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Introduction: This study explored the effects and molecular mechanisms of asperosaponin VI in tendon
disease.

Methods: Forty-eight purebred adult male New Zealand white rabbits were randomly divided into the
normal group (normal, n = 8); saline group (saline, n = 8) and prostaglandin E2 group (n = 32), which
was further divided into four subgroups that were treated with asperosaponin VI doses of 0 mg/kg
(model, n = 8),10 mg/kg (10, n = 8), 20 mg/kg (20, n = 8) and 40 mg/kg (40, n = 8). The expression levels
of matrix metallopeptidase 1 (MMP1), metallopeptidase inhibitor 1 (TIMP1), transforming growth factor
beta 1 (TGFB1), serpin family E member 1 (SERPINE1), collagen I (COL1), collagen III (COL3) and teno-
modulin (TNMD) in Achilles tendon tissue were determined through Western blot analysis. The histo-
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Healing

Collagen pathological changes in tendon tissue were observed by using Masson staining and haematoxylin—eosin
Proliferation staining.

Fibrosis Results: The expression levels of MMP1, TIMP1 and COL3 were higher and those of TGFB1, SERPINE1,

COL1 and TNMD were lower in the 0 mg/kg group than in the normal group (P < 0.05). Compared with
those in the 0 mg/kg group, the levels of MMP1 were lower in the 20 and 40 mg/kg groups. Compared
with those in the 0 mg/kg group, the levels of TIMP1 were lower and the levels of TGFB1, COL1 and TNMD
were higher in the 10, 20 and 40 mg/kg groups. In addition, compared with those in other groups, the
levels of SERPINE1 in the 40 mg/kg group were significantly higher and the levels of COL3 in the 10 and
20 mg/kg groups were significantly lower (P < 0.05). Fibrous tissue arrangements and structures in the
40 mg/kg group were similar to those in the control group.
Conclusion: The effects of asperosaponin VI on injured tendons mainly involve eliminating inflammation,
restoring balance to extracellular matrix collagen metabolism and inducing tendon cell proliferation.
Asperosaponin VI is likely to be an ideal drug for the prevention and treatment of tendon disease.
© 2022, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

Tendon disease is a common orthopaedic condition that often
occurs in athletes and the elderly and is mainly caused by degen-
erative changes in tendons caused by long-term overuse [1]. Re-
covery from this condition has a long course and can be hampered
by the poor self-repair capability of tendons [2]. More than 30
million tendon- or ligament-related surgeries occur worldwide
every year, thus exerting a massive economic and social burden [3].
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In the United States and the European Union, more than €150
billion (US $181.8 billion) is spent yearly on tendon disease sur-
geries [3].

Trauma, strain, metabolic disorders and other factors accelerate
dynamic and static imbalances in tendons and bones, thereby
leading to tendon disease [4]. Physiotherapy oral analgesia and
infiltrations [5], extracorporeal shock waves [6], aspirin, fluo-
roquinolones [7—9], local steroid injection and tuberculosis
osteotomy are used to treat tendon lesions [10,11]. Therapeutic
mechanisms have been explored at the molecular level and include
exocrine body and tendon stem cell differentiation and synovial
multifunctional cell repair [12—14]. Matrix metallopeptidase 3 and
metallopeptidase inhibitor 2 (formerly known as metalloproteinase
inhibitor 2) gene variants may cause susceptibility to chronic
Achilles tendon diseases or mechanical stress effects under
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different loads [15,16]. Studies have shown that interferon, NF-
kappa B and signal transducer and activator of transcription 6
(STAT6)—the downstream targets of M1 and M2 macrophage
polarisation—are activated in the early stages of tendon disease
[17]. M2 polarisation is upregulated in the late stages of tendon
disease, thus activating STAT6 downstream [18]. However, effective
drugs and treatments for tendon disease remain lacking. Therefore,
studies on tendon disease at the molecular level should be helpful
for developing new treatment strategies.

