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Abstract: Gold nanoparticles (~10 nm) were deposited on titanium dioxide nanoparticles (~21 nm)
and the material obtained was characterized using IR, UV-Vis, N2 adsorption–desorption isotherm,
DLS, EDS (EDX), TEM, XPS, and XRD techniques. It was found that the methylene blue dye is
degraded in the presence of this material when using hydrogen peroxide as the oxidant. Tests were
performed at 2, 4, 6, and 24 h, with hydrogen peroxide contents varying from 1 to 5 mg/mL. Longer
exposure time and a higher content of oxidant led to the degradation of methylene blue dye at up to
90%. The material can be reused several times with no loss of activity.

Keywords: environmental remediation; nanoparticle; hydrogen peroxide; gold; titania

1. Introduction

Organic pollutants are largely encountered in both water sources and wastewaters.
Removal of such contaminants is possible through several processes, including physical op-
erations (adsorption), biological degradation (facilitated by microorganisms), and chemical
oxidation (using air or other co-oxidant). All of these methods possess certain advantages,
as well as some drawbacks. Depending on the nature of organic pollutants, one or more of
such processes are used.

Nowadays, there is keen interest in green processes that are less harmful to the
environment. This includes the use of catalysts or photo processes that are cleaner in
terms of the chemicals used. Heterogenous photocatalysis involving light, titanium dioxide
(TiO2), and hydrogen peroxide (H2O2) is currently one of the best options owing to its
low cost and high efficiency [1–3]. This process involves the hydroxyl free radical (HO.)
as the active species, an extremely reactive and unselective agent able to attack even the
most stable organic compounds. The hydroxyl free radical is easily produced by photolysis
of hydrogen peroxide or in chemical Fenton-like processes favored by transition metal
ions. Other similar reactive oxygen species (ROS) are well known for their activity towards
organic molecules [4].

It is worth noting that TiO2 is a semiconductor [5] used to degrade organic pollutants
via oxidative processes—its main role is to activate and make the electron transfers possible.
In this way, either the organic pollutant (i.e., a dye) or the oxidant can be activated, further
generating a cascade of redox processes that can end with complete mineralization of
the organic pollutants. Data from the literature showed that combining such semicon-
ductors with noble metal nanoparticles might lead to an increase in the photocatalytic
efficiency [6,7].

Although the real photonic mechanism for the hybrid materials formed from semi-
conductors and noble metal nanoparticles is not completely understood and depends on
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many factors, it is believed that the surface plasmon resonance is an important step [8,9].
Regardless, well-documented synthetic protocols are available, allowing good control of
the size and dispersion of nanomaterials [10].

Gold nanoparticles (Au NPs) are most used due to their advantages—they are easily
obtained with various sizes and morphologies, but most importantly they can be used in ex-
tremely large types of reactions—even in opposite reactions, such is oxidation or reduction.
Additionally, data from the literature showed that these nanoparticles can be used in hybrid
materials [11–16]. Moreover, deposited Au NPs demonstrate much more activity than
simple gold powder (under the same experimental conditions) [17], meaning that the solid
support plays an important role regarding the catalytic activity [18]. Regarding organic
pollutants, compounds derived from large-scale industries are frequently encountered.
For example, dyes, medicines, halogeno- or nitro-compounds, solvents, oils, pesticides,
and others are such common pollutants found in water or soil. Methylene blue (MB) is an
organic cationic dye that is heavily used in the textile and paper industry, which also has
medicinal applications. Although MB is considered a non-toxic compound, under sunlight
it can produce hazardous oxygen singlets (1O2) that can damage living beings and affect
aquatic environments, increasing public health concerns. Abundant data are available in
the literature for various systems dealing with MB removal from wastewater; thus, many
types of (nano)composites have been tested, including component graphene or graphene-
oxide, carbon-activated materials, metal oxides, magnetic nanoparticles, cellulose, and
others [19–22].

MB is commonly used as a test dye in environmental studies. In this study, we used a
hybrid composite of gold nanoparticles deposited on titania (TiO2–Au) for degradation of
MB (Figure 1).
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rotaevaporator. In this way, a red-violet solid material (Figure 1) containing about 5% Au 

Figure 1. Chemical structure of MB (left), titania nanoparticles, and the obtained Au NPs deposited
in titania (right).

Many researchers employ mixed nanoparticles, containing noble metal nanoparticles
deposited on different kind of supports, due to their facile synthesis method, high activity,
ease of recovering and reuse, and numerous applications, ranging from catalytic activity
to antibacterial properties [23]. Additionally, the manufacturing of such hybrid materials
should not produce environmental pollution and should provide a greener approach.

