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Abstract

Avian pathogenic Escherichia coli (APEC) leads to economic losses in poultry production and is also a threat to human
health. The goal of this study was to characterize the chicken spleen transcriptome and to identify candidate genes for
response and resistance to APEC infection using Solexa sequencing. We obtained 14422935, 14104324, and 14954692
Solexa read pairs for non-challenged (NC), challenged-mild pathology (MD), and challenged-severe pathology (SV),
respectively. A total of 148197 contigs and 98461 unigenes were assembled, of which 134949 contigs and 91890 unigenes
match the chicken genome. In total, 12272 annotated unigenes take part in biological processes (11664), cellular
components (11927), and molecular functions (11963). Summing three specific contrasts, 13650 significantly differentially
expressed unigenes were found in NC Vs. MD (6844), NC Vs. SV (7764), and MD Vs. SV (2320). Some unigenes (e.g. CD148,
CD45 and LCK) were involved in crucial pathways, such as the T cell receptor (TCR) signaling pathway and microbial
metabolism in diverse environments. This study facilitates understanding of the genetic architecture of the chicken spleen
transcriptome, and has identified candidate genes for host response to APEC infection.
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Introduction

Avian pathogenic Escherichia coli (APEC), a gram-negative,

facultative anaerobic bacterium, causes intestinal and extra-

intestinal infections, septicemia, and mortality in broiler chickens

[1]. The most common infectious bacterial disease in poultry,

APEC-induced colibacillosis reduces growth and egg production,

thereby causing significant economic losses, as well as potentially

contaminating poultry products, which generatess a risk for

human health [1,2]. The APEC-O1, O2, O78 serotypes of the

O serogroup represent at least half of the total number of isolates

[3,4], and are responsible for over 80% of human septicemia cases

world wide [2]. Except for the control of environmental

conditions, such as humidity and ventilation, prevention of APEC

infection usually relies on antibiotic therapy or vaccine adminis-

tration. However, vaccines are not fully effective against heterol-

ogous APEC strains and there is consumer pressure to reduce the

use of antibiotics in food animal production. Elucidating the host

resistance mechanisms against APEC infection is a foundational

step in developing sustainable strategies to enhance resistance to

APEC through development of more effective vaccines and

through genetic selection of poultry populations for enhanced

innate resistance to APEC.

Until now, the major focus in study of the host:pathogen

interaction with APEC has been on the bacteria itself. Some

virulence factors or genes responsible for pathogenesis or invasion

capacities have been discovered in various APEC strains. With

two-dimensional gel electrophoresis, one differentially expressed

protein of OmpA was isolated from serum and proposed to be

involved in APEC resistance [5]. ExPEC adhesin I has been

shown to play a significant role during APEC infection in chickens,

as its deletion leads to reduced colonization ability and, moreover,

complementation of the adhesin gene restored this ability [6]. By

microarray investigation and mutational analysis for confirmation,

some upregulated APEC genes have been identified in APEC

cultured in APEC-treated chicken serum, and these genes are

predicted to contribute to APEC virulence [7]. In addition, some

other genes, such as APEC autotransporter adhesin A (aatA) and

ibeA have also been reported to affect APEC infection [8,9].

Investigations on the host genomic response is also important, so

as to reveal the molecular mechanisms of response to APEC

infection. With the sequencing of chicken genome [10], the

identification of causative genes and markers for APEC suscep-

tibility or resistance at whole genomic or transcriptomic level is

practicable and advantageous for genetic selection of poultry with

enhanced resistance capabilities. Gene expression profiling by

PLoS ONE | www.plosone.org 1 July 2012 | Volume 7 | Issue 7 | e41645



using an avian macrophage microarray revealed 981 differentially

expressed chicken ESTs during phagocytosis of Escherichia coli (E.

coli) [11]. A similar study identified 146 common elements

modulated by both APEC and M. synoviae and exposure to APEC

induced higher expression of cytokine genes and genes involved in

oxidative burst than M. synoviae did [12]. Until now, very few

studies at the whole transcriptome level have been reported in

response to APEC infection in chicken.

Whole transcriptome shotgun sequencing or RNA-seq is an

efficient and reliable technology for transcriptomic analysis so as to

reveal genetic architecture, to identify sequence variation, and to

quantify gene expression [13]. A variety of platforms exist for

RNA-Seq, including Illumina Solexa, Roche 454, Life Technology

SOLID, and others. Identification of host genetic factors resistance

to APEC is of great significance for poultry breeding and

production. With use of Illumina deep sequencing of APEC-

challenged birds, this study aims to investigate the genetic

architecture of the spleen transcriptome, and to discover genes/

transcripts and genetic markers for resistance to APEC infection in

the chicken.

