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Objective. Primary Sjogren syndrome (pSS) is characterized by lymphocytic infiltration of the salivary and lacrimal glands. It is a
chronic systemic autoimmune disease. Genetic contributions and disturbed biological systems are the two major causes of pSS, but
its etiology is unclear. This study is aimed at identifying potential pSS diagnostic markers and mechanisms at the transcriptome
level. Methods. Whole blood datasets of patients with pSS were downloaded from the Gene Expression Omnibus (GEO) database.
Differentially expressed genes (DEGs) were identified using the online tool, GEO2R. R software was used to perform enrichment
analyses to understand the functions and enriched pathways of the DEGs. A protein–protein interaction network was constructed
to identify hub genes and significant gene clusters. The least absolute shrinkage and selection operator logistic regression was used
to screen pSS diagnostic markers. The expression level and diagnostic performance of the identified genes were tested using
another GEO dataset. Results. A total of 221 DEGs were screened from the whole blood samples of 161 patients with pSS and
59 healthy controls. Functional enrichment analysis demonstrated that DEGs were mostly enriched in defense response to
virus, response to virus, and type I interferon signaling pathway. Cytoscape identified 10 hub genes and two gene clusters.
IRF9 (AUC = 0:799) and XAF1 (AUC = 0:792) were identified as pSS diagnostic markers. The expression levels of the two
identified genes were validated by GSE51092. Conclusion. IRF9 and XAF1 were identified as diagnostic markers. The potential
underlying molecular mechanism of pSS was explored.

1. Introduction

Primary Sjogren syndrome (pSS) is characterized by lympho-
cytic infiltration of the salivary and lacrimal glands. It is a
chronic systemic autoimmune disease that is overwhelmingly
dominated by dry mouth (xerostomia), dry eyes (keratocon-
junctivitis sicca), and autoantibody production. It may be
accompanied by multiorgan systemic manifestations, such as
pulmonary fibrosis and B cell lymphoma [1]. The prevalence
of pSS in the general population is 0.33%–0.77%. Its occurrence
rate is 10 times higher in females than in males [2]. The
mortality rate is high among patients with cryoglobulinemic
vasculitis, parotid enlargement, and lymphoma [3]. Genetic
contributions and disturbed biological systems are the two
major causes of pSS, but the etiology of pSS remains unclear.

Differentially expressed genes (DEGs) among different
groups of people can be discovered with the rapid progress of

microarray techniques. In the past few years, several bioinfor-
matic studies have revealed potential biomarkers in patients
with pSS, which helped better elucidate the biological mecha-
nisms of the disease. Chen et al. demonstrated that the expres-
sion levels of STAT1, MNDA, IL10RA, and CCR1 in theminor
labial gland biopsy of pSS can serve as potential biological indi-
cators for the disease [4]. Another study reported that PTPRC,
CD86, and LCP2 are hub genes in the gland tissues of patients
with pSS [5]. Li et al. identified seven key genes, namely,
MS4A1, CD19, TCL1A, CCL19, CXCL9, CD3G, and CD3D,
in gland tissues that have potential values for evaluating pSS
severity [6]. Most past studies focused on gland tissues, but
few studies focused on whole blood. In 2019, Yao et al. applied
weighted gene coexpression network analysis to identify the
potential pathways and hub genes that may be involved in
pSS development [7]. Moreover, gene coexpression modules
and hub genes in peripheral blood and parotid tissue associated
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with B cell levels in pSS were identified by Lei and Zhang [8].
The substantial pathogenesis-related processes of pSS have
been studied, but researchers still need to elucidate the exact
pathogenesis and the key pathogenic factor of the disease. Use-
ful algorithms and machine learning methods help with the
easy discovery of diagnostic markers to better understand dis-
ease pathogenesis [9].Wang et al. established the value of infor-
mation feedback models and proved that hybrid adaptive
differential evolution algorithm is a good state-of-the-art algo-
rithm [10]. Therefore, the potential key genes and pathway net-
works related to pSS development can be explored through the
combination of microarray and bioinformatic algorithm.
Whole blood sample is easier to obtain than gland tissues;
hence, studying the hub genes that may have diagnostic and
treatment value from whole blood is of great importance for
better patient outcomes.

