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Major depressive disorder (MDD) is a serious psychiatric disorder, with an increasing
incidence in recent years. The abnormal dopaminergic pathways of the midbrain cortical
and limbic system are the key pathological regions of MDD, particularly the ventral
tegmental area- nucleus accumbens- medial prefrontal cortex (VTA-NAc-mPFC) neural
circuit. MDD usually occurs with the dysfunction of dopaminergic neurons in VTA,
which decreases the dopamine concentration and metabolic rate in NAc/mPFC brain
regions. However, it has not been fully explained how abnormal dopamine concentration
levels affect this neural circuit dynamically through the modulations of ion channels and
synaptic activities. We used Hodgkin-Huxley and dynamical receptor binding model to
establish this network, which can quantitatively explain neural activity patterns observed
in MDD with different dopamine concentrations by changing the kinetics of some ion
channels. The simulation replicated some important pathological patterns of MDD at the
level of neurons and circuits with low dopamine concentration, such as the decreased
action potential frequency in pyramidal neurons of mPFC with significantly reduced burst
firing frequency. The calculation results also revealed that NaP and KS channels of mPFC
pyramidal neurons played key roles in the functional regulation of this neural circuit.
In addition, we analyzed the synaptic currents and local field potentials to explain the
mechanism of MDD from the perspective of dysfunction of excitation-inhibition balance,
especially the disinhibition effect in the network. The significance of this article is that we
built the first computational model to illuminate the effect of dopamine concentrations
for the NAc-mPFC-VTA circuit between MDD and normal groups, which can be used to
quantitatively explain the results of existing physiological experiments, predict the results
for unperformed experiments and screen possible drug targets.

Keywords: major depressive disorder, NAc-mPFC-VTA circuit, dopamine, Hodgkin-Huxley (HH) model, dynamical
receptor binding model
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INTRODUCTION

Major depressive disorder (MDD) is a serious psychiatric
disorder, with an increasing incidence in recent years (Liu
and Thompson, 2017). At this stage, scientists in different
fields have studied the causes of MDD from environmental,
genetic, psychological, and social factors, but the mechanisms
are still not clear (Kato and Serretti, 2010). From the perspective
of neuroscience, the attack of MDD is usually accompanied
by abnormal brain regions or neural circuits’ dysfunctions.
Particularly, the experimental results reveal that the limbic system
and the dopaminergic pathways play a very important role in
the pathogenesis of MDD via modulating emotion and reward
(Nestler and Carlezon, 2006; Russo and Nestler, 2013; Belujon
and Grace, 2017). In those regions, the dopaminergic pathway
consisting of the midbrain ventral tegmental area (VTA), nucleus
accumbens (NAc), and medial prefrontal cortex (mPFC) are
responsible for regulating the release of the neurotransmitter
dopamine (DA), which can excite the brain to generate positive
emotions and make a decision (Opmeer et al., 2010). A low level
of dopamine can cause glumness and emotional indifference, and
it is the important pathogenesis of MDD, as well as Alzheimer’s
disease (Wolfe et al., 1990). Thus, the study of abnormal VTA-
NAc-mPFC neural circuits has become a hot topic for exploring
the causes of MDD (Russo and Nestler, 2013).

The anatomical evidence shows that in the VTA-NAc-
mPFC pathway, the VTA, consisting mainly of dopaminergic
neurons responsible for the synthesis and release of dopamine,
is projected to other brain regions (including the mPFC and
NAc) via synaptic connections (Beier et al., 2015). The mPFC
consists mainly of excitatory pyramidal neurons and inhibitory
interneurons (including parvalbumin/PV, somatostatin/Som,
calbindin/CB, and other subtypes of interneurons) (Kelsom and
Lu, 2013). The pyramidal neurons release glutamate, which
causes excitatory postsynaptic potentials (EPSPs) to occur in
the VTA, mPFC, and NAc regions and excite their membrane
potentials. The interneurons mainly release GABA to inhibit
membrane potentials of pyramidal neurons via inhibitory
postsynaptic potentials (IPSPs), thus maintaining the stability of
the neural network (Russo and Nestler, 2013). The NAc consists
mainly of dopamine D1-/D2-type GABAergic medium spiny
neurons (MSNs) and interneurons (Chen et al., 2019; Bjerke et al.,
2021), which receive excitatory glutamate from PFC pyramidal
neurons and release GABA to inhibit VTA dopaminergic
neurons. That is the most important source of GABA received
by VTA dopaminergic neurons. NAc interneurons have a similar
role to that of mPFC interneurons and are responsible for
regulating the stability of the membrane potentials in NAc

Abbreviations: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid;
CB, Calbindin interneuron; DA, Dopamine; EEG, Electroencephalogram; fMRI,
Functional magnetic resonance imaging; GABA, Gamma-Aminobutyric acid; LFP,
Local field potential; MDD, major depressive disorder; (m)EPSC, (miniature)
Excitatory postsynaptic current; (m)IPSC, (miniature) Inhibitory postsynaptic
current; mPFC, Medial prefrontal cortex; MSN, Medium spiny neuron;
NAc, Nucleus accumbens; NMDA, N-Methyl-D-aspartic acid; PV, Parvalbumin
interneuron; Pyra, Pyramidal neuron; Som, Somatostatin interneuron; VTA,
Ventral tegmental area.

(Russo and Nestler, 2013; Francis et al., 2015; Francis and Lobo,
2017; McCullough et al., 2021).

It has been reported that MDD rats showed lower levels of
dopamine concentrations and metabolic rates in both the NAc
and mPFC regions compared with normal rats (Tanda et al., 1994;
De La Garza and Mahoney, 2004). This can affect the membrane
potential. Some studies showed that the firing frequency of
pyramidal neurons in mPFC was significantly reduced in MDD
mice, along with a decrease in burst firing frequency (Onn et al.,
2006). But the firing rates of NAc D2-MSNs in MDD mice did
not change significantly whether it had quinpirole administration
or not (a D2-like receptor agonist) in each group (Cepeda et al.,
2008; Liu et al., 2014). The abnormal dopamine concentration can
also lead to abnormal changes in the kinetic properties of some
ion channels. For example, it was found that in PFC pyramidal
neurons, dopamine can bind to D1 receptors and then activate an
intracellular calcium pathway to reduce the excitatory of a slowly
inactivating potassium current channel (KS) (Yang and Seamans,
1996; Yang et al., 1996). Meanwhile, regarding the D2-type MSNs
of NAc, dopamine can bind to D2 receptors and not only excite
the slow A-type sodium channel (KAs) directly, but also modulate
the calcium channel to indirectly increase the excitability of the
inwardly rectifying sodium channel (KIR) (Perez et al., 2006;
Cepeda et al., 2008; Lindroos et al., 2018). Furthermore, although
there was some evidence that dopamine can directly modulate
synaptic receptors, such as AMPAR, NMDAR, and GABAaR, to
change the membrane potentials, it was not sure whether this was
a direct factor (Gao and Goldman-Rakic, 2003; Onn et al., 2006),
as excitation-inhibition balance might be an equal role.