Results

Illumina Draft Reads
In this study, spleens of three males were used to prepare one

pooled RNA sample for each group of NC, MD and SV. Three

cDNA libraries were then constructed to perform Illumina deep

sequencing. The schematic of Illumina deep sequencing and

analysis are shown in Figure 1. We obtained 14,422,935,

14,104,324, 14,954,692 qualified Illumina read pairs for NC,

MD, and SV, giving rise to total residues of 2,336,515,470,

2,284,900,488, and 2,422,660,104 bp, respectively. The overall

Illumina read pairs and residues for all samples are 43,481,951

and 7,044,076,062 bp, respectively (Table 1).

Figure 1. Schematic of Illumina EST analysis. It includes sample preparation, cDNA library construction and Illumina sequencing, data analysis
including assemble, blast, GO annotation, gene expression analysis, etc.
doi:10.1371/journal.pone.0041645.g001
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Assemble and BLAST Analysis
After assembly analysis based on all Illumina reads, we

identified 148,197 contigs with total residues of 195,622,566 bp.

The average length of all contigs was 1,320 bp, with the smallest

sequence of 300 bp and the largest one of 19,212 bp. The

sequence length distribution of contigs is indicated in Figure 2 and

Table S1. Analysis of nucleotide content within all contigs showed

that the content of A, T, C, G were 26.45% (51,750,884

nucleotides), 26.52% (51,887,566), 23.83% (46,619,027), and

23.19% (45,365,089), respectively, giving rise to an overall GC

content of 47.02% in the chicken whole transcriptome.

Further assembly analysis showed that all contigs contributed to

98,461 unigenes. BLAST analysis with the known chicken genome

sequence indicated that 134,949 contigs and 91,890 unigenes

match the chicken genome. The distributions of contigs and

unigenes in chicken chromosomes are described in Table 2.

Table 1. Summary of draft reads of three libraries by Illumina deep sequencing.

Groupsa PE library size (bp) Read pairs Read length (bp) Total residues (bp)

NC 200 14,422,935 81 2,336,515,470

MD 200 14,104,324 81 2,284,900,488

SV 200 14,954,692 81 2,422,660,104

Total 200 43,481,951 81 7,044,076,062

aNC, MD, and SV are three groups of non-challenged, challenged-mild pathology, and challenged-severe pathology, respectively.
doi:10.1371/journal.pone.0041645.t001

Figure 2. Sequence length distribution of contigs assembled from Illumina reads. All Illumina reads of non-challenged (NC), challenged-
mild pathology (MD) and challenged-severe pathology (SV) were used in assembly analysis which gave rise to 148197 contigs. The horizontal and
vertical axes show the size of contigs and log number contigs, respectively.
doi:10.1371/journal.pone.0041645.g002
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GO Assignments
Among 97,491 assembled unigenes, 12,272 were successfully

annotated by GO assignments, belonging to one or more of the

three categories: biological process, cellular component, and

molecular function. Among the annotated unigenes, 11,664 are

involved in various biological process categories, including cellular

process (9,876 unigenes; 16.33%), metabolic process (7,808;

12.91%), biological regulation (4,969; 8.22%), regulation of

biological process (4,391; 7.26%), and others (Figure 3A). Further,

11,927 unigenes are involved in cellular component categories,

including cell part (11,936; 28.38%), cell (11,936; 28.38%),

organelle (7,850; 18.66%), organelle part (4,309; 10.25%),

macromolecular complex (2,589; 6.16%), membrane-enclosed

lumen (1,842; 4.38%), extracellular region (727; 1.73%), extracel-

lular region part (669; 1.59%), and others (200; 0.48%) (Figure 3B).

In addition, 11,963 unigenes are involved in molecular function

catgories, including binding (10,141; 49.66%), catalytic activity

(5,442; 26.65%), molecular transducer activity (1,271; 6.22%),

transporter activity (860; 4.21%), enzyme regulator activity (852;

4.17%), transcription regulator activity (823; 4.03%), nucleic acid

binding transcription factor activity (598; 2.93%), structural

molecule activity (312; 1.53%), and others (120; 0.59%)

(Figure 3C).

Differentially Expressed Genes
Comparison of gene expression showed that a total of 13,650

unigenes were differentially expressed between any two-way

comparison of the groups of NC, MD and SV (fold changes $2

or #22; q value ,0.01), including 6,844 significantly expressed

isogenes between NC and MD (NC Vs. MD), 7,764 between NC

and SV (NC Vs. SV), and 2,320 between MD and SV (MD Vs.