2. Results and Discussion
2.1. Material Synthesis and Characterization

Commercially available titania nanoparticles with an average size of 21 nm were used
as the support for gold nanoparticles (Au NPs). Au NPs were obtained using the method
proposed in [24–26]. The deposition was achieved by mixing a solution of Au NPs in
dichloromethane (DCM) with titania and evaporating the solvent using a rotaevaporator.
In this way, a red-violet solid material (Figure 1) containing about 5% Au was obtained
(see experimental section for details). It is well known that the size of the constituent
nanoparticles has a tremendous impact on the activity of the material [27]; undoubtedly,
the preparation method also plays a crucial role [28].
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The IR spectrum (Figure 2, left) showed a strong band at 500–750 cm−1, commonly
known for titania [29]. The UV-Vis spectrum recorded in solid support showed an absorp-
tion band at 540 nm (Figure 2, right), which was due to the plasmonic Au NPs [30]. The
direct band gap energy Eg of 3.45 eV was calculated using the Tauc equation [31], from the
intersections of the straight line with the energy axis.
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The size distribution profile of the material nanoparticles suspended in water at 25
◦C was determined using dynamic light scattering (DLS) (Figure 3). The hydrodynamic
diameter distribution ranged from 200 nm to 2.7 µm, with an average size of 750 nm and a
polydispersity index of 0.258. The large difference between the hydrodynamic diameter of
the particles and the size determined by TEM (see next) could be attributed to the tendency
for agglomeration of suspended particles. Additionally, it should be kept in mind that the
hydrodynamic diameter represents the diameter of the particle surrounded by the layers
of the solvent that adheres to its surface.
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Using transmission electron microscopy (TEM), analysis details of the morphology
of the material were evidenced. The pictures shown in Figure 4 demonstrate the physical
mixture of titania nanoparticles (~21 nm) with gold nanoparticles (~10 nm). The shape and
size of both titania and gold nanoparticles can also be noticed. While titania nanoparticles
have a square-like shape, gold nanoparticles look more spherical. Additionally, a good
dispersion of the gold nanoparticles within the titania was observed.
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For further information about the TiO2–Au material, X-ray photoelectron 
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composition of the sample was determined using XPS, showing the presence of Ti, Au, 
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Figure 4. TEM pictures at different magnifications.

Further, the material was subjected to nitrogen adsorption–desorption analysis. The
isotherm (Figure 5) was of type IV according to IUPAC classification [32], which is charac-
teristic for mesoporous materials. The specific surface area was determined to be 53.8 m2/g,
while the total pore volume was 0.583 cm3/g. As can be seen from the inset in Figure 5, the
pore size distribution is wide, covering the entire mesopore range and even exceeding it.
An important part of the porosity is represented by the interparticle voids, as the hysteresis
loop appears at high relative pressures.
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tion (inset).

For further information about the TiO2–Au material, X-ray photoelectron spectroscopy
(XPS) and X-ray diffraction (XRD) analyses were performed. The chemical composition of
the sample was determined using XPS, showing the presence of Ti, Au, and O, as expected.
Figure 6 shows these results, while details of the XPS analysis are shown in Figure 7.
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Figure 6. XPS and XRD analyses of the synthesised material.
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The titanium 2p high-resolution spectrum (Figure 7a) revealed the presence of the
Ti4+ oxidation state typical for TiO2 at binding energies (BEs) of Ti 2p 3/2 = 458.8 eV and
464.3 eV for Ti2p 1

2 [33]. Additionally, the deconvolution revealed the presence of the Ti3+

oxidation state, due to the presence of a reductant medium at Ti 2p 3/2 = 457.1 eV and Ti
2p 1/2 462.9 eV. The deconvoluted high-resolution spectrum of the O1s singlet (Figure 7c)
revealed four oxygen chemical species in the BEs region of 535–528 eV; thus, O2− bonded in
the TiO2 lattice was assigned to O1s at 529.9 eV, while the OH groups and water molecules
adsorbed on the surface were detected at 531.5 eV and 533.2 eV, respectively. A small
fraction of organic oxygen, originating from the carbon tape, was attributed to O1s located
at 532.2 eV. The Au 4f high-resolution spectrum (Figure 7b) with Au 4f7/2 at 83.2 eV and
Au 4f 5/2 at 86.78 eV highlighted the presence of the gold metallic nanoparticles (10 nm).
It is worth mentioning that the formation of gold metallic NPs is characteristic for binding
energies (BEs) shifted towards lower values as compared with Au metallic nanoparticles,
which is attributed to the Au 4f7/2 transition around 84 eV [34].