In this study, pSS-related sequencing data from a public
database were downloaded to discover the potential diagnostic
markers and biological functions of the disease. The microar-
ray datasets for pSS and HC, namely, GSE84844 (GPL570)
and GSE66795 (GPL10558), respectively, were downloaded
from the Gene Expression Omnibus (GEO) database. Then,
the data were integrated and reanalyzed. A total of 221 com-
mon DEGs were identified between pSS and healthy control
(HC). DEGs were clustered with functional enrichment anal-
ysis and gene set enrichment analysis (GSEA). Furthermore,
a protein–protein interaction (PPI) network was constructed
using the online tool, Search Tool for the Retrieval of Interact-
ing Genes/Proteins (STRING). Genes identified by the least
absolute shrinkage and selection operator (LASSO) logistic
regression and Cytohubba, a Cytoscape plugin to detect hub
genes, were combined for further analysis. Subsequently, the
two identified hub genes were validated using GEO dataset
GSE51092 (GPL6884). The diagnostic accuracy of the identi-
fied hub genes for pSS was evaluated with the area under the
receiver operating characteristic curve (AUC).

2. Materials and Methods

2.1. Data Download and Preprocessing. “Primary Sjogren syn-
drome” was used as the search keyword for the expression pro-
files of pSS in the GEO database [11]. Datasets containing the
sequencing information of whole blood from patients with
pSS and HCs were included. Finally, two datasets, namely,
GSE84844 (GPL570) and GSE66795 (GPL10558), were selected
as the test sets [12, 13]. Dataset GSE51092 (GPL6884), which
includes samples from 190 patients with pSS and 32 HCs, was
selected as the validation set [14]. Basic information, including
platform, samples, source tissue, and attribution, is listed in
Table 1. The overall flowchart is shown in Supplementary
Figure 1.

2.2. DEG Screening. Online web-based tool GEO2R was
applied to discover the DEGs between pSS and HC. Adjusted
P < 0:01 was regarded as statistically significant. The over-
lapping DEGs from the two datasets were detected by the
online tool Draw Venn Diagram (http://bioinformatics.psb
.ugent.be/webtools/Venn/).

2.3. Functional Enrichment Analysis. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses of the identified DEGs were performed
by R packages (clusterProfiler, ggplot2, and GOplot) [15].
clusterProfiler was applied to analyze the DEGs. ggplot2
and GOplot were used to visualize the results.

2.4. GSEA. GSEA was conducted for all genes from the two
gene datasets (GSE84844 and GSE66795) using R studio.
ggplot2 was used to visualize the results. The gene set
arrangement was performed 1000 times per analysis. Gene sets
were considered significantly enriched when false discovery
rate ðFDRÞ < 0:25, adjusted P < 0:05, and ∣normalized
enrichment score ðNESÞ ∣ >1.
2.5. PPI Network Construction.APPI network was constructed
by the online tool STRING [16]. The cutoff standard was set as
a combined score of >0.4 [17]. Then, the results were visual-
ized by Cytoscape software. Molecular Complex Detection
(MCODE, V1.5.1), a Cytoscape plugin, was used to identify
significant modules (MCODE score ≥ 4) [18]. Moreover, the
hub genes were chosen by Cytohubba based on a high number
of associations with other genes in the PPI network [19].

2.6. Screening and Verification of Diagnostic Markers.
LASSO logistic regression was used to perform feature selec-
tion to identify diagnostic markers for pSS. The expression
matrix of the GSE66795 dataset was subjected to LASSO
logistic regression. The LASSO regression analyses were
conducted using the glmnet R package [20]. The genes from
LASSO regression analysis and the hub genes identified by
Cytohubba were combined for further analysis.