However, few studies worked on the mechanism to explain
how dopamine concentration dynamically regulates this neural
network by affecting ion channels and synaptic activities, since
it was too difficult to perform multi-channel measurements
simultaneously for dopamine concentration, membrane
potentials, ion channels, and synaptic activities in the experiment.
Therefore, we considered building a biological neural network
model to explain these neuronal and network activities.

Although there were some computational models for MDD,
almost all of them focused on electroencephalogram (EEG)
signals (Čukić et al., 2020; Saeedi et al., 2021) and functional
connectomes of functional MRI (fMRI) (Yan et al., 2019; Wang
et al., 2020; Macpherson et al., 2021; Tokuda et al., 2021) but not
on the cellular level. Therefore, we cannot use these models to
explain the cellular mechanisms for MDD.

We have studied the abnormal firing patterns with ion
channels in the individual D2-MSN of NAc between MDD and
normal group using the Hodgkin-Huxley model (H-H model)
(Li et al., 2022). This provided the theoretical basis for this
article. Here, we will still use the H-H model, but with the
dynamical receptor binding model for computation, to explore
the relations among MDD, dopamine concentrations, and VTA-
NAc-mPFC neural circuits. The simulation results replicated
some important pathological patterns of MDD at the level of
neurons and circuits with low dopamine concentration and
gave some explanations for the regulation effects on membrane
potentials, ion channels, synaptic activities, and local field
potentials. It was the first computational model to illuminate
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the effect of dopamine concentrations for the NAc-mPFC-VTA
circuit between MDD and normal groups, which can be used
to quantitatively explain the results of existing physiological
experiments, predict the results for unperformed experiments,
and screen possible drug targets.

MATERIALS AND METHODS

Network Structure
In our model, we simulated some brain regions in the reward and
emotion neural pathways, which included three brain regions:
NAc, mPFC, and VTA (Figure 1A). NAc included D2-type
GABAergic MSNs, PV, and CB types of interneurons. mPFC
included D1-type pyramidal neurons, and PV and CB types of
interneurons. Pyramidal neurons were responsible for releasing
excitatory glutamate while interneurons released GABA, both
of them were important for the excitatory-inhibitory balance.
VTA consisted of dopaminergic neurons, these types of neurons
can synthesize dopamine and release it to other brain regions
via neuronal projection. We referred to some published articles
(Durstewitz et al., 2000; Wolf et al., 2005; Russo and Nestler,
2013; Konstantoudaki et al., 2014; Du et al., 2017), and finally
determined the structure of this network as shown in Figure 1A
(please see Supplementary Materials for details). Note that
in our model, the number of neurons showed differently for
different brain regions and neuron types, and this setting was
aimed to match the published experimental results: for example,
the ratio of the number of pyramidal neurons to the interneurons
in the mPFC was generally set to 4:1 (Bazhenov et al., 2004).

Each neuron had its own unique physiological structure. For
example, MSNs had a complex dendritic spine structure (Wolf
et al., 2005; Du et al., 2017; Lindroos et al., 2018), while pyramidal
neurons had a basal dendrite—soma—proximal dendrite—distal
dendrite structure (Wang et al., 2004). In this article, we
simplified the above-mentioned structures for calculation. About
the MSNs, we considered that it consists of 1 soma and 10 same
dendritic spine structures (Figure 1B). For pyramidal neurons,
we established the soma—proximal dendrite—distal dendrite
structure without considering its basal structure (Figure 1C).

Additionally, we did not consider the specific membrane
potential changes of dopaminergic neurons in the VTA but
considered the different dopamine concentration gradients as a
direct input to the model. Thus, the model can reveal the effects of
the abnormal dopamine concentration more directly on the NAc-
mPFC networks in MDD. And it could substantially improve the
calculation speed of our model.

Hodgkin-Huxley Model
We used the H-H model to simulate the membrane potential
for an individual neuron (Hodgkin and Huxley, 1952),
where different types of neurons in the above brain regions
corresponded to different electronic circuit structures. The
basic schematic of the H-H model was shown in Figure 1D.
Here, we will not perform additional theoretical derivation and
interpretation of this model, since this model had been proved
many times in the published article (Hodgkin and Huxley, 1952).

Note that in our model, the currents consisted of four main
components as ion channel currents, compartment currents,
synaptic currents, and stimuli currents. Solving this dynamic
circuit model by Kirchhoff’s Law numerically, the ion channel
currents and membrane potentials at different moments can
be obtained. The differential model was given by the following
equation:

Cm
dVm

dt
+

∑
Iion +

∑
ICompartment +

∑
ISynapse = IStimuli

(1)

Ion Currents
The calculation methods for ion channel currents included
two main categories (Wolf et al., 2005). One was the currents
including sodium, potassium, and chloride ions, which can be
calculated by the following equation.

IIon = GIonmxhy(Vm − Ez) (2)

where GIon was the maximum conductance of the ion channel
and Ez was the reversal potential. m, h corresponded to the
“activating” and “deactivating” gate states of ion channels. After
fitting the tail currents of the ion channels with the Boltzmann
function, we can obtain some parameters as the time constant,
half-activation voltage, and the gradient, which m, h can be
calculated as follows:

dm
dt
=

m∞ −m
τm

, m∞(Vm) =
1

1+ exp(
Vm−V1/2

k )
(3)

Those parameters all came from electrophysiological
experiments or published computational models (Destexhe et al.,
1998; Durstewitz et al., 2000; Wang et al., 2004; Wolf et al., 2005).
In addition, for an ion channel without a deactivation state (e.g.,
KIR channel in MSN), we can let y = 0 in Equation (2). And for a
partially deactivating ion channel (e.g., KAs channel in MSN), we
used Equation (4) to calculate it, where the partially deactivating
rate a ranged from 0∼1.

