv2 320 320 <1.3 <1.3 <1.3
14 ZPC/IRESv2 320 >640 <1.3 <1.3 <1.3

1 Reciprocal titer. 2 Viremia titer LOD = 1.3 Log10 PFU/mL. All samples less than the LOD are listed as <1.3.

4. Discussion

There is a continued need and demand for safe and efficacious vaccines against the diseases
caused by alphaviruses, including chikungunya, Mayaro, eastern and Venezuelan equine encephalitis
viruses. We have shown for many of these viruses that the IRES platform addresses this need while
also limiting their spread through mosquito vectors [22,24,35–37]. Here, we continue to improve upon
and broaden the scope of our IRES-vaccines by including the ID serotype of VEEV.

In a previous study, we reported on the similar construction and evaluation of the IE subtype
of VEEV IRES vaccines [24]. The 68U201/IRESv1 (VEEV/mutSG/IRES/1) and 68U201/IRESv2
(VEEV/IRES/C) both were able to elicit protective immunity in CD1 mice. Both vaccines also showed
a marked decrease in neurovirulence in CD1 pups compared to wild type parent viruses, with little
difference between them. The differentiation between these vaccines was apparent with the neutralizing
antibody titers, as VEEV/IRES/C elicited two-fold greater PRNT50 and PRNT80 values in CD1 mice
than VEEV/mutSG/IRES/1. A very similar trend is observed here with ZPC/IRESv1 and ZPC/IRESv2,
where the latter produced higher PRNT80 titers, especially at 20-weeks-post vaccination (Table 3).
More importantly, all ZPC/IRESv2-vaccinated mice produced a neutralizing antibody response after a
single vaccination.

The decision to pursue ZPC/IRESv1 for characterization in the NHP model was made based upon
the results from not only ZPC/IRES vaccine data, but also from other IRESv1 vaccines that have been
heavily tested in mice and NHPs with positive results [25,38–40]. ZPC/IRESv1 was chosen as the first
candidate because it provided protective murine immunity and had a similar safety profile to TC-83 in
intracranially injected neonatal mice. The Version 2 vaccine based either the 68U201 [24] or TC-83 [22]
VEEV backbones were also more virulent in previous studies. Five NHPs were vaccinated with
ZPC/IRESv1 and 4 showed positive neutralizing antibody responses immediately prior to 3908 aerosol
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challenge. Interestingly, none of the vaccinated NHPs had a detectable viremia on days 1–3, even in the
non-responder. However, the non-responder and two NHPs with a PRNT80 titer of 20 and 40, had 107,
110, or 10 fever-hours, respectively, suggesting that protection from disease was incomplete. The reason
for this discordance between protection against viremia and fever is puzzling. The challenge virus
used as the IC strain 3908 while the vaccine backbone was the ID strain ZPC-738. While the majority of
vaccinated NHPs (and mice) did have heterologous cross-protection, there may be some incomplete
protection at the lowest measurable PRNT80 titers. Further, viremia is not routinely measured as a
correlate of protection, and human IND trials with the TC-83 vaccine have shown disconnects between
adverse, flu-like symptoms, and immunogenicity [11]. Regardless, immunogenicity elicited by the
ZPC/IRESv2 vaccine was superior to that of ZPC/IRESv1 in both mice and NHPs. CHIKV/IRESv2
also provided a better neutralizing antibody immune response than CHIKV/IRESv1 in cynomolgus
macaques [40]. Furthermore, our earlier studies of the VEEV 68U201/IRESv2-vaccinated mice also had
a slightly higher PRNT80 titers than those induced by 68U201/IRESv1, which lasted for more than a
year after vaccination [24]. Unfortunately, due to the study design, fever-hour reductions could not be
compared between ZPC/IRESv1 and ZPC/IRESv2.