SV). Moreover, 1,930 unigenes were significantly differentially

expressed in both NC Vs. MD and NC Vs. SV, and 548 in NC

Vs. MD and MD Vs. SV, as well as 806 in NC Vs. SV and MD

Vs. SV. Only 6 unigenes were significantly differentially expressed

in all of NC Vs. MD, NC Vs. SV, and MD Vs. SV. Numbers of all

differentially expressed genes among the three groups of NC, MD

and SV are illustrated in Figure 4. In addition, there are 531, 115

and 134 unigenes that are uniquely expressed in the group of NC,

MD, and SV, respectively.

Metabolic Pathways by KEGG Analysis
KEGG enrichment analysis showed that the differentially

expressed genes were involved in twenty predicted pathways at a

significant level. The pathways and involved unigene numbers are

metabolic pathways (514 unigenes and 252 differently expressed

unigenes), purine metabolism (418; 199), thiamine metabolism

(359; 181), T cell receptor signaling pathway (105; 38), biosyn-

thesis of secondary metabolites (98; 53), lysine degradation (75;

42), drug metabolism-other enzymes (71; 35), tropane, piperidine

and pyridine alkaloid biosynthesis (56; 30), microbial metabolism

in diverse environments (29; 22), oxidative phosphorylation (28;

21), biosynthesis of phenylpropanoids (19; 13), metabolism of

xenobiotics by cytochrome (18; 9), drug metabolism-cytochrome

(18; 9), phenylalanine metabolism (17; 14), beta-alanine metabo-

lism (15; 8), methane metabolism (13; 9), glycolysis/gluconeogen-

esis (12; 10), phenylpropanoid biosynthesis (12; 9), histidine

metabolism (6; 6), and tyrosine metabolism (6; 6). All pathways

and related information are described in Table 3.

A total of 38 differentially expressed genes are involved in the T

cell receptor (TCR) signaling pathway, which has important

functions in animal immunity (Table 4). Three crucial genes in this

pathway, CD148, CD45, and LCK, exhibited significantly

different expression among NC, MD and SV groups (Table 5).

The CD148 was significantly up-regulated in SV (P,0.001) and

MD (P,0.05) compared with NC (Figure 5A); in contrast, LCK

was significantly lower in SV (P,0.001) and MD (P,0.001)

compared with NC (Figure 5C). The CD45 gene, was expressed at

a significantly lower level in SV compared with NC (P,0.001) and

with MD (P,0.001), but was not significantly different between

NC and MD (P.0.05) (Figure 5B).

Discussion

Assembly, Blast and GO Analysis
The high-throughput sequence data obtained by Illumina deep

sequencing contributes to the understanding of the genetic

Table 2. Distribution of contigs and unigenes in chicken
genome.

Chromosomes
Counts of
contigs

Counts of
unigenes

Genome
sizea

1 20,456 14,336 200,994,015

2 14,092 10,142 154,873,767

3 11,719 8,254 113,657,789

4 11,219 7,407 94,230,402

5 9,245 6,303 62,238,931

6 5,098 3,517 37,400,442

7 5,329 3,534 38,384,769

8 5,071 3,344 30,671,729

9 4,427 2,901 25,554,352

10 4,084 2,777 22,556,432

11 3,204 2,243 21,928,095

12 3,446 2,344 20,536,687

13 3,335 2,268 18,911,934

14 4,016 2,598 15,819,469

15 4,105 2,488 12,968,165

16 222 116 432,983

17 2,996 1,875 11,182,526

18 4,498 1,785 10,925,261

19 3,225 2,066 9,939,723

20 3,204 2,126 13,986,235

21 2,054 1,397 6,959,642

22 834 539 3,936,574

23 1,885 1,257 6,042,217

24 1,363 932 6,400,109

25 547 334 2,031,799

26 1,903 1,197 5,102,438

27 1,516 955 4,841,970

28 1,761 1,164 4,512,026

Z 7,304 5,334 74,602,320

MT 13 10 16,775

Total 142,171 95,543 1,031,622,801

aGenome size for each chromosome is based on the released chicken whole
genome sequence in either NCBI (ftp://ftp.ncbi.nih.gov/genomes/Gallus_gallus/
) or ENSEMBL database (ftp://ftp.ensembl.org/pub/release-63/fasta/gallus_
gallus/dna/).
Because some contigs and unigenes have multiple locations in genome, only
134,949 contigs and 91,890 unigenes match with chicken genome.
doi:10.1371/journal.pone.0041645.t002
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architecture of chicken transcriptome. In this study, we pooled