IIon = GIonmx(ah− (1− a))(Vm − Ez) (4)

For the other types of ion channels, especially the calcium
currents, their ionic currents were not only related to the
membrane potentials, but also to the concentration and
permeability of calcium ions inside and outside the cell
membrane. We referred to the published articles and calculated
them using the Goldman-Hodgkin-Katz (GHK) Equation as
follows (Heinemann et al., 1992).

ICa2+ = PCa2+z2 VmF2

RT
[Ca2+

]in − [Ca2+
]out exp(−zFVm/RT)

1− exp(−zFVm/RT)
(5)

And the concentration and permeability of calcium
can be calculated by those two equations. Here, z = 2,
F = 96, 489 C/mol, R = 8.31 J/Kmol, T = 35 ◦C,
[Ca2+

]in = 0.001 mM, [Ca2+
]out = 5 mM. PCa2+ can be
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FIGURE 1 | VTA-NAc-mPFC neural network model. (A) The structure and synaptic connections of the neural network, different colors, and shapes corresponded to
different types of neurons; numbers inside the shapes showed the amounts of the neurons in our model; the red, blue, and green arrows showed the glutamate,
GABA and dopamine projections, respectively. (B,C) Structures of the MSN in NAc and pyramidal neurons in mPFC in our model, where the 10 dendrites of the MSN
were the same. (D) The circuit schematic of the H-H model for an individual neuron, whose currents consisted of 4 different types: ionic currents IIons, stimuli current
IStimuli , compartment currents ICompartments, and synaptic currents ISynapses. (E–H) Simulated membrane potential results of different types of neurons in our model,
the stimuli began at 500 ms and ended at 3,500 ms, which successfully replicated the fast-firing pattern of interneurons and burst firing pattern of pyramidal neurons.

approximated with Equation (6), where PCa2+ is the maximum
permeability and m, n are different ion channel gates.

PCa2+=PCa2+mxny (6)

The changing calcium parameter [Ca2+
]in can be calculated as

the following equation:

d[Ca2+
]in

dt
= k
−ICa2+

2Fd
− p

Kt[Ca2+
]in

[Ca2+]in + Kd
+

[Ca2+
]in,inf − [Ca2+

]in

τR
(7)

Where ICa2+ is incoming calcium current, d = 0.1 µm, Kt =

10−4m M · (ms)−1, Kd = 10−4m M, τR = 43 ms, k = 1000, p =
0.02.

In this article, we used 15, 8, 3, and 6 types of ion
channels to simulate MSN, pyramidal neurons, PV interneurons,
and CB interneurons. The Kinetic for each ion channel was
described clearly. For detailed parameter settings please see
Supplementary Information.

Particularly, in our model, we only considered voltage-
gated ion channels. We did not consider other complex ion
channels, such as pressure-sensitive, temperature-sensitive, and
pH-sensitive types.

Compartment Currents
The compartment current was the simulation of the transmission
process of neuronal electrical signals over dendrites and axons,
which was used to model the passive membrane property, such
as the dendritic integration process. We used Rall’s cable model
and compartment model to calculate it (Rall, 1962), considering
the soma, axons, and dendrites as different compartments. As an
example for an individual MSN, whose soma was connected with
the complex dendrites, the compartment current of the soma
receiving from the dendrite can be calculated by the following
equation.

ICompartment=
dSoma · d2

Dendrite
rL · lSoma · (d2

Soma · lDendrite + d2
Dendrite · lSoma)

(8)
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where rL was the axial resistance of the membranes, d, l were
the diameter and length of the compartment, respectively.
Similarly, other compartment currents can be calculated based
on this method. Because only MSN and pyramidal neurons in
this article had complex compartment structure (MSN: soma—
dendrites, pyramidal neurons: soma—proximal dendrite—distal
dendrite), the compartment model was only used for these
two neuronal types.

Synapse Models
In this article, we focused on modeling AMPA, NMDA, and
GABAa currents. The receptors corresponding to these three
synaptic currents all belonged to ligand-gated receptors. We
referred to Destexhe’s published work (Destexhe et al., 1998),
who successfully modeled and verified these above three currents
using non-linear dynamical methods. For AMPA and GABAa
currents, they can be calculated as follows.

IAMPA/GABAA = GAMPA/GABAa · r · (Vm − EAMPA/GABAa) (9)

dr
dt
= α[T](1− r)− βr (10)

where [T] was the concentration of the transmitter in the
synapse, which varied at different moments. It was determined
by the potential of the presynaptic membrane and the maximum
concentration of the transmitter. We used the following Equation
to calculate [T].

[T]=
Tmax

1+ exp(−(Vpre − Vp)/Kp)
(11)

For the NMDA current, since it was subjected to the block
of the magnesium ions, B(Vm) was added to the model so as to
match this physiological property (Destexhe et al., 1998).

INMDA = GNMDA · r · B(Vm) · (Vm − ENMDA) (12)

B(Vm) =
1

1+ exp(−(Vm + 15)/16.3)
(13)

Additionally, because the strength of the synaptic connection
between different neurons was random, we gave a matrix of
random numbers in the range (0,1) to model it with a uniform
distribution method. Thus, for the postsynaptic neuron ai, if
its presynaptic neurons were aj1, aj2, aj3, ..., then the synaptic
current can be calculated as follows.

ISynapse,ai =

∑
k=1,2,3,...

ωijk · ISynapse,jk→i (14)

Stimulus Currents
In vitro, researchers usually clamped at different particular
currents to study changes in the membrane potential (Perkins,
2006). This was different from the case in vivo because the
stimulus currents of different neurons were significantly random
and varied every time in the networks, even the whole brain.
Therefore, in our model, the stimulus currents were random

and continuously varied. Since a normal distribution may have
some outliers which can be much bigger or smaller than the
mean value, the stimulus currents in our model were finally
considered to be uniformly distributed within an interval, i.e.,
Istimuli ∼ U[min, max].

Parameters Set
The parameter settings of the individual neuron models in
this article were mainly referred from published computational
articles, which were validated by electrophysiological and
molecular biological experiments. The model of MSN came from
Wolf ’s work (Wolf et al., 2005), who built and simulated complex
dendritic structures and ion channels. The models of pyramidal
neurons and interneurons (including PV and CB types) came
from Wang’s work (Wang et al., 2004). The parameters of
the dynamical receptor binding model came from Destexhe’s
work (Destexhe et al., 1998). After that, we simplified and
adjusted some parameters of these above models in order to
match the experiments of MDD and reduce the computational
time. The detailed model parameter settings were shown in
Supplementary Information.