2.7. Statistical Analysis. RStudio was used to perform the sta-
tistical analysis. GSE51092 was used to validate the expression
levels of the identified diagnostic markers.Wilcoxon rank sum
test was used as the statistical method when the data were not
normally distributed. Independent sample t-test was used
when the data were normally distributed. Moreover, AUC,
which was used to represent the diagnostic performance of
the identified genes, was determined by RStudio. GLM func-
tion was used to build the logistic regression model. PROC
package was used to analyze the receiver operating character-
istic (ROC) curves. ggplot2 package was used to visualize the
results. P < 0:05 was considered significant.

3. Results

3.1. Data Preprocessing and DEG Screening. The overall work-
flow of the study is shown in Supplementary Figure 1. Two
public pSS datasets, namely, GSE66795 and GSE84844, were
downloaded to investigate the common DEGs involved in
pSS. The principal component analysis (PCA) clusters for
GSE66795 and GSE84844 are presented in Figures 1(a) and
1(b), respectively. PCA demonstrated that almost all
variations were represented by HC and pSS in GSE66795
(16.1% and 10.1%, respectively) and GSE84844 (21.9% and
8.1%, respectively). In addition, Figures 1(c) and 1(d) show
the heat maps and Figures 1(e) and 1(f) present the uniform
manifold approximation and projection (UMAP) of the two

2 Computational and Mathematical Methods in Medicine

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/


gene datasets. Two clusters could be identified by UMAP
analysis in GSE84844. As shown in Figure 1(g), 486 and
5466 DEGs were found in GSE66795 and GSE84844,
respectively. After these, DEGs were integrated, and 221
common DEGs were discovered (Figure 1(g)).

3.2. Biological Functions of Common DEGs. GO, KEGG, and
GSEA were used to analyze the 221 common DEGs
(Figure 2, Tables 2 and 3). Based on GO enrichment, the bio-
logical process acted on defense response to virus, response to
virus, and type I interferon signaling pathway. Regarding
molecular functions, these proteins played roles in double-
stranded RNA binding, NAD+ ADP-ribosyltransferase activ-
ity, and single-stranded RNA binding. According to the KEGG
pathway analysis, these proteins were involved in influenza A
and NOD-like receptor signaling pathway (Figures 2(a)–
2(d)). GSEA is designed to analyze the association between
gene sets and biological signals in one dataset. It was conducted
to identify the possible pathological processes of pSS. The top
three significantly enriched gene sets were cytokine signaling
in immune system, interferon signaling, and interferon alpha
beta signaling in GSE66795 (Figure 2(e) and Table 3). Consid-
ering that the adjusted P value was greater than 0.05 in
GSE84844, the enriched gene sets were not significant in this
dataset (Table 3, adjusted P = 0:055).

3.3. PPI Network Analysis, MCODE Cluster Modules, and Hub
Gene Identification. The PPI network for the 221 DEGs was
constructed after the common DEGs were imported into
STRING (Figure 3(a)). The top 10 hub genes were identified
among the DEGs based on the information in the STRING
database and Cytohubba. The top 10 hub genes were detected,
including E3 ISG15-protein ligase HERC5, interferon alpha-
inducible protein 6, interferon-induced transmembrane protein
1, probable E3 ubiquitin-protein ligase HERC6, interferon-
induced protein with tetratricopeptide repeats 5, interferon-
induced transmembrane protein 3, interferon alpha-inducible
protein 27, interferon regulatory factor 9 (IRF9), interferon-
stimulated gene 20kDa protein, and XIAP-associated factor 1
(XAF1, Figure 3(b)). All the 10 hub genes were upregulated.
The significant modules were identified by MCODE with an
MCODE score of ≥4 as the threshold. Two modules with
MCODE scores ≥ 4 are displayed in Figures 3(c) and 3(d). Clus-
ter 1 (MCODE score = 44:96) had 51 nodes and 1124 edges
(Figure 3(c)). Cluster 2 (MCODE score = 4) had 4 nodes and
6 edges (Figure 3(d)).