RNA from multiple individuals to generate one sample, and

subsequently performed Illumina deep sequencing. This pooling

strategy was widely used in some similar studies [14,15]. As a

result, we generated 148,197 contigs for 195.6 Mb residues of

chicken spleen transcriptome based on 43,481,951 Illumina read

pairs. Considering all contigs, the overall GC content of the

transcriptome was calculated to be 47.02%, which is very close to

that reported for genome-wide exons (i.e. 47.00% for GGA4q), but

much higher than that of genome-wide introns (i.e. 40.00% for

GGA4q) [10]. We obtained a total of 98,461 unigenes by further

assembly analysis, which was more than all predicted genes

(20,000–23,000) in chicken genome [10]. We compared our

unigenes with NCBI unigene database using blastn, and found

that 35,056 unigenes of this study have high similarity with NCBI

unigenes (19,218) using 95% identity cutoff. Compared with our

unigenes, 1,103 of 19,218 NCBI unigenes are covered by 100% in

length, and moreover, 4,326, 2,151 and 2,373 unigenes show the

coverage of 90–99%, 80–89%, and 70–79%, respectively. Some

unigenes of this study represent for the same NCBI unigene

probably because some genes show low expression level in spleen

and our Illumina sequences are less deep enough to generate the

Figure 3. Functional classification of chicken transcriptome. (A) GO: Biological process. (B) Cellular component. (C) GO: Molecular function.
Each transcript or gene generally has multiple functions.
doi:10.1371/journal.pone.0041645.g003
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complete transcript by assemble analysis. Meanwhile, some

unigenes of this study are longer than corresponding unigene in

NCBI, i.e. 3,661 unigenes were longer than NCBI corresponding

unigenes using a cutoff (less than 90% coverage for our unigenes

and more than 90% coverage for NCBI unigenes). In addition,

there are 7,276 unigenes which couldn’t be mapped to chicken

genome. These unmapped unigenes still belong to chicken

transcriptome, and some if not all of them might be ncRNA

which need to be studied in future. Alternative splicing is also very

common in chicken genome, as it was previously estimated that

40260% of all genes and 74% of multiexon genes are alternatively

spliced in the human genome [16]. GO annotation showed that

some unigenes were involved in the three categories of biological

process (11,664 unigenes), cellular component (11,927), and

molecular function (11,963).

The chicken whole genome was sequenced in 2004 [10], but no

major update has been published since then. Recently, the

genomes of two other avian species, i.e. turkey and zebra finch,

were sequenced [17,18]. The known chicken genome is 1,063 Mb

in total length, of which 933 Mb were localized in 29 autosomes

(GGA1-28 and 32) and sex chromosomes (Z and W), and the

remaining residues were unlocalized [10,19]. In the current study,

blast analysis with the chicken genome showed that most contigs

and unigenes mapped to GGA1-5 and the Z chromosome,

corresponding to the fact that these macrochromosomes contain a

major part of the chicken genome [19]. It is logical that no contig

or unigene was found for the known GGA32, because only

1,028 bp of sequences are available in this chromosome (ftp://ftp.

ncbi.nih.gov/genomes/Gallus_gallus/).

Even though the chicken transcriptome of various tissues has

been investigated by cDNA microarray or gene chip [7,11,12], this

technology fails to detect sequence variation and to recognize new

genes or transcripts. With emergence of second generation

sequencing, RNA-seq is a more powerful approach for transcrip-

tome analysis [13]; however, such investigations in chickens and

other birds are very limited. Recently, a total of 856,675 Roche

454 reads were obtained in crows and further expression analysis

Figure 4. Differentially expressed genes that are unique or
shared among three groups of NC, MD and SV. NC Vs. MD refers
to the comparison between non-challenged (NC) and challenged-mild
pathology (MD) groups. NC Vs. SV refers to the comparison between NC
and challenged-severe pathology (SV) groups. MD Vs. SV refers to the
comparison between MD and SV groups. Numbers in each section of
the figure indicate the numbers of differently expressed genes in the
indicatedcomparison.
doi:10.1371/journal.pone.0041645.g004

Table 3. Involvement of differentially expressed genes in predicted pathways by KEGG enrichment analysis.