Dopamine Input
One Durstewitz’s study provided ideas for our model building
(Durstewitz et al., 2000), he successfully built a computational
model that can describe the characteristics of membrane
potentials in PFC under different dopamine concentrations.
In his model, he adjusted the parameters of the high-voltage-
activated calcium channel, slowly inactivating the potassium
channel, and persistent sodium channel of the pyramidal neurons
in PFC, and he studied the synchronization mechanism of this
biological network.

However, since this work only calculated the effects under
0% (no dopamine input) and 100% (with dopamine input)
conditions of dopamine concentration input, it cannot well
demonstrate the effects of continuous, randomly varying
dopamine concentration gradients on the PFC. In our model, we
considered the dopamine concentration can linearly change the
parameter values: if the value of the parameter was a in the 0%
condition and b in the 100% condition, then the value in the k%
condition was set to a+ (b− a) · k% .

Therefore, as for our model in this article, we adjusted
the values of some parameters to simulate the membrane
properties of MDD and normal groups under different dopamine
concentrations. As for pyramidal neurons in mPFC, we changed
the maximum conductance of calcium channels (Ca and CaN
channel) of soma and distal dendrite, maximum conductance
of slowly inactivating potassium channel (KS channel), and the
activating and deactivating parameters of the persistent sodium
channel (NaP channel) of proximal dendrite according to the
dopamine concentrations. As for MSN in NAc, we changed the
maximum conductance of the slowly A-type potassium channel
(KAs channel) and Cav1.2 calcium channel (HVA L-type, CaL1.2
channel) of the soma and dendrites according to dopamine
levels. The detailed model parameter settings were shown in
Supplementary Information.
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Note that because we did not consider the synaptic plasticity in
our model, we had not considered the direct modulation effects of
dopamine concentrations on the synaptic currents. We preferred
to study the effect of dopamine on ion channels. In other words,
dopamine did not directly alter mEPSC and mIPSC in our model,
but indirectly affected EPSC and IPSC through the alterations of
membrane potentials.

Simulation Experiments
To better analyze the results of the model from a statistical
point of view, several randomized simulation experiments
were conducted. Since the primary objective of this article
was to study the dopamine mechanism of the VTA-NAc-
mPFC pathway, we calculated the membrane potentials under
4 different random dopamine concentration gradient range
levels (Low 0–25%, Medium 25–50%, High 50–75%, and Full
75–100%) to study the relations between lower dopamine
concentration and MDD. After that, 5 dopamine concentration
levels (MDD 0%, Low 25%, Medium 50%, High 75%,
and Normal 100%) were performed to study the abnormal
local field potentials in the MDD group. In which, three
independent repeated trials were conducted for each dopamine
range level. Also, nine independent repeated experiments
were conducted, to rigorously demonstrate that the random
connection strength matrix and stimulus current were not
significant factors, respectively.

The simulations in this article were mainly performed on
Windows 10 Enterprise (version: 1511, CPU: i5-6400, RAM:
32GB), MATLAB (R2020a, MathWorks). For each operation of
taking random numbers, the repeatability was strictly determined
(using the rng function in MATLAB). The numerical calculations
of the model were performed using the second- and third-order
Runge-Kutta method with a step at 0.02 ms. The computational
results of the model were matched with whole-cell membrane
clamp experiments, and some of the membrane potential
simulations were shown in Figures 1E–H.

Statistics
The statistics in this article were all means ± SEM unless
otherwise noted. To study the differences in means, we used
paired or unpaired Student’s t-test. To analyze the differences
in variance in multiple groups, we used non-repeated or
repeated measures one-way ANOVA methods. All of those
above results were FDR corrected. In addition, unless otherwise
noted, p < 0.05. Statistical analyses were performed mainly with
MATLAB (R2020a, MathWorks) and Graphpad Prism (8.0.2).

Spectral Analysis
In this article, the spectral analyses of the membrane
potentials and the local field potentials were performed in
both frequency and time-frequency. Because in the process
of model calculation, we chose a step at 0.02 ms, which was
equivalent to sampling the membrane potential at 50 kHz,
a very high frequency. Therefore, before performing the
spectral analysis, we first resampled the simulated membrane
potential at a sampling frequency of 500 Hz (i.e., 2 ms)
to obtain the field potential signal data. After that, a fast

Fourier transform was performed, and the power spectral
densities of the signal from 0 to 250 Hz were obtained for
spectral analysis.

We then set the time window to 100 ms and the overlap rate to
50%, using the short-time Fourier transform for time-frequency
spectrum analysis. We converted the power spectral densities into
the form of dBm/Hz units for statistics, calculated as PdBm =

10 · log10(PW), where PdBm, PW were the power spectral densities
results in dBm/Hz and Watt/Hz units, respectively.

After that, we performed the Student’s t-test to get the p−
value for each frequency point fi(i = 1, 2, ..., 1024), noted as pi.
We specified the significance level α = 0.1. And when pi < α, we
considered the difference to be significant at the frequency fi. In
this way, we can clearly quantify the differences in the frequency
distribution among different groups by calculating Diff Ratio =
Ndiff

N , where N = 1024 and Ndiff was the number of the different
frequencies above.

RESULTS

Effects of Dopamine on the Membrane
Potentials
Here we described MDD in terms of dopamine concentrations,
with lower dopamine concentrations leading to a greater risk
of MDD. The simulated results can accurately replicate the
membrane potential results, such as that the firing frequency of
pyramidal neurons in mPFC was significantly reduced in MDD
mice and decreased in burst firing frequency (Onn et al., 2006),
and the membrane potentials of NAc D2-MSNs in MDD mice
did not change significantly (Cepeda et al., 2008; Liu et al., 2014;
Figure 2). The results revealed that there were some differences
in the patterns and characteristics of the membrane potentials of
different types of neurons.

We calculated and analyzed the mean membrane potentials
(Figure 2B). It was calculated by averaging the membrane
potentials over the whole simulation time period. In particular,
the reason for analyzing it here was that it was closely related
to the local field potential and the subthreshold activity of the
individual neuron (Rudolph and Destexhe, 2003), which can
demonstrate how the neuron was regulated by synaptic currents
in the local microcircuit. The result showed that the dopamine
concentrations were significantly and negatively correlated with
the mean membrane potentials only of the pyramidal neurons
(see the right panel in Figure 2B), and no significant correlations
were observed in other types of neurons.