3.4. Screening and Verification of Diagnostic Markers. The
LASSO logistic regression algorithm identified 19 genes
from the DEGs as diagnostic markers for pSS (Figures 4(a)

and 4(b)). The gene markers obtained by LASSO algorithms
and the hub genes overlapped. Finally, two diagnosis-related
genes were obtained (Figure 4(c)). GSE51092 was used to vali-
date the diagnostic efficacy of IRF9 and XAF1. The AUCs of
IRF9 and XAF1 were 0.799 and 0.792, respectively, which indi-
cated that IRF9 and XAF1 had certain diagnostic values
(Figure 4(d)). When IRF9 and XAF1 were fitted into one vari-
able, the diagnostic efficiency reached a higher level in the val-
idation set (AUC = 0:822, Figure 4(d)). The identified logistic
regression model was −27:6726 + ð2:0467 × IRF9Þ + ð0:6087
× XIF1Þ. In addition, the GSE51092 dataset was used to ver-
ify the expression of the two identified genes. The mRNA
expression levels of IRF9 and XAF1 were significantly
increased in the pSS samples compared with the HCs
(P < 0:01, Figures 4(e) and 4(f)).

4. Discussion

Although pSS is among the intractable autoimmune dis-
eases, the number of studies focusing on the identification
of important genes and pathways associated with pSS is far
less than that on systemic lupus erythematosus and rheuma-
toid arthritis. The molecular and cellular events that occur
during the pathogenesis of pSS need to be characterized.
As the treatment of patients with pSS is still a clinical chal-
lenge, identifying the susceptibility genes of pSS is essential
in studying the cause of pSS and find potential treatments.

In the present study, datasets containing the sequencing
information of whole blood from pSS and HC were down-
loaded from the GEO database, and 221 DEGs were identified.
The biological functions of these common DEGs were investi-
gated. Defense response to virus, response to virus, and type I
interferon signaling pathway were considerably enriched in
pSS samples. In addition, the pathways enriched by GSEA
involve cytokine signaling in immune system, interferon
signaling, and interferon alpha beta signaling. The interferon
pathway is activated in the pathogenesis of pSS as shown in
previous research [21]. The first indication of interferon acti-
vation in pSS dated back to the late 1970s. In 2019, one study
reported that salivary gland epithelial cells show upregulated
interferon signaling pathway according to RNA-sequencing
analysis [21]. Beyond salivary gland tissues, the presence of
interferon signature was also evaluated at systemic level. The
increased expression of interferon signaling pathway-
associated genes or proteins has been detected in whole blood
[22, 23], which is consistent with our findings. Interferons are
mediators of innate immune defense mechanisms. The activa-
tion of innate immune pathways is a central pathogenetic con-
tributor to pSS. Therefore, interferon blockade seems to be an
attractive therapeutic target for this disease.

Table 1: Information for selected microarray datasets.

GEO accession Platform
Samples

Source tissue Attribution
pSS HC

GSE84844 GPL570 30 30 Whole blood Test set

GSE66795 GPL10558 131 29 Whole blood Test set

GSE51092 GPL6884 190 32 Whole blood Validation set

pSS: primary Sjogren syndrome; HC: healthy control.
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Figure 1: Continued.
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Figure 1: Identification of DEGs. (a) Principal component analysis (PCA) plot generated from DEGs in GSE66795. (b) PCA plot generated
from DEGs in GSE84844. (c) Heat map of GSE66795. (d) Heat map of GSE84844. (e) Uniform manifold approximation and projection
(UMAP) showing distinct clusters of DEGs in GSE66795. (f) UMAP showing distinct clusters of DEGs in GSE84844. (g) Venn diagram
of common DEGs from the two datasets. Data points in red represent upregulated genes, and those in blue represent downregulated
genes. Group 1 indicates HC and group 2 indicates pSS.
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Figure 2: Functional enrichment of DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses
of DEGs. (a) Histogram, where the horizontal axis represents the number of DEGs under the GO or KEGG term. (b, c) Chordal graph,
enrichment analysis combined logFC. On the basis of enrichment analysis, logFC of the molecule provided is used to calculate the
corresponding Z score of each item and preliminarily determine whether the corresponding item is positively regulated (Z score is
positive) or negatively regulated (Z score is negative). (d) Visual network of GO enrichment and KEGG pathway analysis of the
overlapping DEGs. (e) Gene set enrichment analysis of GSE6675.

