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Abstract
Recent advances in protein mass spectrometry (MS) have enabled determinations of hydrogen
deuterium exchange (HDX) in large macromolecular complexes. HDX-MS became a valuable tool
to follow protein folding, assembly and aggregation. The methodology has a wide range of
applications in biotechnology ranging from quality control for over-expressed proteins and their
complexes to screening of potential ligands and inhibitors. This review provides an introduction to
protein folding and assembly followed by the principles of HDX and MS detection, and concludes
with selected examples of applications that might be of interest to the biotechnology community.

Introduction
Many essential cellular activities are mediated by large
protein complexes. Similarly, viruses, the cellular para-
sites that are often detrimental to human and animal
health, constitute a special but important class of large
macromolecular assemblies. Such assemblies are com-
posed of multiple protein subunits and may also contain
nucleic acids (e.g. ribosome, viruses, chromatin) and lip-
ids (certain viruses and membrane complexes like nuclear
pore, receptors, respiratory complexes). As with any pro-
tein successful folding of the subunits and assembly into
the final complex are the pre-requisites for attaining activ-
ity while non-specific aggregation interferes with function
and often triggers a cascade of secondary responses that
are detrimental to cells and organisms (e.g. apoptosis,
neurodegeneration). In certain cases aggregation pro-
duces highly structured and stable assemblies (e.g. amy-
loid fibrils) that in effect represent an alternative outcome
of folding and assembly under the altered conditions
[1,2]. In all cases, subunit-subunit interactions determine

the outcome of assembly and stability of the final com-
plexes. Given the complexity of large assemblies new
approaches to investigate structure and dynamics are
needed.

Hydrogen deuterium exchange (HDX), which probes
accessibility and local dynamics of polypeptide chains, is
a powerful method to study protein folding. With the
advent of mass spectrometric (MS) detection the method
(further referred to as HDX-MS) became amenable to
study assembly and structure of large macromolecular
complexes. In this contribution, we first provide basic
concepts of protein folding and assembly that are neces-
sary for understanding HDX principles. Then we explain
the theoretical basis and practical methods for HDX-MS.
In the later part we illustrate how HDX-MS can be utilized
for characterizing protein folding, misfolding, aggrega-
tion, and for probing interactions in large macromolecu-
lar complexes.
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Protein folding and assembly
The process of macromolecular assembly starts when the
subunit polypeptide chain is made on the ribosome and
folds. During early stages of folding the number of acces-
sible conformations is enormous. Experimental studies
demonstrated that a rapid collapse of hydrophobic pro-
tein core and concomitant formation of secondary struc-
ture constitute the early events during folding [3-6].
Detailed tertiary (specific side chain contacts and orienta-
tions) and quaternary (subunit interfaces) structures usu-
ally develop later. These contacts further stabilize the core
and exclude solvent (H2O) from the protein interior mak-
ing the hydrophobic core the most stable part of the struc-
ture. The formation of the core has been demonstrated by
an early protection of the amide protons (NH) against iso-
tope exchange (hydrogen deuterium exchange, HDX, see
below for the detailed mechanism) during the folding
process. The core also hosts the most stably hydrogen
bonded and thus protected peptide groups which exhibit
extremely slow amide exchange under equilibrium condi-
tions [7-9]. This is because amide exchange rates are
related to the local and global stability [10].

Protein folding can be best explained with the help of
multidimensional energy landscape [11,12]. The folding
process is described as successive decrease of polypeptide
energy to a global minimum on a landscape which, for a
typical globular protein, has a funnel-like shape (Fig. 1
shows a one dimensional cross-section projected along a
specific folding parameter such as compactness or per-
centage of native structure) [13,14]. In vitro experiments
and theoretical considerations demonstrated that most
protein molecules in the ensemble rapidly adopt their
lowest energy state following energetically preferred paths
while minority is being slowed down by trapping in local
minima on the landscape [15,16]. These kinetically
trapped molecules are prone to aggregation [17-19]. Evo-
lutionary pressure selects protein sequences against trap-
ping in local minima and consequently most naturally
occurring polypeptides exhibit relatively smooth folding
landscapes. However, genetic engineering and over-
expression of proteins in heterologous hosts might induce
additional roughness into landscapes [20]. This has been
manifested by numerous expression studies in which
folding behavior was derailed by as little as a single point
mutation or by a slight change in folding conditions or
absence of correct post-translational modifications [21-
27].

Many self-assembling and interacting proteins, however,
attain their native fold only upon incorporating into the
macromolecular complex [28-30]. The energy landscape
for folding and association of self-assembling (or aggre-
gating) proteins depends strongly on protein concentra-
tions and ambient conditions (Fig. 1) [29,31-35]. This is

because assembly is often cooperative and relies on mul-
tiple weak interactions between many subunits. Weak
interactions are sensitive to changes in environmental
conditions like temperature, ionic strength and composi-
tion and pH. Since amide protection is related to local
protein stability [36] HDX constitutes excellent tool for
mapping the assembly energy landscape. For example
comparison of HDX for subunits in disassembled and
assembled states yields appraisal of stabilization by subu-
nit contacts and provides basis for mapping of subunit
interfaces.