We then analyzed the mean of the peak amplitude of the
action potentials (here we named it the mean peak membrane
potentials, Figure 2C) and the firing rates (Figure 2D). Results
showed that the greatest changes under different dopamine
concentration gradient inputs were observed in the pyramidal
neurons of mPFC, while those of D2-MSNs in NAc did not
differ significantly. It also showed that the mean peak membrane
potentials and the firing rates of pyramidal neurons significantly
increased while the dopamine concentration rose, which
demonstrated that dopamine can excite the pyramidal neurons.
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FIGURE 2 | The membrane potentials of different neurons under random dopamine concentration gradients. (A) Selected one results of the firing sequence of the
action potentials under different dopamine concentrations: low (0–25%), medium (25–50%), high (50–75%), full (75–100%), the strength of connections and stimulus
were same (vertical coordinate: neuron number, horizontal coordinate: time, each point showed that the neuron had one action potential at the corresponding
moment, different colors were the different types of neurons). (B) Statistical results of the mean membrane potentials, which were significantly higher in pyramidal
neurons at low concentration than at full concentration, n = 180, Brown-Forsythe and Welch one-way ANOVA. (C) Statistical results of the mean peak action
potentials, when the dopamine concentration increased, the mean peak action potentials in pyramidal neurons significantly increased, n = 180, Brown-Forsythe and
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*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, means ± SEM.

After that, we removed the outlier points of the firing rates
of pyramidal neurons (after sorting the firing rates from smallest
to largest, only reserving the range of 25–75%), and did a
regression analysis with the dopamine ratio (the actual dopamine
concentration after adding random variables) as the independent
variable and found there was a positive correlation between
firing rates and dopamine ratios (Figure 2E). Additionally, we
referred to the methods from Hu’s lab to count the burst firing
frequency of pyramidal neurons (Cui et al., 2018; Yang et al.,
2018). Here, we considered that a burst firing should be counted
at the following condition: beginning with a maximal inter-
spike interval of 40 ms and ending with a maximal inter-spike
interval of 100 ms. Statistical results (Figure 2F) showed that

the number of burst firing of pyramidal neurons increased
significantly with rising dopamine concentration, which was
the same tendency observed in physiological experiments
(Onn et al., 2006).

Ion Currents
We further analyzed the abnormal ion channel current changes.
Results showed that the KAs channel of MSNs, KS channel on
the proximal dendrite of pyramidal neurons, NaP channel and Ca
channel on the soma of pyramidal neurons played an important
role in the modulation of this VTA-NAc-mPFC neural network.
Compared with the electrophysiological experiments, since our
simulation can calculate the currents at every moment, it will
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better demonstrate the regulation patterns of ion channels under
the different dopamine concentration inputs.

From the perspective of the ion channel kinetics, the ionic
currents changed mainly in two characteristics: the frequency of
the ion currents occurring at the peak (similar to the frequency
of the action potentials, here we named it the “peak frequency”)
and the amplitude of the peaks (here we named it as “peak
current”). Indeed, the peak frequency was determined by the
action potential frequency, where each action potential occurring
must be accompanied by a peak of ion current; the amplitude of
the whole-cell ion current was determined by the conductance
and the activation state of the channels, which were related to the
microstructure of the ion channels. We did statistical analysis on
the peak frequencies and peak currents of the above-mentioned
ion channels and analyzed the differences using the repeated
measures ANOVA (Figure 3).

The results demonstrated that dopamine significantly
increased the amplitude of the peaks of MSN KAs (Figure 3A),
while the effect on the peak frequency was not significant,
suggesting that dopamine increased the KAs current by affecting
the structural characteristics of the KAs channel. In the view
of action potential generation mechanisms, the reason for
this phenomenon in the MSN KAs channel can be the faster
repolarization process. However, because dopamine did not
significantly change the mean amplitude of the peak of the MSN’s
action potential (Figure 2C), it revealed that the modulation
of the KAs channel was not a decisive factor in the MSN
membrane potential.

As for pyramidal neurons, we found some significant changes
in peak frequency (Figures 3B–D), as well as the increased
peak currents of KS (3b) and NaP (3c) channels in Proximal.
Since NaP channels were associated with the depolarization state
of action potentials and KS channels were associated with the
repolarization states, it can be concluded that dopamine can
increase the action potential frequency and peaks in pyramidal
neurons by modulating those ion channels (Figure 2C). Those
simulations replicated the same results reported in some
physiological experiments (Yang and Seamans, 1996; Yang et al.,
1996), suggesting that NaP and KS channels were the potential
target channels that can regulate the membrane potentials of
pyramidal neurons efficiently.

In addition, the trend of Ca currents (Figure 3D) in the
pyramidal neuron soma was irregular. Since Ca channels were
closely related to synaptic activity (Mintz et al., 1995), this
suggested that synaptic currents had an important role in
regulating action potentials in pyramidal neurons and even local
field potentials.

Synaptic Currents
While activities of ion channels mainly affected neuronal
action potential patterns, synaptic transmission activity of
neurotransmitters played a more important role to maintain the
stability of neural networks, especially the excitation-inhibition
balance. Interestingly, Figure 2B showed that the dopamine
concentrations were significantly and negatively correlated with
the mean membrane potentials of the pyramidal neurons. Also,
it was shown in Figure 2D that the firing rates of fast-firing

PV interneurons in mPFC were significantly different between
low and high dopamine concentrations, yet not in other groups.
That evidence suggested that dopamine may change the synaptic
currents and the firing patterns of the networks via regulating the
excitation-inhibition balance.

We first performed spectral analysis on different types of
neurons, in order to analyze the effects of synaptic currents
under the modulation of abnormal dopamine levels in MDD.
We resampled the simulated membrane potentials and calculated
them separately according to the methods written in section
“Materials and Methods” (Spectral analysis), and the results
after averaging were shown in Figures 4A–F. It was found that
PFC pyramidal neurons showed more significant differences
above 50 Hz (Figure 4D), while the power spectral densities
of these signals in this range showed a correlation with
dopamine concentrations. For other types of neurons, although
the time-frequency spectrum differed at different dopamine
concentrations, there were no significant regular patterns,
implying that the variability of the frequency distribution of
those individual neurons was not significant. We quantified the
frequency distribution variability (Figure 4G) and found that the
pyramidal neuron differences were highly significant.