Radix Dipsaci, which contains asperosaponin VI as an important
active compound, has analgesic and anti-inflammatory properties.
Asperosaponin VI possesses neuroprotective, myocardial protec-
tive, antiosteoporosis, liver protective and lipid-lowering effects
that are consistent with tonifying the liver and kidney [6],
strengthening muscles and bones and repairing bones. Previous
studies have demonstrated that asperosaponin VI improves cell
proliferation [19—23], tendon healing [24] and anti-inflammatory
responses [25]; slows apoptosis and affects abnormal stem cell
differentiation by regulating transforming growth factor beta 1
(TGFB1)/Smads, BCL2-associated X apoptosis regulator (BAX), cas-
pase 3, hypoxia inducible factor 1 subunit alpha/vascular endo-
thelial growth factors [26], bone morphogenetic proteins, alkaline
phosphatase, bone gamma-carboxyglutamate protein (formerly
called osteocalcin) and runt-related transcription factors [27]. In
recent years, studies have considered the proliferation of tendon
cells and the differentiation of stem cell tendon systems to be
closely associated with the repair of tendon disease [28,29]. Un-
fortunately, only a few reports on asperosaponin VI for the treat-
ment of tendon diseases exist.

In this study, we used a rabbit model of tendon disease and
performed Western blot analysis to detect the expression levels of
matrix metallopeptidase 1 (MMP1), metallopeptidase inhibitor 1
(TIMP1), TGFB1, serpin family E member 1 (SERPINE1), collagen I
(COL1), collagen 3 (COL3) and tenomodulin (TNMD) in Achilles
tendon tissue. Histopathological changes in tendon tissue were
observed via Masson staining and haematoxylin—eosin staining.
The purpose of this work is to explore the effect of asperosaponin VI
in the treatment of tendon disease to provide a theoretical basis
and practical guidance for the use of asperosaponin VI as a potential
drug for tendon disease. We hypothesise that asperosaponin VI is
likely to be an ideal drug for the prevention and treatment of
tendon disease.

2. Materials & methods
2.1. Animal care

This animal experiment was approved by the Animal Ethics
Committee of Chengdu Institute of Sports (approval no.: Adult
Ethics [2020] 21). Purebred adult male New Zealand white rabbits
(n =48, mean body mass: 2.04 + 0.16 kg) were reared in the animal
room of the Sichuan Key Laboratory of Sports Medicine. The rabbits
were housed with one animal per cage and given national standard
rodent feed (Chengdu, SCXK [Chuan] 2013—24, Dashuo Biotech-
nology Co., Ltd.). The animal room was ventilated and kept dry with
a relative humidity of 55%—70% and room temperature of 20 °C-
25 °C. All experimental animals successfully completed the exper-
imental cycle. No instances of abnormal body mass, Achilles tendon
redness, swelling, pus or other diseases were observed.

2.2. Main reagent
Asperosaponin VI (American Chemical Abstract CAS No.: 39524-

08-8, Shanghai Yuanye Biotechnology Co., Ltd) with high-
performance liquid chromatography detection purity >98% (batch
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number: Z18M10L83256) was used. Prostaglandin E2 was pur-
chased from Ron Company (Shanghai).

2.3. Animal groupings

The rabbits were fed adaptively for 1 week, after which they
were randomly allocated to the prostaglandin E2 group (n = 32),
saline group (n = 8) [30] or normal group (n = 8) through a sto-
chastic numerical method. Each rabbit in the prostaglandin E2
group was fixed on an operating table in a prone position and then
injected with 300 ng of prostaglandin E2 at 2.0 cm proximally to the
left Achilles tendon's insertion into the calcaneus once a week for 4
weeks [31]. Each rabbit in the saline group was fixed on the oper-
ating table in a prone position and injected with 0.2 mL of saline at
2.0 cm proximally to the left Achilles tendon's insertion into the
calcaneus once a week for 4 weeks. The rabbits in the normal group
did not receive any injections.