One confounding issue in our challenge of the ZPC/IRESv2 NHPs was the inconsistent viremia
in the sham-vaccinated group. This lack of consistent viremia makes it difficult to determine if the
ZPC/IRESv2-vaccinated NHPs were truly protected from viremia or not adequately exposed to an
appropriate dose of VEEV. Furthermore, fever-hours were not reported as part of this study so protection
from disease could not be assessed either. It is likely that these NHPs would be protected from both
viremia and fever based on their high PRNT80 titers (Table 4) but that conclusion cannot be reached
from the data gathered in this experiment. However, experience from a similar study evaluating the
efficacy of 68U201/IRESv1 showed complete protection from IE subtype 68U201-challenge in NHPs
with a similar PRNT80 titer [25].

Serial passaging of ZPC/IRESv1 in Vero cells resulted in several consensus mutations, 3 of which
were nonsynonymous changes to the E2 and E1 glycoproteins. When these E2 mutations, either in
combination or alone, were genetically engineered back into the ZPC/IRESv1 vaccine, some constructs
lost their ability to elicit a protective immune response. Surprisingly, ZPC/IRESv1 A76, R85 generated
no vaccine-related viremia, and vaccinated mice were protected or had neutralizing antibody titers.
When these mutations were investigated alone, vaccine-related viremia and PRNT80 titer were detected
in only a portion of the mice but all were protected from lethal 3908 challenge. One explanation
for this phenotype is the accumulation of positively charged amino acids on the E2 and E1 proteins
that contribute to commonly seen cell culture adaptive mutations that facilitate binding to heparin
sulfate (HS). Studies in Sindbis virus have long shown a negative correlation between HS binding
and virulence [41,42], but this phenotype is more complex for VEEV [43]. Sindbis virus passaged on
BHK-21 cells showed nonsynonymous mutations favoring positively charged amino acids like arginine
that increased the ability of virions to bind to cells and a reduction in murine neonatal fatalities [42].
Likewise, Griffin and colleagues showed that the loss of positively charged amino acid changes in
the E2 protein resulted in increased Sindbis virulence in sucking mice compared to those with more
positive E2 proteins [41]. This is a common feature for serially passaged alphaviruses and underlines
the importance of using low-passage stocks for studies. Additional experiments are required to
determine when in the 10-passage series these mutations arose and whether genetically stabilizing
this region using synonymous mutations can reduce the frequency of these mal-adaptive mutations.
As it is highly unlikely that these mutations would arise naturally in vivo after vaccination, sera at
peak viremia from these mutations were not sequenced. If a mutation did occur, it would likely be
associated with a high viremia titer, which was not observed in these studies. Therefore, care would
need to be taken to limit tissue culture amplification when creating vaccination stocks.
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5. Conclusions

In summary, we have described the successful use of a vaccine based on the ZPC-738 virus
containing an insertion of the IRES sequence to prevent VEE disease and/or VEEV infection.
Both versions of ZPC/IRES elicited neutralizing antibodies in vaccinees, which is the main correlate
of protection for preventing VEE disease, in both mice and nonhuman primates. We also identified
mutations which may arise during serial passage of the vaccine which can influence vaccine efficacy.

Author Contributions: Conceptualization, S.L.R., S.C.W., and C.J.R.; methodology and investigation, S.L.R.,
K.E.R.-L., N.A.B., K.S.P.; analysis, S.L.R., R.G., and C.J.R.; writing—original draft preparation, S.L.R. and S.C.W.;
writing—review and editing, S.L.R., C.J.R., N.A.B., and S.C.W.; project administration, S.L.R., S.C.W., and C.J.R.;
funding acquisition, S.C.W. and C.J.R. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a grant from the National Institute of Allergy and Infectious Disease
(NIAID) through the Western Regional Center of Excellence for Biodefense and Emerging Infectious Disease
Research (WRCE), National Institutes of Health (NIH) grant U54 AI057156. The work at Tulane National Primate
Research Center was also supported in part by grant OD011104 from the Office of Research Infrastructure Programs
(ORIP), Office of the Director, NIH.

Acknowledgments: We acknowledge Mathilde Guerbois-Galla for her efforts helping with sequencing and
cloning of passaged viruses. We also thank the members of the Animal Resource Center for their assistance with
animal husbandry and housing.

Conflicts of Interest: R.G. and S.C.W. hold intellectual property related to the IRES-based attenuation
of alphaviruses.