We further explored the reasons for the differences in
the frequencies of pyramidal neurons. We calculated EPSCs
(Figure 5A) and IPSCs (Figure 5B) of PFC pyramidal neurons
and did statistics. The results revealed that although we
set linear dopamine concentration gradients, the significant
differences among different dopamine concentrations of EPSCs
and IPSCs were not linear. In addition, the peak frequencies
and the peak currents of EPSCs in pyramidal neurons both
increased significantly, while the peak frequencies of IPSCs
tended to decrease. An interesting result was that the peak
currents of IPSCs in pyramidal neurons first decreased and
then increased (Figure 5B), which was consistent with the
trend of Ca current (Figure 3D), suggesting that Ca channels
were related to GABA channels. Then, in order to explore
the effect of postsynaptic current alteration on postsynaptic
membrane potentials, we calculated the correlations between
them. The results demonstrated that dopamine can affect
and reinforce depolarization of the pyramidal neurons with
concentration-dependence (Figure 5C). Also, although there
were no significant regular trend in IPSC (5d) results, GABA
could still be involved in regulating the stability of the membrane
potential under the modulation of excitation-inhibition balance
(Seamans and Yang, 2004).

After that, we also calculated the correlations between the
membrane potentials and the EPSCs (Figure 5E) or IPSCs
(Figure 5F) in PV interneurons of mPFC. The results showed that
dopamine also improved the correlations between the EPSCs and
the membrane potentials, suggesting that dopamine can affect
the whole network to increase the excitations of the glutamate
receptors, rather than only regulating some specific glutamate
receptors of pyramidal neurons.

Local Field Potentials
In order to explore the effects of the abnormal lower dopamine
concentrations input in MDD on the local field potentials of the
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FIGURE 3 | Statistical results of some important ion channel currents, where each row showed a type of the currents [A, KAs channel of MSNs, B, KS channel on
the proximal dendrite of pyramidal neurons. (C,D) NaP and Ca channel on the soma of pyramidal neurons, at full dopamine concentration], left, examples for the
currents of the corresponding ion channels, middle, statistical results of the peak frequencies (C,D converse), right, statistical results of the peak currents, using
repeated measured one-way ANOVA (for normal distribution) or Friedman test (non-normal distributions) methods, n = 9. All the statistically significant differences
were visualized in the graph. *p < 0.05, ***p < 0.001, ****p < 0.0001, means ± SEM.

network, we adjusted the dopamine input in the model. Here, we
removed the random components of the dopamine concentration
gradients input and added an MDD group. Thus, the dopamine
concentration gradients in this part were MDD (0%), low (25%),
medium (50%), high (75%), and normal (100%), with a total
of 6 replicated trails (the strength of the connections and the
stimulus currents were randomized) for each level. We summed
and averaged the membrane potentials of the 28 neurons in the
network and calculated and plotted the time-frequency heatmaps
(Figures 6A–E). Then we counted the mean amplitudes of the
peaks in the local field potentials (Figure 6F) and the frequency
spectrum (Figure 6G).

We specifically studied the gamma band (30–100 Hz), because
the gamma band is associated with the excitation-inhibition
balance in the cerebral cortex. In addition, this band is related
to the functional properties of PV interneurons and the brain’s
ability to integrate information (Bartos et al., 2007; Atallah
and Scanziani, 2009; Mann and Mody, 2010). Some evidence
suggested that ketamine can modulate the firing patterns of
microcircuits in PFC with disinhibition to achieve a rapid
antidepressant effect (Seamans, 2008; Miller et al., 2016; Cui
et al., 2018; Yang et al., 2018), suggesting an important role of
excitatory-inhibitory balance in the regulation of MDD. In this
article, due to our simulation results, we found that in the range
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FIGURE 4 | Spectral analysis and statistical results. (A–F) Spectral results for different types of neurons, which were averaged over 9 independent replicated
experiments. (G) The quantifications of the differences. The calculation method was described in section “Materials and Methods” (spectral analysis).

of 30–50 Hz, higher dopamine concentration had a lower power
spectral density level, while in the range of 50–100 Hz (and
even to the high frequency 250 Hz), dopamine concentrations
were negatively correlated to power spectral density levels. This
suggested that dopamine modulated different frequencies of the
local field potentials in different ways, which could be determined
by different kinds of synaptic currents.

Some published articles demonstrated when external stimuli
were input, pyramidal neuron cells were first excited and followed
by the release of glutamates, which can excite GABAergic
interneurons (especially PV neurons) and generate a gamma
oscillation of interneurons to affect pyramidal neurons. Thus,
the neural network was synchronized (Bartos et al., 2007;
Cardin et al., 2009). Combined with our simulation results,
we explained the dopamine mechanism as follows: when
dopamine was input because dopamine can promote the
release of glutamate of pyramidal neurons (Figure 2D), the
concentrations of glutamate projected to PV interneurons of
mPFC became higher (Figure 5E), making PV neurons more
excitable (Figure 2D). When the dopamine concentration was
further increased, PV neurons released large amounts of GABA
to inhibit pyramidal neurons, thus ensuring excitation-inhibition
balance in the local neural microcircuit (Figures 5D,F). In

addition, the quantifications for time-frequency results of
different concentrations showed (Figure 6H) that the differences
in dopamine concentrations were positively correlated to the
differences in its field potential frequencies, indicating that
dopamine was an important factor influencing the field potential
frequency distributions.

Subsequently, we displayed the heat maps of the time-
frequency power spectral results of field potentials, which
can demonstrate the differences between the DA group (Low,
Medium, High, and Normal) and no DA group (MDD) at
different dopamine gradient levels in the whole neural network
(Figure 7), calculated as 1P = PdBm,DA − PdBm,Control = 10 ·
log10(

PW,DA
PW,Control

). Here, the blue part (−20 to 0 dBm/Hz) showed
that the DA group had lower power than the MDD group
at the corresponding moments and frequencies, and the red
part (0–20 dBm/Hz) showed that the DA group power was
higher than that of the MDD group. We found that the
high-frequency component of the field potential (100–250 Hz)
was significantly enhanced as the DA concentration difference
increased, suggesting that DA can improve the firing rate of
neurons in the network. Also, we found that Gamma oscillations
(30–100 Hz) were stronger in the other groups than in the MDD
group in the region of 0–1,000 ms, while the opposite was true
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between the membrane potentials and the synaptic currents of different types of neurons, each result was averaged over 9 independent repeated trials, repeated
measured one-way ANOVA (obeying normal distribution) or Friedman test (non-normal distribution), n = 9. All the statistically significant differences were visualized in
the graph. *p < 0.05, **p < 0.01, ***p < 0.001, means ± SEM.

in the region of 1,000–3,000 ms (Figure 7D). It demonstrated
that high levels of DA can rapidly affect PV interneurons and
release GABA to keep the neural network stable, resulting in a
synchronized firing rate increase. When the neural network is
stable, glutamate will be in charge of maintaining the frequency
of action potentials, so the role of GABA decreases, as shown by a
gradual decrease in the gamma frequency component over time.