2.4. Intervention treatment

The rabbits in the model group were subdivided into the 0, 10,
20 and 40 mg/kg asperosaponin VI groups through the random
allocation of eight rabbits to each subgroup. The rabbits in the
model group were given intraperitoneal injections of 10, 20 or
40 mg/kg asperosaponin VI dissolved in saline or saline only (0 mg/
kg asperosaponin VI) once a day for 4 weeks. The rabbits were
fasted and were not given water for 24 h after the last adminis-
tration. The rabbits were weighed and then killed via air
embolisation.

2.5. Ultrasonic inspection

Given the superficial location of tendons, musculoskeletal sys-
tem ultrasonography is the most suitable diagnostic tool and is
generally the initial imaging modality for tendon disorders [32]. At
the end of the 4 weeks of treatment, two rabbits in each group were
randomly selected for musculoskeletal ultrasound examination
(Siemens S2000), including musculoskeletal ultrasonography and
musculoskeletal blood flow characterisation. Echo intensity,
Achilles tendon thickness, blood flow and inflammatory response
were observed.

2.6. Western blot analysis

Cells and tissue were collected. Tendon tissue was ground and
used for the determination of total protein levels with a bicincho-
ninic acid kit. SDS-PAGE electrophoresis, membrane transfer and
immunohybridisation were performed. The levels of MMP1, TIMP1,
TGFB1, SERPINE1 (formerly called plasminogen activator inhibitor
1), COL1, COL3 and TNMD in the tissue were detected through
Western blot analysis.

2.7. Masson staining

Tissues from the lower left extremities of all animals were
collected and rinsed twice with phosphate-buffered saline. They
were fixed in 40 g/L paraformaldehyde for 24 h, embedded in
paraffin, sectioned longitudinally and stained (Masson). Longitu-
dinal 4—6 pum sections were analysed under a light microscope by
professional pathologists. Tendon fibre morphology was examined
to verify vascular proliferation, inflammatory cell infiltration and
other lesions and was compared between groups.
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2.8. Haematoxylin—eosin staining

Tissues from the Achilles tendon of the left lower limb were
collected, fixed with formaldehyde and embedded in paraffin.
Longitudinal 4—6 pm sections were stained with haematox-
ylin—eosin. Tendon fibre morphology, nuclei, vascular proliferation
and inflammatory cell infiltration were observed under a light
microscope. Changes in fibrous tissue arrangement, nuclear
morphological density, inflammatory cell infiltration degree and
neovascularisation were assessed under a light microscope in
accordance with the Chen Lei semiquantitative scoring standard (in
which 0 is normal and 3 is severely injured) [33]. The scoring
criteria are shown in Table 1.

2.9. Statistical analysis

GraphPad Prism (version 8, GraphPad Software, Inc.) was used
for data processing and mapping. Data were reported as mean + SD.
Data with homogeneity of variance were analysed through one-
way analysis of variance (ANOVA) and data with uneven variance
were analysed with Brown—Forsythe and Welch ANOVA with
multiple comparisons (o = 0.05).

3. Results

3.1. Effects of asperosaponin VI on the ultrastructure of the Achilles
tendon

The normal group had tendons with uniform and continuous
echo intensity and clear boundaries and did not exhibit abnormal
blood flow. In the model group, the tendons were thick and
abnormal and many inhomogeneous echo masses were observed at
2 cm proximally to the left Achilles tendon's insertion into the
calcaneus. Moreover, the boundaries of collagenous fibres were
unclear, the echo signal of the surrounding fascia was enhanced
and blood flow was abundant. In the saline group, homogeneous
echoes were present and no abnormal blood flow was observed. In
the 10 mg/kg asperosaponin VI group, the echo intensity of the
surrounding fascia was enhanced, blood flow was abundant, the
tendons had thickened and inflammatory cell infiltration was
observed. In the 20 and 40 mg/kg asperosaponin VI groups, the
echo intensity was uniform, tendon thickening was not observed
and the boundaries were clear. The two groups had similar char-
acteristics (Fig. 1).