No. Pathways #unigenes1 upval dpval enrichment

1 Metabolic pathways 514 (252) 1.39E260 1 yes

2 Purine metabolism 418 (199) 1.04E246 1 yes

3 Thiamine metabolism 359 (181) 9.06E247 1 yes

4 T cell receptor signaling pathway 105 (38) 1.80E206 0.999999 yes

5 Biosynthesis of secondary metabolites 98 (53) 2.15E217 1 yes

6 Lysine degradation 75 (42) 1.48E213 1 yes

7 Drug metabolism - other enzymes 71 (35) 6.33E210 1 yes

8 Tropane, piperidine and pyridine alkaloid biosynthesis 56 (30) 8.95E210 1 yes

9 Microbial metabolism in diverse environments 29 (22) 2.61E211 1 yes

10 Oxidative phosphorylation 28 (21) 2.32E211 1 yes

11 Biosynthesis of phenylpropanoids 19 (13) 1.09E206 1 yes

12 Metabolism of xenobiotics by cytochrome 18 (9) 0.001988018 0.999624 yes

13 Drug metabolism - cytochrome 18 (9) 0.001988018 0.999624 yes

14 Phenylalanine metabolism 17 (14) 4.38E208 1 yes

15 beta-Alanine metabolism 15 (8) 0.00116723 0.999828 yes

16 Methane metabolism 13 (9) 5.11E205 0.999996 yes

17 Glycolysis/Gluconeogenesis 12 (10) 2.44E206 1 yes

18 Phenylpropanoid biosynthesis 12 (9) 2.22E205 0.999999 yes

19 Histidine metabolism 6 (6) 0.00010714 1 yes

20 Tyrosine metabolism 6 (6) 0.00010714 1 yes

1Refer to the numbers of involved total unigenes and differently expressed unigenes (in bracket).
doi:10.1371/journal.pone.0041645.t003
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Table 4. Differentially expressed genes involved in the T cell receptor (TCR) signaling pathway.

No. Gene1 Description

1 MAPKSP1 PREDICTED: mitogen-activated protein kinase scaffold protein 1-like isoform 1#PREDICTED: similar to dual adaptor of
phosphotyrosine and 3-phosphoinositides#PREDICTED: hypothetical protein#PREDICTED: dual adapter for phosphotyrosine
and 3-phosphotyrosine and 3-phosphoinositide-like#PREDICTED: ragulator complex protein LAMTOR3-like

2 PTPN13 PREDICTED: tyrosine-protein phosphatase non-receptor type 13-like

3 PTPRF PREDICTED: receptor-type tyrosine-protein phosphatase F-like, partial

4 PPP1CC serine/threonine-protein phosphatase PP1-gamma catalytic subunit#mCG129661, isoform CRA_c

5 BTAF1; Dusp11 PREDICTED: similar to Dual specificity phosphatase 11 (RNA/RNP complex 1-interacting)#PREDICTED: TATA-binding protein-
associated factor 172-like

6 PP2C-epsilon PREDICTED: similar to protein phosphatase 2C epsilon

7 PTPN23 LOC100170608 protein#PREDICTED: tyrosine-protein phosphatase non-receptor type 23-like

8 PTPN14 PREDICTED: similar to protein tyrosine phosphatase, non-receptor type 14 isoform 2#protein tyrosine phosphatase, non-
receptor type 14, isoform CRA_c#PREDICTED: similar to protein tyrosine phosphatase, non-receptor type 14 isoform 1

9 SBF1 PREDICTED: similar to tyrosine kinase#myotubularin-related protein 5 isoform 1

10 PTPN11 PREDICTED: tyrosine-protein phosphatase non-receptor type 11-like

11 KIAA0371 PREDICTED: similar to Cysteine rich protein 2#PREDICTED: similar to KIAA0371

12 EYA3 PREDICTED: eyes absent homolog 3-like isoform 2#PREDICTED: similar to eyes absent 3

13 CD148 receptor-type tyrosine-protein phosphatase eta

14 PTPRQ PREDICTED: phosphotidylinositol phosphatase PTPRQ-like

15 CD45; PTPRC receptor-type tyrosine-protein phosphatase C

16 p70; STS1 PREDICTED: similar to KIAA1959 protein

17 N/A PREDICTED: hypothetical protein

18 Dusp22 PREDICTED: similar to RP23-217J3.1

19 Ptprr PREDICTED: receptor-type tyrosine-protein phosphatase R-like

20 Ppp2r2a serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform#hypothetical protein
PANDA_002366#PREDICTED: serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B delta isoform-
like#PREDICTED: alpha isoform of regulatory subunit B55, protein phosphatase 2 isoform 1#unnamed protein
product#PREDICTED: protein phosphatase PP2A 55 kDa regulatory subunit isoform 1