References

1. Weaver, S.; Ferro, C.; Barrera, R.; Boshell, J.; Navarro, J. Venezuelan equine encephalitis. Annu. Rev. Entomol.
2004, 49, 141–174. [CrossRef] [PubMed]

2. Anishchenko, M.; Bowen, R.A.; Paessler, S.; Austgen, L.; Greene, I.P.; Weaver, S. Venezuelan encephalitis
emergence mediated by a phylogenetically predicted viral mutation. Proc. Natl. Acad. Sci. USA 2006, 103,
4994–4999. [CrossRef] [PubMed]

3. Weaver, S.; Salas, R.; Rico-Hesse, R.; Ludwig, G.V.; Oberste, M.S.; Boshell, J.; Tesh, R.B. Re-emergence of
epidemic Venezuelan equine encephalomyelitis in South America. Lancet 1996, 348, 436–440. [CrossRef]

4. Levine, B.A.; Nurudeen, S.K.; Gosselin, J.T.; Sauer, M.V.; Aguilar, P.V.; Estrada-Franco, J.G.; Navarro-Lopez, R.;
Ferro, C.; Haddow, A.D.; Weaver, S. Addressing the fertility needs of HIV-seropositive males. Future Virol.
2011, 6, 299–306. [CrossRef] [PubMed]

5. Forshey, B.M.; Guevara, C.; Laguna-Torres, V.A.; Céspedes, M.; Vargas, J.; Gianella, A.; Vallejo, E.; Madrid, C.;
Aguayo, N.; Gotuzzo, E.; et al. Arboviral Etiologies of Acute Febrile Illnesses in Western South America,
2000–2007. PLoS Negl. Trop. Dis. 2010, 4, e787. [CrossRef] [PubMed]

6. Rivas, F.; Diaz, L.A.; Cardenas, V.; Daza, E.; Bruzon, L.; Alcala, A.; De La Hoz, O.; Caceres, F.M.; Aristizabal, G.;
Martínez, J.W.; et al. Epidemic Venezuelan Equine Encephalitis in La Guajira, Colombia, 1995. J. Infect. Dis.
1997, 175, 828–832. [CrossRef]

7. Bronze, M.S.; Huycke, M.M.; Machado, L.J.; Voskuhl, G.W.; Greenfield, R.A. Viral Agents as Biological
Weapons and Agents of Bioterrorism. Am. J. Med. Sci. 2002, 323, 316–325. [CrossRef]

8. Berge, T.O.; Banks, I.S.; Tigertt, W.D. Attenuation of Venezuelan equine encephalomyelitis virus by in vitro
cultivation in guinea pig heart cells. Am. J. Epidemiol. 1961, 73, 209–218. [CrossRef]

9. Walton, T.E.; Alvarez, O.; Buckwalter, R.M.; Johnson, K.M. Experimental Infection of Horses with an
Attenuated Venezuelan Equine Encephalomyelitis Vaccine (Strain TC-83). Infect. Immun. 1972, 5, 750–756.
[CrossRef]

10. Walton, T.E.; Luedke, A.J.; Jochim, M.M.; Crenshaw, G.L.; A Ferguson, J. Duration of immunity of horses
vaccinated with strain TC-83 Venezuelan equine encephalomyelitis virus vaccine. Proc. Annu. Meet. US
Anim. Health Assoc. 1973, 77, 196–202.

11. Pittman, P.; Makuch, R.S.; Mangiafico, J.A.; Cannon, T.L.; Gibbs, P.H.; Peters, C.J. Long-term duration of
detectable neutralizing antibodies after administration of live-attenuated VEE vaccine and following booster
vaccination with inactivated VEE vaccine. Vaccine 1996, 14, 337–343. [CrossRef]

http://dx.doi.org/10.1146/annurev.ento.49.061802.123422
http://www.ncbi.nlm.nih.gov/pubmed/14651460
http://dx.doi.org/10.1073/pnas.0509961103
http://www.ncbi.nlm.nih.gov/pubmed/16549790
http://dx.doi.org/10.1016/S0140-6736(96)02275-1
http://dx.doi.org/10.2217/fvl.11.5
http://www.ncbi.nlm.nih.gov/pubmed/21765860
http://dx.doi.org/10.1371/journal.pntd.0000787
http://www.ncbi.nlm.nih.gov/pubmed/20706628
http://dx.doi.org/10.1086/513978
http://dx.doi.org/10.1097/00000441-200206000-00004
http://dx.doi.org/10.1093/oxfordjournals.aje.a120178
http://dx.doi.org/10.1128/IAI.5.5.750-756.1972
http://dx.doi.org/10.1016/0264-410X(95)00168-Z