3.2. Protein expression

The levels of MMP1, TIMP1 and COL3 were higher in the model
group than in the normal group (P < 0.05). The levels of TGFB1,
SERPINE1, COL1 and TNMD in the model group were down-
regulated (P < 0.05) compared with those in the normal group.
MMP1 was downregulated in the 20 and 40 mg/kg groups relative

Table 1
Semi-quantitative rating scale for tendon healing assessment.
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to in the model group (P < 0.05). TGFB1, COL1 and TNMD were
upregulated in the 10, 20 and 40 mg/kg groups (P < 0.05). SERPINE1
was significantly higher in the 40 mg/kg group (P < 0.05) than in
the model group. COL3 expression was downregulated in the 10
and 20 mg/kg groups compared with that in the model group
(P < 0.05; Fig. 2).

3.3. Masson staining and haematoxylin—eosin staining

Muscle fibrous tissues were clearly visualised through Masson
staining and haematoxylin—eosin staining. The muscle fibres were
neatly arranged and strongly stained in the normal group. In the
model group, no clear fibre arrangement structure was observed
and the tendon fibres were disordered with a wavy arrangement.
The tissue structure was incomplete with abnormal neo-
vascularisation proliferation, inflammatory cell infiltration, round
nuclei, elevated cell densities and adipoid changes. In the 40 mg/kg
group, the fibrous tissue showed slight changes. The tendon fibres
were wavy but continuous and arranged in an orderly manner, and
the cell densities were normal. No clear inflammatory cell infil-
tration was observed. In the 20 mg/kg group, the fibrous tissue was
slightly disordered, the fibres were intact but arranged with a
wave-like pattern and inflammatory cell infiltration was evident. In
the 10 mg/kg group, the fibrous tissue was loose and slightly broken
and the collagen fibres were short, wavy, disordered and curled.
The nuclei were deformed, inflammatory cell infiltration was
evident and cell densities were elevated (Fig. 3).

The tendon damage scores in the 10, 20 and 40 mg/kg asper-
osaponin VI groups decreased successively and were significantly
lower than those in the model group (P < 0.05; Fig. 4).

4. Discussion

The purpose of this study is to explore the effect of asper-
osaponin VI in the treatment of tendon disease to provide a theo-
retical basis and practical guidance for the use of asperosaponin VI
as a potential drug for tendon disease. The research hypothesis of
this work was verified.

4.1. Therapeutic effects of asperosaponin VI on Achilles
tendinopathy

In rabbits administered with the highest dose of asperosaponin
VI (40 mg/kg), the arrangement and distribution of fibrous tissue
were similar to those of normal tendon tissue and no clear in-
flammatory cell infiltration or vascular dysplasia was observed. In
addition, no significant difference between the saline group and
normal group was observed, indicating that the injection of saline
had no effect on normal tendon tissue. In lesions, collagen fibre
injury and neovascularisation co-occur during tendon tissue
remodelling until the balance of cell matrix remodelling is broken
[12]. Tendon healing is completed mainly through cells and
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blood flow
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Fig. 1. Effects of asperosaponin VI on the ultrastructure of Achilles tendons in different groups. Abnormal echo and abnormal blood flow signal in the model group. In the 10 mg/kg
group, the echo mass was not uniform, the echo of the surrounding fascia was enhanced, the tendon was clearly thickened and blood flow was abundant. The inflammatory
response in the 10 mg/kg group was greater than that in the 20 and 40 mg/kg groups. In the 20 and 40 mg/kg groups, the echo intensity was uniform, tendon thickening was unclear

and the boundary was clear. The two groups had similar ultrasonic manifestations.

extracellular matrix repair processes, which are divided into
endogenous and exogenous healing processes. Inflammation is
central to successful healing. Aberrant, excessive or insufficient
inflammation has profound effects on tendon healing [34]. After
injury, tissue repair and scar formation begin and a process that
includes tissue inflammation, cell proliferation and extracellular
matrix remodelling occurs [35]. Our findings provide support that
asperosaponin VI repairs tendinopathy through these mechanisms.
Asperosaponin VI has been speculated to repair and protect
damaged tendons in tendon disease by eliminating inflammation,
inducing cell proliferation, promoting collagen repair and max-
imising the expression of COL1 and proteoglycan, thus accelerating
endogenous healing [36].