21 PPM1A PREDICTED: protein phosphatase 1A (formerly 2C), magnesium-dependent, alpha isoform#PREDICTED: similar to protein
phosphatase 2C alpha; PP2Calpha

22 Dusp11 PREDICTED: similar to Dual specificity phosphatase 11 (RNA/RNP complex 1-interacting)#PREDICTED: RNA/RNP complex-1-
interacting phosphatase-like

23 PTPRQ PREDICTED: phosphotidylinositol phosphatase PTPRQ-like

24 PTPN6 tyrosine-protein phosphatase non-receptor type 6

25 PTPN1; PTP1B tyrosine-protein phosphatase non-receptor type 1#PREDICTED: similar to PDE4DIP protein#protein tyrosine
phosphatase#PREDICTED: similar to phosphodiesterase 4D interacting protein#PREDICTED: tyrosine-protein phosphatase
non-receptor type 1-like

26 SSH-2 PREDICTED: similar to slingshot-2L#PREDICTED: protein phosphatase Slingshot homolog 2-like

27 PTPN22 PREDICTED: similar to Tyrosine-protein phosphatase non-receptor type 22 (Hematopoietic cell protein-tyrosine phosphatase
70Z-PEP) (Lymphoid phosphatase) (LyP)

28 LCK LCK_CHICKRecName: Full = Proto-oncogene tyrosine-protein kinase LCK; AltName: Full = Protein-tyrosine kinase C-TKL;
AltName: Full = p56tk1

29 CTDNEP1 CTD nuclear envelope phosphatase 1

30 Ppm1k PREDICTED: similar to Protein phosphatase 1K (PP2C domain containing)#Hyperion protein, 419 kD isoform#PREDICTED:
protein phosphatase 1K, mitochondrial-like

31 Ppm1f PREDICTED: similar to Protein phosphatase 1F (PP2C domain containing)

32 PTPN5; Step PREDICTED: tyrosine-protein phosphatase non-receptor type 5-like

33 RAD9A;RAD9 cell cycle checkpoint control protein RAD9A#putative protein phosphatase 1 catalytic subunit alpha

34 PTPRB; PTPB PREDICTED: similar to Protein tyrosine phosphatase, receptor type, B

35 PTPN21 PREDICTED: tyrosine-protein phosphatase non-receptor type 21-like

36 MTMR8 myotubularin-related protein 8

37 SSH1 PREDICTED: similar to Slingshot homolog 1 (Drosophila)

38 PIX1 PREDICTED: similar to partner of PIX 1

1Genes are named based on NCBI gene database (http://www.ncbi.nlm.nih.gov/gene/). N/A means not available.
doi:10.1371/journal.pone.0041645.t004
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indicated a general pattern of ineffective dosage compensation in

that species [20,21]. The results of the current study as well as

148,197 Illumina reads are useful resource for further investigation

on chicken transcriptome.

Differently Expressed Genes for APEC
Comparison of gene expression among the different treatment

groups in the current experiment is helpful for identification of

candidate genes underlying response and resistance to APEC

infection in chicken. Many fewer differentially expressed unigenes

were found in the MD Vs. SV contrast (2,320) compared with that

of NC Vs. MD (6,844) and NC Vs. SV (7,764), revealing that there

is greater difference between infected and non-infected states than

between mild and severe infections. Among the differently

expressed genes, there are 531, 115 and 134 unigenes that

specifically express in NC, MD, and SV groups, respectively. Our

previous study with cDNA microarray technology revealed 1,101

significantly expressed genes between SV and NC [22]. Because

RNA-Seq can recognize new unigenes or unique isoforms present

in chicken transcriptome, it should be more powerful in expression

analysis. Further, KEGG prediction and GO analysis showed that

these differently expressed genes were involved in a couple of

major pathways. It is notable that 38 and 22 unigenes are

contained in the two predicted pathways of TCR signaling

pathway and microbial metabolism in diverse environments,

respectively, suggesting that these unigenes are candidate genes for

APEC infection in chicken.

The TCR signaling in response to antigen recognition can

induce integrin to facilitate T-cell activation and thus the TCR

signaling pathway has a central role in the adaptive immune

response [23,24]. Within the TCR signaling pathway, CD148,

CD45 and LCK are crucial genes that regulate the signal

transduction throughout the entire network [25,26]. It is notable

that CD45 and CD148 are specifically required for L. pneumophila

phagocytosis and effector translocation [27], suggesting that they

are involved in the interaction between host and bacterium. It has

been proposed that CD45 is alone sufficient for TCR triggering

[28] and, moreover, CD45 deficiency results in a severe combined

immunodeficiency phenotype [26]. In the current study, both

CD45 and LCK were significantly downregulated in SV

compared to NC and MD (P,0.001), which supports the critical

function of CD45 in the immune response to APEC in chicken.