DISCUSSION

The Computational Model Can Describe
Neuronal Activities at Different Moments
Exploring the dynamically modulated relations of MDD
among abnormal membrane potentials, ion channels, and
neurotransmitters, especially analyzing these processes
quantitatively so as to find the causative factors and therapeutic
targets, will be of great significance for early prediction and
diagnosis, treatment, and assessment of therapeutic effects.

However, even though it was very important for the research of
MDD, there were few studies to work on these above-mentioned
mechanisms, because the dynamic processes were too complex
to be explained by experiments.

The development of computational neuroscience, especially
computational psychiatry, has provided the theoretical and
mathematical basis for these above problems (Adams et al.,
2016; Huys et al., 2016). From the perspective of mathematics,
this complex neural system can be considered a dynamic
system model: for any given moment, the neural system will
have a state which includes biological, physical, and chemical
characteristics of membrane potentials, ion channels, receptors,
and others (Kringelbach and Deco, 2020). Using the available
experimental data on electrophysiology and biochemistry as
the inputs and parameters in the models, especially using the
data on ion channel kinetics, receptor binding kinetics, and
neurotransmitter concentration, we can perform calculations for
simulations, predictions, and analysis of the neural system in
different conditions.
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With these theories, we build a computational model
for the NAc-PFC-VTA dopaminergic pathway, based on
the results of existing multi-channeled electrophysiological
experiments, which can describe the membrane potential
changes at different dopamine concentrations. In particular,
the abnormal decrease of dopamine concentration is a typical
symptom in the brain regions of MDD patients, while our
calculated results of low-level dopamine concentration are
the same as the electrophysiological results of MDD, such
as the significant decrease of PFC pyramidal neuron firing
frequency and burst frequency, as well as no significant change
of MSN firing frequency (Figures 2B–F). Furthermore, because
the parameters in our model came from the experimental
data, it demonstrates that our computational model follows
biological principles. Therefore, in the model, we use
dopamine concentration as a biomarker to distinguish the
MDD group from other groups and calculate the membrane
potentials under different external stimuli and network
connection strengths.

Compared with traditional electrophysiological experiments,
computational models have unique advantages. For example,
we can calculate the currents of different ion channels and
membrane potential at the same moment, which helps us explore
the causal relations and the mechanisms of electrophysiological
phenomena in terms of the synergistic and antagonistic effects of
different ion channels quantitatively. For example, we analyze the
synergistic effects of both NaP and KS channels on the proximal
dendrites of PFC pyramidal neurons (Figures 3B,C), in order to
explain the biophysical mechanism of the significant reductions
in firing frequency and a burst frequency of PFC pyramidal
neurons in MDD condition.

In addition, model calculations will help us to predict
the potential ion channel targets for MDD therapy. For
example, we find that the Ca channel of PFC pyramidal
neurons is a possible ion channel target, because the peak
currents of IPSCs (Figure 5B) in pyramidal neurons first
decreased and then increased, which was consistent with
the trend of Ca current changes (Figure 3D), while IPSC
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FIGURE 7 | Time-frequency power spectral results. The heat maps of the time-frequency power spectral results of field potentials between the MDD group
(dopamine input: 0%) and dopamine groups(dopamine input: (A) low 25%, (B) medium 50%, (C) high 75%, and (D) normal 100%).

is reported as a very important and significant role to
regulate the excitatory-inhibitory balance in MDD (Seamans
and Yang, 2004; Cui et al., 2018). Moreover, although some
studies have demonstrated that DA can bind D2 receptors
in MSN and thus directly enhance the activity of KAs, our
calculations reveal that KAs channels cannot decisively excite
the MSN membrane potentials or even the whole neural
network, suggesting that KAs is not a key ion channel
target for MDD. These calculations cannot only explain
some existing physiological experimental results but also
suggest some new ideas and provide new perspectives for the
mechanism study of MDD.

Excitation-Inhibition Imbalance in Major
Depressive Disorder With Abnormal
Membrane Potential and Field Potential
Conditions
We perform spectral analysis and time-frequency spectral
analysis for neuronal membrane potentials and local field

potentials. The calculated results can describe the effect of the
abnormal excitation-inhibition balance of MDD in the VTA-
Nac-mPFC network. For an individual neuron, EPSC and IPSC
together are in charge of keeping the steady membrane potential.
We find that dopamine can increase the EPSCs of both excitatory
PFC pyramidal neurons and inhibitory PFC PV neurons; and the
correlation coefficients between EPSCs and membrane potentials
increase rapidly when the dopamine input concentration grows,
indicating that EPSCs are important factors in maintaining the
excitability of neurons.

Meanwhile, we find that the peak frequencies of IPSC
in pyramidal neurons decrease significantly after dopamine
administration, indicating that dopamine can decrease IPSCs
to increase the excitatory of those neurons; however, the
mean amplitude of the peaks in IPSCs increase significantly in
pyramidal neurons, indicating that IPSCs under the influence
of dopamine can inhibit the membrane potentials. Those
two findings are somewhat opposite. Interestingly, we also
find there is no obvious pattern in the correlation efficiency
between IPSCs and membrane potentials in our calculation
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results. We haven’t found any published works of literature to
explain it. We will design some biological experiments to study
this phenomenon.

Local field potentials can describe the excitability and
synchronization of the Nac-PFC-VTA neural network. We find
that the gamma-band of the field potentials shows significant
differences under the influence of different concentrations of
dopamine in MDD. Because the gamma oscillations are mainly
modulated by the interneurons, it suggests that dopamine can
modulate the neural network by affecting GABA and thus
the neural network. Furthermore, the computational results of
the model suggest that the role of GABA is more important
compared to glutamate receptors (AMPA, NMDA) because
it can directly modulate the synchronization and stability of
the whole neural network. It indicates that GABA receptors
can be an important therapeutic target for MDD. This also
explains the phenomenon that MDD-like symptoms in mice
are attenuated after ketamine inhibits the interneurons through
disinhibition effects.