Vaccines 2020, 8, 497 15 of 16

12. Rayfield, E.J.; Gorelkin, L.; Curnow, R.T.; Jahrling, P.B. Virus-induced Pancreatic Disease by Venezuelan
Encephalitis Virus: Alterations in Glucose Tolerance and Insulin Release. Diabetes 1976, 25, 623–631.
[CrossRef] [PubMed]

13. Bowen, G.S.; Field, E.J.R.; Monath, T.P.; Kemp, G.E. Studies of glucose metabolism in rhesus monkeys after
venezuelan equine encephalitis virus infection. J. Med. Virol. 1980, 6, 227–234. [CrossRef]

14. Kinney, R.M.; Chang, G.J.; Tsuchiya, K.R.; Sneider, J.M.; Roehrig, J.T.; Woodward, T.M.; Trent, D.W.
Attenuation of Venezuelan equine encephalitis virus strain TC-83 is encoded by the 5′-noncoding region and
the E2 envelope glycoprotein. J. Virol. 1993, 67, 1269–1277. [CrossRef] [PubMed]

15. Davis, N.L.; Brown, K.W.; Greenwald, G.F.; Zajac, A.J.; Zacny, V.L.; Smith, J.F.; Johnston, R.E. Attenuated
Mutants of Venezuelan Equine Encephalitis Virus Containing Lethal Mutations in the PE2 Cleavage Signal
Combined with a Second-Site Suppressor Mutation in E1. Virology 1995, 212, 102–110. [CrossRef] [PubMed]

16. Kenney, J.L.; Volk, S.M.; Pandya, J.; Wang, E.; Liang, X.; Weaver, S. Stability of RNA virus attenuation
approaches. Vaccine 2011, 29, 2230–2234. [CrossRef]

17. Martin, S.S.; Bakken, R.R.; Lind, C.M.; García, P.; Jenkins, E.; Glass, P.J.; Parker, M.D.; Hart, M.K.; Fine, D.L.
Evaluation of formalin inactivated V3526 virus with adjuvant as a next generation vaccine candidate for
Venezuelan equine encephalitis virus. Vaccine 2010, 28, 3143–3151. [CrossRef]

18. Dupuy, L.C.; Richards, M.J.; Ellefsen, B.; Chau, L.; Luxembourg, A.; Hannaman, D.; Livingston, B.D.;
Schmaljohn, C.S. A DNA Vaccine for Venezuelan Equine Encephalitis Virus Delivered by Intramuscular
Electroporation Elicits High Levels of Neutralizing Antibodies in Multiple Animal Models and Provides
Protective Immunity to Mice and Nonhuman Primates. Clin. Vaccine Immunol. 2011, 18, 707–716. [CrossRef]

19. Hannaman, D.; Dupuy, L.C.; Ellefsen, B.; Schmaljohn, C.S. A Phase 1 clinical trial of a DNA vaccine for
Venezuelan equine encephalitis delivered by intramuscular or intradermal electroporation. Vaccine 2016, 34,
3607–3612. [CrossRef]

20. Paessler, S.; Fayzulin, R.Z.; Anishchenko, M.; Greene, I.P.; Weaver, S.; Frolov, I. Recombinant
Sindbis/Venezuelan Equine Encephalitis Virus Is Highly Attenuated and Immunogenic. J. Virol. 2003,
77, 9278–9286. [CrossRef]