The expression of CD148 was upregulated in SV compared with

NC (P,0.001) and MD (P,0.01) in this study. The true function

of CD148 in the immune system remains unclear and there are

contrary opinions regarding whether CD148 is dispensable for

normal growth and development [26]. The identified unigenes in

the TCR signaling pathway are candidate genes for APEC

infection in chicken, and warrant additional functional confirma-

tion by further investigation.

The cytokine interleukin-1 beta (IL1B) is known as a ‘‘master’’

cytokines and plays a great role on the process of anti-infectious

protection. In the pathogenesis of APEC, we found that IL1B

expression was significantly up-regulated in both SV and MD

compared to NC, and moreover SV showed higher IL1B level

than MD. It indicated that IL1B was a key cytokine responsible for

the inflammation process caused by APEC infection. A similar

result was also found in cow mastitis. Investigation on the global

transcription of Mild priming primary mammary epithelial cells

(MEC) of cow for 12 h with lipopolysaccharide (LPS) (100 ng/ml)

before stimulated with heat inactivated E. coli bacteria showed

that, the expression of IL1B was significantly down-regulated to

inhibit inflammation [29]. Moreover, it was predicted that IL1B

could directly regulate 44 differently expressed genes in the process

of LPS priming-mediated modulation of the E. coli-elicited

response [29].

Toll-like receptors are important factors for immune response.

In this study, TLR4 was significantly up-regulated in MD (2.3

folds) and SV (2.9 folds) compared to NC, which was consensus to

the study of TLR4 in human. After co-stimulation the T24 human

bladder carcinoma cell with E. coli and lactobacilli, TLR4 were

significantly increased in both mRNA and protein level, and

inhibition of TLR4 blocked the lactobacilli potentiation of NF-

kappaB [30]. TLR2 were also up regulated in MD (3.0 folds) and

SV (3.3 folds) compared to NC. It was reported the TLR2

subfamily were involved in the avian response to C. perfringens

challenge [31].

Compared to NC, the L-phenylalanine oxidase IL4I1 up-

regulated its expression in SV and MD at 20 and 39 folds

respectively. Meanwhile, IL4I1 expression in SV was about 2 fold

higher than MD. It indicated that IL4I1 facilitates the pathogens

of APEC. In human, it was proved that IL4I1 improve tumor

growth by inhibiting the CD8(+) antitumor T-cell response [32].

Materials and Methods

Ethics Statement
The APEC challenge experiment and sample collection were

approved by the Iowa State University Institutional Animal Care

and Use Committee (# 11-07-6460-G).

APEC Challenge Experiment and Sample Preparation
A total of 240 non-vaccinated commercial male broilers at 4

weeks age were challenged with 0.1 ml APEC O1 (10E8 colony

forming units) by the intra-air sac route into the left thoracic

airsac. Another 120 non-vaccinated males were non-challenged

Table 5. Comparison of gene expression that differs significantly among NC, MD and SV for CD148, CD45 and LCK.

Gene Expression value1 NC vs. MD NC vs. SV MD V = vs. SV

NC MD SV Fold change2 q value3 Fold change2 q value3 Fold change2 q value3

CD148 955 991 1191 20.2113 0.0128 20.4345 1.45E210 20.2232 0.0091

CD45 19572 17645 17329 20.0084 0.7551 0.0597 0.000912 0.0681 0.0006

LCK 1465 1035 837 0.3434 1.63E-07 0.6917 1.67E227 0.3484 1.76E-05

1The expression value is based on the obtained reads within the specific gene in the three groups of [non-challenged (NC), challenged-mild pathology (MD), and
challenged-severe pathology (SV)].
2Refers to normalized fold changes.
3The q-value was calculated according to Benjamini et al. (1995) [38].
doi:10.1371/journal.pone.0041645.t005
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Figure 5. Comparison of CD148, CD45 and LCK expression among NC, MD and SV. (A) CD148. (B) CD45. (C) LCK. NC, MD and SV stand for
the groups of non-challenged, challenged-mild pathology, and challenged-severe pathology, respectively. The normalized expression value of NC is
set as 1, by which the value of MD and SV are determined. *, ** and *** represent q-value significance at the level of 0.05, 0.01 and 0.001, respectively.
doi:10.1371/journal.pone.0041645.g005
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(NC) but treated with 0.1 ml phosphate buffered saline (PBS). All

detailed information on the APEC O1 strain and challenge design

and procedures was previously described [22]. Birds were

euthanized and necropsy was performed at one day post challenge.