A typical diffractogram pattern for the TiO2–Au powder is given in Figure 6 (right).
The atanase and rutile phases of TiO2 and Au were identified from the experimental
XRD pattern using the powder diffraction files 00-064-0863, 00-021-1276, and 03-065-
2870, respectively.
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The atanase phase was observed by the presence of the main characteristic peaks at
25.2◦, 37.7◦, and 47.9◦, corresponding to planes (101), (004), and (200), respectively; whereas
the peaks of the rutile phase were identified at 27.3◦, 36.0◦, and 54.2◦, equivalent to planes
(110), (101), and (211), respectively. The main Au peaks were not clearly visible because
they were submerged in the TiO2 peaks; however, the broadening of peaks at 44.7◦, 64.5,
and 77.8◦ could be explained by the presence of gold diffraction planes (200), (220), and
(311), respectively.

The phase composition determined after Rietveld refinement was 87.7% anatase, 12.1%
rutile, and 0.2% gold. The crystallite sizes for atanase and rutile phases calculated using
Scherrer equation were 38.8 and 45.6 nm, respectively.

The chemical composition assessed using EDX spectroscopy is displayed in Figure 8.
The EDX spectrum reveals the presence of main elements from the powder, Ti, O, and
Au; however, other small peaks for Cl as a residue from the synthetic route and for Al
and Cu from the tape and stub used to fix the powder during analysis are shown (peak
visible at 2.12 keV) in the synthesized powder. The carbon peak is also visible, which often
contaminates the surfaces of samples kept in air.
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2.2. Application for Removal of MB

The obtained material was tested for the removal of the MB dye, using hydrogen
peroxide as the oxidant. Experimental tests demonstrated that hydrogen peroxide alone
could not diminish the intensity of the MB color, even at much higher concentrations or
over longer times, as compared with those applied in this research. As mentioned before,
hydrogen peroxide is one of the most used green oxidants [35–38].

As a standard work-up, 2.5, 5, or 10 mg of material were suspended in a total of 2 mL
MB solution containing either 2, 5, or 10 mg of hydrogen peroxide (see experimental section
for details). The mixture was allowed to react for 2, 4, 6, or 24 h and the percentage of
removal (%) of the MB dye was calculated using the absorbance of the solution recorded at
663 nm. The results are shown in Figure 9.
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Figure 9. Percentage of removal of MB using 2.5 mg of material (left), 5 mg of material (center), and 10 mg of material
(right). Note: hydrogen peroxide contents: 2 mg (blue line), 5 mg (red line), 10 mg (green line).

As expected, it can be noticed that longer contact times led to higher % of removal,
as well as larger quantities of the material or hydrogen peroxide. A recent paper showed
that a similar material containing titania and Au NPs or gold nanowires is active in the
degradation of several organic dyes, such as MB, rhodamine B, and azophloxine; after five
repeated uses, the degradation rate could reach 79–87% [28]. Our experiments regarding
the recyclability of the material used in this work showed that under the best conditions
(10 mg of material, 10 mg of hydrogen peroxide, and 24 h reaction), there was no loss in
the material’s activity after four runs (no further experiments were performed). These
results were supported by the high stability of the material, as Au NPs deposited on titania
maintain their intrinsic properties.

Regarding the mechanism of action, it is supposed that the TiO2–Au nanoparticles
act like a Fenton system, yielding the extremely reactive hydroxyl free radical (HO.) that
is able to degrade the organic molecule of the dye. Therefore, the following reactions are
proposed, in accordance with the literature [39]:

H2O2 + Au0 → HO− + Au+ + HO (1)

H2O2 + Au+ → H+ + Au0 + HOO (2)

MB + HO→ by-products (3)

To prove the formation of such reactive radicals, the spin-trapping technique was em-
ployed, using t-butyl-phenylnitrone (PBN) and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO)
as the spin trap and electron paramagnetic resonance (EPR) as the main technique. While
PBN does not affords any EPR signals, in the case of DMPO, very weak signals were
recorded (a quartet with an intensity ratio of 1:2:2:1 and with hyperfine coupling con-
stants of aN = 15 G and aH = 15 G), which can be attributed without doubt to the HO. free
radical [40].

It is necessary to mention that under our working conditions, there were no (or very
few) differences between samples run under ambient light or dark conditions. Without
Au NPs, no hydroxyl radical is generated from hydrogen peroxide, meaning no fading
of the MB is registered. It is well known that the photoelectronic properties of titania are
dependent on their surface morphology [41,42]. We also tried to extend the same process
to 4-nitrophenolate, an anionic dye (compared with MB, which is a cationic dye), but
the results were not reproducible; it is known that some phenol derivatives are types of
recalcitrant compounds that can be a serious problem for the environment, as their removal
may cause difficulty [43].

3. Materials and Methods

Chemicals were purchased from Aldrich, while solvents were purchased from Chimopar
and used as received. Titania nanoparticles (average size 21 nm) were an Aldrich product.