21. Volkova, E.; Frolova, E.; Darwin, J.R.; Forrester, N.L.; Weaver, S.; Frolov, I. IRES-dependent replication of
Venezuelan equine encephalitis virus makes it highly attenuated and incapable of replicating in mosquito
cells. Virology 2008, 377, 160–169. [CrossRef] [PubMed]

22. Guerbois, M.; Volkova, E.; Forrester, N.L.; Rossi, S.L.; Frolov, I.; Weaver, S. IRES-driven Expression of the
Capsid Protein of the Venezuelan Equine Encephalitis Virus TC-83 Vaccine Strain Increases Its Attenuation
and Safety. PLoS Negl. Trop. Dis. 2013, 7, e2197. [CrossRef] [PubMed]

23. Oberste, M.S.; Smith, J.F.; Schmura, S.M.; Weaver, S. Geographic distribution of Venezuelan equine encephalitis
virus subtype IE genotypes in Central America and Mexico. Am. J. Trop. Med. Hyg. 1999, 60, 630–634.
[CrossRef] [PubMed]

24. Rossi, S.L.; Guerbois, M.; Gorchakov, R.; Plante, K.S.; Forrester, N.L.; Weaver, S. IRES-based Venezuelan equine
encephalitis vaccine candidate elicits protective immunity in mice. Virology 2013, 437, 81–88. [CrossRef]

25. Rossi, S.L.; Russell-Lodrigue, K.; Killeen, S.Z.; Wang, E.; Leal, G.; Bergren, N.A.; Vinet-Oliphant, H.;
Weaver, S.; Roy, C.J. IRES-Containing VEEV Vaccine Protects Cynomolgus Macaques from IE Venezuelan
Equine Encephalitis Virus Aerosol Challenge. PLoS Negl. Trop. Dis. 2015, 9, e0003797. [CrossRef]

26. Oberste, M.S.; Fraire, M.; Kondig, J.F.; Zarate, M.L.; Weaver, S.; Ludwig, G.V.; Navarro, R.; Smith, J.F.;
Rico-Hesse, R.; Zepeda, C. Association of Venezuelan equine encephalitis virus subtype IE with two equine
epizootics in Mexico. Am. J. Trop. Med. Hyg. 1998, 59, 100–107. [CrossRef]

27. Powers, A.M.; Oberste, M.S.; Brault, A.C.; Rico-Hesse, R.; Schmura, S.M.; Smith, J.F.; Kang, W.; Sweeney, W.P.;
Weaver, S.C. Repeated emergence of epidemic/epizootic Venezuelan equine encephalitis from a single
genotype of enzootic subtype ID virus. J. Virol. 1997, 71, 6697–6705. [CrossRef]

28. Hart, M.K.; Lind, C.; Bakken, R.; Robertson, M.; Tammariello, R.; Ludwig, G.V. Onset and duration of
protective immunity to IA/IB and IE strains of Venezuelan equine encephalitis virus in vaccinated mice.
Vaccine 2001, 20, 616–622. [CrossRef]

29. Reed, D.S.; Lind, C.M.; Lackemeyer, M.G.; Sullivan, L.J.; Pratt, W.D.; Parker, M.D. Genetically engineered,
live, attenuated vaccines protect nonhuman primates against aerosol challenge with a virulent IE strain of
Venezuelan equine encephalitis virus. Vaccine 2005, 23, 3139–3147. [CrossRef]