Table 2: GO and KEGG analyses of DEGs.

Ontology ID Description Gene ratio Adjusted P q value

BP GO:0051607 Defense response to virus 46/199 1:40e − 41 1:29e − 41
BP GO:0009615 Response to virus 49/199 2:82e − 39 2:59e − 39
BP GO:0060337 Type I interferon signaling pathway 28/199 2:78e − 30 2:55e − 30
MF GO:0003725 Double-stranded RNA binding 10/201 5:37e − 06 4:91e − 06
MF GO:0003950 NAD+ ADP-ribosyltransferase activity 4/201 0.015 0.014

MF GO:0003727 Single-stranded RNA binding 7/201 0.015 0.014

KEGG hsa05164 Influenza A 21/117 5:07e − 12 4:82e − 12
KEGG hsa04621 NOD-like receptor signaling pathway 16/117 5:37e − 07 5:10e − 07
CC: cellular component group; MF: molecular function group; BP: biological process group; KEGG: Kyoto Encyclopedia of Genes and Genomes.

Table 3: Gene set enrichment analysis.

ID NES Adjusted P FDR

GSE84844

Reactome cytokine signaling in immune system 1.614 0.055 0.051

Reactome translation 1.74 0.055 0.051

Reactome interferon signaling 2.468 0.055 0.051

Reactome regulation of expression of SLITs and ROBOs 1.883 0.055 0.051

Reactome influenza infection 2.016 0.055 0.051

GSE66795

Reactome cytokine signaling in immune system 2.085 0:01∗∗∗ 0.007

Reactome interferon signaling 2.185 0:01∗∗∗ 0.007

Reactome interferon alpha beta signaling 2.18 0:01∗∗∗ 0.007

Reactome antiviral mechanism by IFN-stimulated genes 2.077 0:01∗∗∗ 0.007

WP host pathogen interaction of human coronaviruses’ interferon induction 1.777 0:025∗ 0.018
∗∗∗Adjusted P ≤ 0:01; ∗adjusted P ≤ 0:05.
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Figure 3: Continued.
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LASSO logistic regression was first proposed by Robert
Tibshirani in 1996 [24]. It is a compressed estimation that
determines the variable by finding λ when the classification
error is the smallest. This algorithm is used to screen feature
variables and build the best classification model. In this study,
two diagnostic markers, namely, IRF9 and XAF1, were
obtained by combining the genes identified by the LASSO