4.2. Molecular mechanism of asperosaponin VI in repairing achilles
tendinopathy

This study showed that the levels of MMP1 and TIMP1 in the
group that was given the highest dose of xxx (40 mg/kg) were
closest to normal levels. We speculate that asperosaponin VI de-
creases apoptosis and accelerates the extracellular matrix remod-
elling of injured tendons by restoring the metabolic balance of
MMP1/TIMP1. Matrix metallopeptidases degrade the extracellular
matrix, induce intracellular calcium release and lead to apoptosis
[37]. MMP1 regulates metabolism and extracellular matrix
remodelling in tendon tissue and decomposes COL1 and damaged
or necrotic tendon tissue. TIMP1 is an antagonist of MMP1. Under
pathological conditions, MMP1 levels increase sharply at a faster
rate than TIMP1 levels (i.e. the MMP1/TIMP1 ratio increases), thus
placing the matrix in a state of metabolic imbalance with net
collagen fibre degradation and leading to tendon rupture or tendon
disease [38]. Some studies have demonstrated that asperosaponin
VI decreases the production of reactive oxygen species and inhibits
the disruption of mitochondrial membrane potential and endo-
thelial cell apoptosis by regulating the expression of Bcl-2, Bax and
caspase 3 [39,40].

The expression of COL1 and COL3 plays an important role in
tendon injury and repair; moreover, the expression of COL1 and
TNMD is positively correlated with the level of tendon repair. The
expression of COL1 was upregulated in the 10, 20 and 40 mg/kg
asperosaponin VI groups after 4 weeks of treatment. In addition,
the 40 mg/kg treatment showed the optimal effect in promoting

endogenous tendon repair. The expression of COL3 in the 10 and
20 mg/kg asperosaponin VI groups was lower than that in the
40 mg/kg group but was still higher than that in the normal group.
TNMD is a member of the type Il transmembrane glycoprotein
family [41]. Its C-terminus contains an antiangiogenic region,
which is a component of proteoglycans and glycoproteins in the
tendon extracellular matrix. TNMD's high expression in tendon
tissue is considered to be an important factor in the proliferation
and maturation of tendon cells. In addition, it has particular
importance as a marker of the differentiation of stem cell into
tendon cells [42]. The expression of TNMD in the 10, 20 and 40 mg/
kg asperosaponin VI groups was upregulated in a dose-dependent
manner, thus suggesting that asperosaponin VI promotes extra-
cellular matrix glycoprotein remodelling and collagen repair in
tendons.

This study suggests that asperosaponin VI may promote extra-
cellular matrix collagen remodelling, tendon cell proliferation and
local anti-inflammatory effects via the TGFB1 pathway. Given that
TBGF1 may have a two-way regulatory effect—i.e. it not only affects
exogenous repair (tendon adhesion and tissue scar formation) but
also promotes tendon healing and other endogenous repair proc-
esses—its role in tendon repair is complex and its effects must be
further explored.