Based upon pathological finds a summarized lesion score, ranging

from 0 to 7, was determined for each bird. Birds with lesion scores

of 0–2 were regarded as mild pathology (resistant phenotype), and

those scoring 4–7 as severe pathology (susceptible phenotype).

Subsequently, spleens from three groups [non-challenged NC,

challenged-mild pathology (MD) and challenged-severe pathology

(SV)] were subjected to Illumina deep sequencing to investigate

the dynamic responses of chicken transcriptome. The recorded

lesions (mean 6 standard deviation) for NC, MD, and SV groups

were 0.0060.00, 0.5060.58, and 5.2561.26, respectively.

RNA Isolation, cDNA Library Construction and Illumina
Deep Sequencing

For each group, three spleens were randomly chosen and

shipped on RNAlater (Applied Biosystems) to Shanghai Majorbio

Bio-pharm Biotechnology Co., Ltd. (Shanghai, China), where total

RNA was isolated from each spleen by trizol (Invitrogen, CA,

USA). Then, samples of three individuals were pooled within each

group in equal amounts to generate one mixed sample per group

by RNA pooling. These three mixed RNA samples were

subsequently used in cDNA library construction and Illumina

deep sequencing.

Three cDNA libraries were prepared using the TruseqTM

RNA sample prep Kit (Illumina, San Diego, CA USA) following

the manufacturer’s instructions. First, magnetic beads containing

poly-T molecules were used to purify mRNA from 10 mg of total

RNA. Second, the three samples were chemically fragmented and

reverse transcribed into cDNA. Third, end repair and A-base

tailing was performed and then Illumina adapters were ligated to

the cDNA fragments.

After a gel size fractionation step to extract fragments of 300 bp,

29 mL of the purified samples were amplified by 15-cycle PCR.

Amplified products were validated and quantified using an Agilent

2100 bioanalyzer and the DNA 1000 Nano Chip Kit (Agilent,

Technologies, Santa Clara, CA, USA). Libraries were loaded onto

the channels of the flow cell at 8 pM concentration. Sequencing

was performed on the Genome Analyzer IIx (Illumina, San Diego,

CA, USA) by running 81+7+81 cycles using Illumina’s cBot Paired

End Cluster Plate Kit and 36 Cycle Sequencing Kit according to

the manufacturer’s instructions.

Bioinformatic Analysis
Reads trimming and assembly. For each of the sequencing

reads, low quality bases (Sanger base quality ,20) of 39 ends were

first trimmed using in-house perl scripts and then the sequencing

adapters were trimmed using fastx_toolkit software (http://

hannonlab.cshl.edu/fastx_toolkit/). All Illumina reads of three

samples (NC, MD and SV) were assembled by Trinity software

using default parameters [33].

Transcriptome Annotation
The isogenes were compared with the protein nonredundant

database using BlastX with E values less than 1.061025 (E values

less than 1.061025 were considered as significant) [34]. Gene

ontology (GO) terms were extracted from the best hits obtained

from the BlastX against the nr database (E value #1.061026)

using blast2go, and then sorted for the GO categories using in-

house perl scripts [35]. Metabolic pathway analysis was performed

using the Kyoto Encyclopedia of Genes and Genomes (KEGG).

Expression Analysis
Reads from each samples were mapped to isogenes using bowtie

software respectively using corresponding parameters for pair ends

reads and single reads [36]. The expression of each gene was

calculated using the numbers of reads mapping to its isogenes. For

calculating gene expression correctly, reads which aligned to

different isogenes of the same gene were only counted once. Reads

which have best alignments to more than one gene were not

counted. Both reads from a read pair were removed if one read

aligned to one gene and the other aligned to another gene. The

differentially expressed genes were analyzed using the R package

DEGseq and the Benjamini q-value was calculated [37,38]. Gene

Ontology and KEGG pathway enrichment analysis was per-

formed by using the GOseq package, which took gene length bias

into account, using a 0.05 cutoff for the false discovery rate [39].

The according to et al. (1995).

Supporting Information

Table S1 Sequence length distribution of 148,197 as-
sembled contigs. Frequencies refer to the percentage of the

contigs with each different sequence length.
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