logistic regression and the hub genes identified by Cytohubba.
A hub gene plays a critical role in biological processes and is
often influenced by the regulation of other genes in related
pathways. Therefore, these two identified genes may play
important roles in the pathogenesis of pSS and have good
diagnostic performance. The expression level and diagnostic
performance of IRF9 and XAF1 were tested by another gene
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Figure 3: PPI network of DEGs and three cluster modules extracted by MCODE. (a) The interaction network between proteins coded by
DEGs. (b) The interaction between the ten identified hub genes. Each node represents a protein, whereas each edge represents one protein–
protein association. The purple rectangles represent the upregulated gene, and the yellow ones represent the downregulated gene. Two
cluster modules extracted by MCODE. (c) Cluster 1 had higher cluster score (MCODE score = 44:96), followed by (d) cluster 2
(MCODE score = 4).
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Figure 4: Screening and verification of diagnostic markers. (a) Least absolute shrinkage and selection operator (LASSO) logistic regression
algorithm to screen diagnostic markers. Different colors represent different genes. Each curve corresponds to an independent variable in the
full model prior to optimization. Curves indicate the path of each variable coefficient as λ varies. Lambda.min corresponds to λ which
minimizes mean squared error in the model and was used for the selection of the seven predictor variables. (b) LASSO coefficient
profiles of the 19 candidates in GSE66795. Plot of nonzero variable fit after cross-validation. Representation of the 10-fold cross-
validation performed in LASSO that chooses the optimal λ. Lambda.min corresponds to λ which minimizes mean squared error and was
used for variable selection. Lambda.1se corresponds to λ that is one standard error from Lambda.min. (c) Venn diagram shows the
intersection of diagnostic markers obtained by LASSO and hub genes. (d) The ROC curve of the diagnostic efficacy tested by GSE51092.
(e) The expression level of IRF9 between patients with pSS and HCs in GSE51092. (f) The expression level of XAF1 between patients
with pSS and HCs in GSE51092. ∗∗∗P < 0:001.
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dataset, GSE51092. IRF9 and XAF1 showed certain diagnostic
accuracy with AUCs of 0.799 and 0.792, respectively. More-
over, the AUC of the combination of the two genes reached
0.822, indicating a good diagnostic performance. The identified
logistic regression model was −27:6726 + ð2:0467 × IRF9Þ +
ð0:6087 × XIF1Þ. This model would be of great value in
future clinical practice to diagnose pSS. IRF9 is an important
transcription factor involved in type I interferon production
[25]. The elevated level of IRF9 in patients with pSS has been
reported in the past [26]. Its binding with the signal trans-
ducer and activator of transcription 1 and 2 heterodimer
leads to the formation of a complex, namely, interferon-
stimulated gene factor (ISG) 3 [27]. The encoded ISG pro-
teins have several immunomodulatory functions, including
the induction of B cell activating factor, immunoglobulin
switching, and increased antigen presentation, which all have
vital roles in the pathogenesis of pSS [28, 29]. XAF1, an inter-
feron type I inducible gene, encodes a zinc-finger proapopto-
tic protein. The role of XAF1 is discussed in different kinds of
cancers. XAF1 works as a modifier of p53 function and can-
cer susceptibility [30]. Limited studies focused on the role of
XAF1 in pSS. Two studies reported its elevation in patients
with pSS [7, 31]. Our result showed that IRF9 and XAF1
had certain diagnostic abilities. Therefore, future precisely
designed studies are necessary to verify these potential genes.

In the interpretation of our results, the following limita-
tions require careful discussion. On the one hand, the clinical
samples included in this study were from different datasets.
The clinical activity, severity, or gender may be different
among groups. Therefore, heterogeneity and confounding fac-
tors may have distorted the analysis. On the other hand, our
study is only a bioinformatic study, and the identified hub
genes were not confirmed through in vitro assays or in vivo
models. Hence, further precisely designed studies are neces-
sary to verify the two identified genes.

In conclusion, the biological analyses provided an overview
of the differential gene expression between pSS and HC, which
determined 221 DEGs. The functional analysis of these DEGs
indicated that defense response to virus, response to virus,
and type I interferon signaling pathway were considerably
enriched in the whole blood of patients with pSS. In addition,
two diagnostic markers, IRF9 and XAF1, were obtained and
proven to have certain diagnostic accuracy. Our analysis
revealed previously unknown transcriptional changes in pSS
and demonstrated the role of microarray-based expression pro-
filing in characterizing biomarkers in diseases. However, the
exact diagnostic values of the identified models still need to
be tested in future large-scale investigations. The results of
our study may provide new treatment targets for pSS. Hence,
this analysis may guide future experimental research and clin-
ical transformation.
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study are available in the GEO repository. GEO is a free,
publicly available repository database that stores a large
number of gene functions and expression. The working
links are as follows: GSE84844 (https://www.ncbi.nlm.nih
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