http://dx.doi.org/10.2337/diab.25.7.623
http://www.ncbi.nlm.nih.gov/pubmed/776726
http://dx.doi.org/10.1002/jmv.1890060306
http://dx.doi.org/10.1128/JVI.67.3.1269-1277.1993
http://www.ncbi.nlm.nih.gov/pubmed/7679745
http://dx.doi.org/10.1006/viro.1995.1458
http://www.ncbi.nlm.nih.gov/pubmed/7676619
http://dx.doi.org/10.1016/j.vaccine.2011.01.055
http://dx.doi.org/10.1016/j.vaccine.2010.02.056
http://dx.doi.org/10.1128/CVI.00030-11
http://dx.doi.org/10.1016/j.vaccine.2016.04.077
http://dx.doi.org/10.1128/JVI.77.17.9278-9286.2003
http://dx.doi.org/10.1016/j.virol.2008.04.020
http://www.ncbi.nlm.nih.gov/pubmed/18501401
http://dx.doi.org/10.1371/journal.pntd.0002197
http://www.ncbi.nlm.nih.gov/pubmed/23675542
http://dx.doi.org/10.4269/ajtmh.1999.60.630
http://www.ncbi.nlm.nih.gov/pubmed/10348239
http://dx.doi.org/10.1016/j.virol.2012.11.013
http://dx.doi.org/10.1371/journal.pntd.0003797
http://dx.doi.org/10.4269/ajtmh.1998.59.100
http://dx.doi.org/10.1128/JVI.71.9.6697-6705.1997
http://dx.doi.org/10.1016/S0264-410X(01)00337-1
http://dx.doi.org/10.1016/j.vaccine.2004.12.023


Vaccines 2020, 8, 497 16 of 16

30. Barrera, R.; Torres, N.; Freier, J.E.; Navarro, J.; García, C.Z.; Salas, R.; Vasquez, C.; Weaver, S. Characterization
of Enzootic Foci of Venezuelan Equine Encephalitis Virus in Western Venezuela. Vector-Borne Zoonotic Dis.
2001, 1, 219–230. [CrossRef]

31. Forrester, N.L.; Wertheim, J.O.; Dugan, V.G.; Auguste, A.J.; Lin, D.; Adams, A.P.; Chen, R.; Gorchakov, R.;
Leal, G.; Estrada-Franco, J.G.; et al. Evolution and spread of Venezuelan equine encephalitis complex
alphavirus in the Americas. PLoS Negl. Trop. Dis. 2017, 11, e0005693. [CrossRef] [PubMed]

32. Anishchenko, M.; Paessler, S.; Greene, I.P.; Aguilar, P.V.; Carrara, A.-S.; Weaver, S. Generation and
Characterization of Closely Related Epizootic and Enzootic Infectious cDNA Clones for Studying Interferon
Sensitivity and Emergence Mechanisms of Venezuelan Equine Encephalitis Virus. J. Virol. 2004, 78, 1–8.
[CrossRef] [PubMed]

33. Brault, A.C.; Powers, A.M.; Weaver, S. Vector Infection Determinants of Venezuelan Equine Encephalitis
Virus Reside within the E2 Envelope Glycoprotein. J. Virol. 2002, 76, 6387–6392. [CrossRef] [PubMed]

34. Roy, C.J.; Adams, A.P.; Wang, E.; Leal, G.; Seymour, R.L.; Sivasubramani, S.K.; Mega, W.; Frolov, I.; Didier, P.J.;
Weaver, S. A chimeric Sindbis-based vaccine protects cynomolgus macaques against a lethal aerosol challenge
of eastern equine encephalitis virus. Vaccine 2013, 31, 1464–1470. [CrossRef] [PubMed]

35. Pandya, J.; Gorchakov, R.; Wang, E.; Leal, G.; Weaver, S. A vaccine candidate for eastern equine encephalitis
virus based on IRES-mediated attenuation. Vaccine 2012, 30, 1276–1282. [CrossRef] [PubMed]

36. Plante, K.; Wang, E.; Partidos, C.D.; Weger-Lucarelli, J.; Gorchakov, R.; Tsetsarkin, K.; Borland, E.M.;
Powers, A.M.; Seymour, R.; Stinchcomb, D.T.; et al. Novel Chikungunya Vaccine Candidate with an
IRES-Based Attenuation and Host Range Alteration Mechanism. PLoS Pathog. 2011, 7, e1002142. [CrossRef]

37. Weise, W.J.; Hermance, M.E.; Forrester, N.; Adams, A.P.; Langsjoen, R.; Gorchakov, R.; Wang, E.;
Alcorn, M.D.H.; Tsetsarkin, K.; Weaver, S. A Novel Live-Attenuated Vaccine Candidate for Mayaro Fever.
PLoS Negl. Trop. Dis. 2014, 8, e2969. [CrossRef]