TGFB1 is an effective index of tendon repair. The upregulated
expression of TGFB1 promotes tendon healing and enhances
strength [43—45]. TGFB is produced in human rotator cuff tendon
cells and promotes tendon repair [46]. TGFB also activates Ras/ERK
and consequently promotes DNA synthesis and cell proliferation
through type I receptors or indirectly promotes collagen synthesis
[47,48]. TGFB1 has also been suggested to promote the decompo-
sition of fibroblasts by cooperating with platelet-derived growth
factors, insulin-like growth factor 1 (IGF1), fibroblast growth fac-
tors, epidermal growth factors and vascular endothelial growth
factors [49]. TGFB participates in tendon repair and healing. The
high expression of TGFB1, IGF1 and the proliferating cell nuclear
antigen gene promotes collagen synthesis, tendon cell proliferation
and tendon regeneration. TGFB inhibits the expression of MMP1 in
human epidermal fibroblasts and the epidermal keratinised cell
line A-5 [50]. TGFB upregulates the expression of an inhibitor of
metallopeptidase mRNA in human peritoneal mesothelial cells [51].
TGFB also promotes tendon repair by activating Smad and mitogen-
activated protein kinase pathways and by stimulating the
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Fig. 2. Protein levels of MMP1, TIMP1, TGFB1, SERPINE1, COL1, COL3 and TNMD in different groups determined via Western blot analysis. Compared with the model group, *P < 0.05.

production of AP-1 transcription factors and other downstream
targets, thus inhibiting the expression of matrix metallopeptidases/
metallopeptidase inhibitors [52]. However, some studies have
found that in young sheep, TGFB1 is not highly expressed in tendon
repair; this phenomenon results in a disordered extracellular ma-
trix through the direct inhibition of proteoglycan expression
[53,54]. Farhat suggested that TGFB1 has multiple biological effects
in promoting collagen expression, perturbing the balance of the
extracellular matrix and causing fibrosis in tendons [55]. Although
inhibiting the expression of TGFB1 may not necessarily improve the
mechanical properties of tendons, it can decrease tendon adhesion
and tissue scar formation [56].

Asperosaponin VI may increase the expression of SERPINE1 in a
dose-dependent manner. Farhat found that TGFB1 directly upre-
gulates MMP2 and SERPINE1 [57]. Abnormal components in the
extracellular matrix of tendons are the most important factors
leading to fibrosis [58]. SERPINE1, the main inhibitor of the uroki-
nase plasminogen activation system, causes cell migration and
infiltration by interfering with cell adhesion and promoting base-
ment membrane degradation [58]. The high expression of SER-
PINE1 in scar fibroblasts results in fibrosis and scar formation by

decreasing fibrin degradation and leading to the deposition of large
amounts of collagen in the extracellular matrix [59]. SERPINE1 may
provide a potential therapeutic target for tendon remodelling [60].
However, the further consideration of its effects is necessary to
delay or prevent the occurrence and progression of fibrosis.

4.3. Limitations

Although we preliminarily concluded that asperosaponin VI
could effectively inhibit inflammation, promote cell proliferation
and collagen remodelling and may be an ideal drug for the pre-
vention and treatment of tendinopathy, its underlying mechanism
still needs to be further explored. Previous studies have illustrated
that asperosaponin VI can promote wound repair by enhancing
angiogenesis and cell proliferation and migration. However, tendon
tissue is hypovascular tissue, and Achilles tendons heal slower than
other tissues. Angiogenesis is a key factor in tissue repair, and
vascular supply plays an important role in primary tendon healing,
especially in the early stages of healing. The Hif-1 o protein sta-
bilises and activates the expression of several genes critical for
angiogenesis. We will investigate whether the mechanism of
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asperosaponin VI treatment for tendinopathy is related to the
upregulation of hypoxia-inducible factor 1a/vascular endothelial
growth factor signal.

5. Conclusion

The effects of asperosaponin VI on injured tendons mainly
involve eliminating inflammation, restoring the balance of extra-
cellular matrix collagen metabolism and inducing tendon cell
proliferation. Asperosaponin VI balances the MMP1/TIMP1 ratio
and promotes the expression of TNMD, TGFB1 and SERPINE1.
Asperosaponin VI is likely to be an ideal drug for the prevention and
treatment of tendon disease.
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