Nanomaterials 2021, 11, 1605 8 of 10

Gold nanoparticles were prepared as previously described [25,26] by dissolving
200 mg hydrogen tetrachloroaurate trihydrate in 20 mL double-distilled water; to this
solution, 20 mL of toluene containing 320 mg tetraoctylammonium bromide was added.
After 5 min of stirring, 460 mg solid triphenylphosphine was added, then stirring continued
for 5 min. Then, a solution obtained from 280 mg sodium borohydride and 10 mL water
was added and the mixture was stirred for 10 min. The organic phase was separated and
the solvent was removed under vacuum. The residue was dissolved in DCM and purified
by gel permeation chromatography. The obtained Au NPs, containing about 100 mg gold,
were mixed with 2 g of titania and the solvent was slowly evaporated. The solid was heated
at 60 ◦C under vacuum for 2 h, then washed extensively with DCM to remove any trace of
organic impurities. UV-Vis spectra were recorded on a JASCO V-670 spectrophotometer
(Tokyo, Japan) equipped with solid sample accessories.

IR spectra were recorded on a Jasco FT/IR 4700 using the KBr disk technique (Tokyo, Japan).
Dynamic light scattering (DLS) measurements were performed on aqueous suspen-

sions using a Delsa Nano C particle analyzer (Backman Coulter Brea, Brea, CA, USA).
The nitrogen sorption isotherm was recorded at −196 ◦C on a Micromeritics ASAP

2020 analyzer (Norcross, GA, USA). The sample was degassed at 200 ◦C for 4 h under
vacuum before analysis. The specific surface area (SBET) was calculated according to the
Brunauer–Emmett–Teller equation, using adsorption data in the relative pressure range of
0.05–0.30. The total pore volume was calculated from the amount adsorbed at the relative
pressure of 0.99. The average pore diameter and pore size distribution curve were obtained
using the Barrett–Joyner–Halenda (BJH) method using the desorption branch.

XPS measurements were performed with ESCALAB Xi+ (Thermo SCIENTIFIC Sur-
face Analysis, Waltham MA, USA) equipped with a multichannel hemispherical electron
analyzer (dual X-ray source) working with Al Kα radiation (hν = 1486.2 eV). C 1s was used
as the energy reference, which has a value of 284.8 eV. The data were recorded on slightly
pressed power materials that had been outgassed in the pre-chamber of the setup at room
temperature at a pressure of <2 × 10−8 Torr to remove the chemisorbed water from their
surfaces. The surface chemical compositions and oxidation states were estimated from the
XPS spectra by calculating the integral of each peak after subtraction of the “S-shaped”
Shirley-type background using the appropriate experimental sensitivity factors using Avan-
tage software (version 5.978). Spectra were analyzed using the NIST X-ray Photoelectron
Spectroscopy Database [44,45]. Crystalline phases identification was achieved by X-Ray
diffraction (XRD) with an X’Pert Pro MPD diffractometer from Panalytical using Cu Kα

radiation (λ = 1.5406 Å) set to work in Bragg–Brentano geometry with 2θ = (20–90)◦, a
speed of 15 s/step, and 0.02◦ step.

The elemental composition (in atom %) of TiO2–Au powder was assessed by energy
dispersive X-ray (EDX) spectroscopy using an EDAX Inc. (Mahwah, NJ, USA) instrument
operated at 20 kV. The data were collected from at least four randomly chosen SEM
(~150 × 150 µm2) areas of the tested powder.

For MB dye degradation, a stock aqueous solution of MB was obtained at a concen-
tration of 0.1 mg/mL. The general settings for the measurements were the following: to
2.5–10 mg of titania-gold material was added a total solution of 2 mL of MB dye, containing
0.02–0.1 mL hydrogen peroxide (10%). The concentration of the remaining MB dye was
measured spectrophotometrically at 663 nm. The percentage of removal (%) was calculated
using the equation % = (Absi − Absf)Absi × 100, where Absi and Absf are the initial and
final absorbance recorded by the UV-Vis apparatus at 663 nm.

For the reusability test for the material, the measurements were performed using
the same procedure, as described; thus, 10 mg of material was added to 2 mL of water
containing 0.2 mg MB and 20 mg hydrogen peroxide and the suspension was left at room
temperature for 24 h. The next day, the mixture was centrifugated and the solid was reused
by again adding 2 mL of water containing 0.2 mg MB and 20 mg hydrogen peroxide and
letting the mixture react for another 24 h. The procedure was repeated until the material
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was reused four times. The concentration of the MB was evaluated spectrophotometrically
compared with the solution recovered after centrifugation.

4. Conclusions

The material obtained based on titania and gold nanoparticles was characterized by a
large number of techniques. It was found that in the presence of hydrogen peroxide, this
material could degrade up to 90% of the methylene blue dye. Due to the speed of synthesis,
the possibility of recycling, and its low cost, it can be recommended as a promising material
for future degradation processes for organic pollutants in the environment.
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