In summary, it is clear that the synergism and antagonism
between EPSC and IPSC modulate the excitability and stability
of neuronal cells, and their imbalance due to abnormal
dopaminergic pathways is one of the important factors that
induce MDD. However, we still do not know the exact relations
between MDD and excitation-inhibition balance. In other
words, which level of excitation-inhibition ratio can be treated
for MDD? And what drugs are more effective in regulating
the excitation-inhibition ratio? We will gradually explore this
in future studies.

Guide the Designs of Biological
Experiments
The calculation results of the model are useful for guiding the
design of subsequent MDD experiments. On the one hand, the
calculation results can make predictions for the unperformed
experiments, explore possible and potential MDD targets, and
reduce the experimental cost as much as possible while ensuring
the experimental effect. On the other hand, some existing MDD
ion channel targets can be quantitatively analyzed. Researchers
can select and study the research objects with great influence on
membrane potentials or other physiological indicators to increase
the success rate of experiments (Adams et al., 2016; Huys et al.,
2016).

From the perspective of mechanism explanation, although
there are many existing experimental studies on MDD, most
of them only consider the influence of a single variable but
do not analyze the mechanism of MDD generation from
the multivariate and system biology perspective. Whereas
using computational models can analyze the synergistic and
antagonistic effects of different ion channels and synaptic
currents in regulating membrane potential and local field
potential, as well as the causal relation of those different
changing research objects. In addition, it is useful for researchers
to analyze the pathogenesis of MDD from synchronization
and stability, which provides a new idea for the subsequent
target exploration.

A New View for Major Depressive
Disorder Diagnosis and Drug Treatment
The model we built can provide new assessment tools for
MDD diagnosis and drug treatment. For example, the results of
field potential time-frequency analysis calculations can describe
the frequency distribution at different moments. We can
clearly understand at which moments and in which frequency
range MDD differs from other groups, which establishes the
correlations between field potentials and MDD at the cellular
level. Thus, we can assess the severity of the onset of MDD
in animals by the model. In addition, compared with large-
scale EEG and fMRI experiments, the calculated results of field
potential time-frequency analysis accurately demonstrate not
only the changes of field potential after drug treatment but also
the microscopic changes of ion channels and synaptic currents in
the neural circuit after drug administration. We can calculate the
time consumption of altering the abnormal field potential time-
frequency pattern of MDD to normal in order to find the best
doses and drugs. We can also analyze it with other biological
experiments to explain the pharmacological mechanism and
metabolic kinetic mechanism.

In addition, some published metabolomics results suggest that
some metabolites related to energy metabolism are abnormal
in the MDD brains, which reveals that MDD symptom is
accompanied by abnormal energy consumption in the brain
(Abdallah et al., 2014; Yoon et al., 2016; Zuccoli et al., 2017;
MacDonald et al., 2019; Li et al., 2022). We have explored
the correlation between neural energy and neural activity in
a series of past studies (Zhu et al., 2019; Wang et al., 2021;
Yuan et al., 2021), which provides a theoretical basis for our
exploration of energy income and expenditure in MDD. In the
model, we can calculate the energy consumption of electrical
activity in the neural network from the membrane potential
and ion channels, and synaptic currents at different moments
(Wang et al., 2017; Zhu et al., 2018). Since electrical signaling
is the core way of information transmission by neurons, the
results of electrical activity energy consumption can reveal the
ability of neural networks to process biological information under
different conditions. It provides a novel perspective to explore the
pathogenesis of MDD, and we are in the process of exploring it.

Limitations of the Current Model
Although we proposed such a valid and novel model, it was
built with some deficiencies. Limited by the current experimental
techniques and findings (Durstewitz et al., 2000; Cepeda et al.,
2008; Russo and Nestler, 2013; Liu et al., 2014), we made
some simplifications and assumptions in the model design.
For example, according to the results of anatomical and
physiological experiments (Russo and Nestler, 2013), there are
large cholinergic, calretinin, and somatostatin interneurons in
the Nac region in addition to the most important MSNs, PV,
and CB interneurons, while the MSNs also has D1- and D2-
different phenotypes. However, our Nac model only simulated
the most important types (D2-MSNs, PV, and CB interneurons)
but understated the other types. The biggest reason for this was
that the kinetic characteristics of the other neurons (including ion
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channels, receptor binding dynamics, etc.) were still unknown
and needed to be studied experimentally. Also, biological
experiments had not compared the kinetic differences between
the same type of interneurons of Nac and mPFC. Therefore, we
assumed that they only had synaptic connectivity differences,
but no ion channel differences. In addition, we did not consider
how presynaptic dopaminergic neurons from the VTA region
dynamically modulated dopamine transmitter release through
membrane potentials and how they were regulated by feedback
from other brain regions. Although we can say that our
simplified model could successfully explain the mechanisms of
dopamine and MDD from the biophysical view (Durstewitz
et al., 2000; Cepeda et al., 2008; Russo and Nestler, 2013), these
deficiencies still deserve to be explored further to improve the
computational models.

Another thing that should be mentioned here is the selection
of the neuron model. At this stage, the modeling of biological
neurons diverges into 2 different routes: simplified neuron
models and detailed neuron models. The simplified neuron
models do not consider the complex structural and dynamical
features of neurons but focus on the performance of large-scale
neural network clusters in encoding cognitive behaviors, such as
the field potential coding theory (Averbeck and Lee, 2004) and the
artificial neural network models (Glimcher, 2011; Dabney et al.,
2020). In contrast, the detailed neuron models are usually studied
for a single neuron, which may contain thousands of dendritic
structures (Wolf et al., 2005; Du et al., 2017). Our model lay
between these two scales but was closer to the detailed models.
On the one hand, we wanted to explore the interrelationships
between different ion channels and neurotransmitters, and we
therefore needed to preserve the complex dynamical properties.
On the other hand, limited by the computational power, we did
not model every neuron in every detail, thus we also simplified
the neuronal structure. Because of the simplification of the
neuronal structures, the firing patterns in this paper could be
different from some electrophysiological experimental results
in vitro and in vivo as well as the simulation results of detailed
neuron models in silico, but this is unavoidable. Nevertheless, we
have preserved as many ion channels and structural properties as
possible in our models - we would like to simulate this network
of 28 coupled neurons with complex ion channels rather than

the network with thousands of neurons but of simple neuronal
structures, since MDD is correlated with both the network
structure and some important ion channels. Our future goal is
to expand the number of neurons while bringing the neuronal
model as close as possible to the physiological situation, in order
to explore the coding patterns of field potentials in MDD.
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