38. Plante, K.S.; Rossi, S.L.; Bergren, N.A.; Seymour, R.L.; Weaver, S. Extended Preclinical Safety, Efficacy and
Stability Testing of a Live-attenuated Chikungunya Vaccine Candidate. PLoS Negl. Trop. Dis. 2015, 9,
e0004007. [CrossRef]

39. Langsjoen, R.; Haller, S.L.; Roy, C.J.; Vinet-Oliphant, H.; Bergren, N.A.; Erasmus, J.H.; Livengood, J.A.;
Powell, T.D.; Weaver, S.; Rossi, S.L. Chikungunya Virus Strains Show Lineage-Specific Variations in Virulence
and Cross-Protective Ability in Murine and Nonhuman Primate Models. MBio 2018, 9, e02449-17. [CrossRef]

40. Roy, C.J.; Adams, A.P.; Wang, E.; Plante, K.; Gorchakov, R.; Seymour, R.L.; Vinet-Oliphant, H.; Weaver, S.
Chikungunya Vaccine Candidate Is Highly Attenuated and Protects Nonhuman Primates Against
Telemetrically Monitored Disease Following a Single Dose. J. Infect. Dis. 2014, 209, 1891–1899. [CrossRef]

41. Bear, J.S.; Byrnes, A.; Griffin, D.E. Heparin-binding and patterns of virulence for two recombinant strains of
Sindbis virus. Virology 2006, 347, 183–190. [CrossRef] [PubMed]

42. Klimstra, W.B.; Ryman, K.D.; Johnston, R.E. Adaptation of Sindbis Virus to BHK Cells Selects for Use of
Heparan Sulfate as an Attachment Receptor. J. Virol. 1998, 72, 7357–7366. [CrossRef] [PubMed]

43. Wang, E.; Brault, A.C.; Powers, A.M.; Kang, W.; Weaver, S. Glycosaminoglycan Binding Properties of Natural
Venezuelan Equine Encephalitis Virus Isolates. J. Virol. 2003, 77, 1204–1210. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1089/153036601753552585
http://dx.doi.org/10.1371/journal.pntd.0005693
http://www.ncbi.nlm.nih.gov/pubmed/28771475
http://dx.doi.org/10.1128/JVI.78.1.1-8.2004
http://www.ncbi.nlm.nih.gov/pubmed/14671082
http://dx.doi.org/10.1128/JVI.76.12.6387-6392.2002
http://www.ncbi.nlm.nih.gov/pubmed/12021373
http://dx.doi.org/10.1016/j.vaccine.2013.01.014
http://www.ncbi.nlm.nih.gov/pubmed/23333212
http://dx.doi.org/10.1016/j.vaccine.2011.12.121
http://www.ncbi.nlm.nih.gov/pubmed/22222869
http://dx.doi.org/10.1371/journal.ppat.1002142
http://dx.doi.org/10.1371/journal.pntd.0002969
http://dx.doi.org/10.1371/journal.pntd.0004007
http://dx.doi.org/10.1128/mBio.02449-17
http://dx.doi.org/10.1093/infdis/jiu014
http://dx.doi.org/10.1016/j.virol.2005.11.034
http://www.ncbi.nlm.nih.gov/pubmed/16380143
http://dx.doi.org/10.1128/JVI.72.9.7357-7366.1998
http://www.ncbi.nlm.nih.gov/pubmed/9696832
http://dx.doi.org/10.1128/JVI.77.2.1204-1210.2003
http://www.ncbi.nlm.nih.gov/pubmed/12502837
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Cell Lines and Viruses 
	Creating the IRES Vaccines and Rescue 
	Titrations 
	Plaque Reduction Neutralization Tests 
	Replication Curves 
	Serial Passage in Vero Cells 
	Mouse Studies 
	Nonhuman Primate Studies 
	Statistical Analyses 

	Results 
	Creation and Characterization of VEEV ZPC/IRES Vaccines 
	VEEV ZPC/IRES Are Immunogenic and Protective in Mice 
	In Vitro Stability 
	VEEV ZPC/IRES Are Immunogenic and Protective in Cynomolgus Macaques 

	Discussion 
	Conclusions 
	References