Structural characterization of macromolecular complexes
High resolution structure determination relies on experi-
mental techniques such as X-ray crystallography and NMR
spectroscopy both of which require substantial protein
quantities. The proteins and their complexes are usually
produced by expression in a suitable host cell. The most
widely used expression hosts are various laboratory
strains of Escherichia coli, yeast cells or insect cells infected
with bacullovirus. Folding of eukaryotic proteins in E. coli
is often compromised due to the lack of the adequate gly-
cosylation apparatus and appropriate post-translational
processing. In such cases one has to resort to expression in
cells of higher eukaryots which may significantly decrease
the yield to levels insufficient for crystallization or NMR

A schematic, one dimensional cross-section of the multidi-mensional energy landscape projected along a specific folding reaction coordinateFigure 1
A schematic, one dimensional cross-section of the 
multidimensional energy landscape projected along a 
specific folding reaction coordinate.
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experiments and consequently lower resolution structural
techniques, such as electron microscopy (EM), must be
used. HDX is an emerging method belonging to this class.
In addition, the stoichiometry and structure of the
expressed complexes may differ from those occurring in
the original cells and tissues. Hence there is a need for
methods which allow comparing structure of the
expressed complexes with the native, tissue-derived spe-
cies. HDX and mass spectrometry are well positioned to
fill this gap [37,38].

Electron cryo-microscopy offers a suitable alternative for
the structure determination of larger complexes (>1 MDa)
[39]. However, EM alone seldom provides high enough
resolution (i.e. better than 4Å) that would allow building
structural models in atomic details. Cryo-EM routinely
achieves resolution as high as 7 Å but the resulting elec-
tron densities do not allow polypeptide chain tracing and
the primary structure (sequence) cannot be mapped onto
the structure. Consequently, this provides little informa-
tion about the residues at subunit interfaces or about the
subunit fold. This problem can be circumvented if high
resolution structures of the subunits are known and could
be fitted into the EM density [40-42]. However, in cases
where the high-resolution structures are not available or
substantial portions of the structure are not resolved in
the models (e.g. intrinsically unfolded domains which
become folded upon assembly) one would like to obtain
some information about the disposition of amino acids
between folding core, subunit interfaces and intrinsically
unfolded regions. As indicated above and discussed in
more detail in the next section HDX can provide such
information. HDX and mass spectrometry (MS) can also
help to tackle sample heterogeneity and classification of
EM images [43] and thus provides supportive tool to EM
[44].

Theory and Methods
Principles of hydrogen-deuterium exchange
Physical chemistry of amide exchange
HDX probes the exchange kinetics of the main-chain
amide (NH) hydrogens for deuterium in samples exposed
to D2O (Fig. 2A). The advantage is that, in principle, it
provides site-specific probes along the whole polypeptide
chain (except prolines and the N-terminal amino group).
Under extreme pH conditions (pH<1 or pH>14) a free
amide group can be either protonated or ionized [45].
Amide hydrogens can exchange via those states albeit
slowly under physiologically relevant conditions. The
reaction is greatly accelerated by an acid or a base. In aque-
ous solutions the hydronium ion (H3O+) or the hydroxide
anion (OH-) plays the role of the acid or the base, respec-
tively [45]. The acid- or base-catalyzed substitution of the
unprotected (free) amide hydrogen, i.e. the chemical step
of the exchange reaction, is strongly pH- and temperature-

dependent (Fig. 2A right panel). This means that an
exposed amide group would exchange on millisecond
time scale at room temperature and neutral pH. Con-
versely, it would take about an hour to exchange the same
exposed NH at low pH = 2.5 and 0°C [46]. The strong pH
dependence of the chemical step allows preserving the
pattern of labeling that was attained under native, neutral
pH conditions by shifting the sample to pH 2.5 and low
temperature. This, in turn provides a window of opportu-
nity for the analysis of isotope incorporation by mass
spectrometry [46].

Steric hindrance by the neighboring side chains (R in Fig.
2A) also affects the rate of the chemical step. This depend-
ence was calibrated using short, unfolded peptides as
model compounds and constitutes relatively small correc-
tion to the intrinsic exchange rates of unprotected peptide
groups (further designated as k2 rate) [47-49]. This correc-
tion becomes important when quantitative interpretation
for site-specific rates is being sought e.g. determination of
the energetics for individual peptide bonds during fold-
ing.

Effects of protein secondary and tertiary structures
In folded proteins most of the amide hydrogens partici-
pate in hydrogen bonding within secondary structure ele-
ments, e.g. α-helices and β-sheets (Fig. 2B). This
considerably slows down the exchange since it requires
temporal breaking of hydrogen bonds. In the folded state
secondary structure is further stabilized by tertiary con-
tacts and thus exchange requires partial or complete
unfolding of the protein and exposure of the buried seg-
ments to solvent. This process is sometimes called struc-
tural opening and is a prerequisite for the chemical step of
exchange [45]. The open states in Fig. 2B correspond to
higher-energy, partially unfolded intermediates on the
energy landscape in Fig. 1. Quaternary, subunit contacts
provide additional stabilization and protect NH sites on
or close to the subunit interfaces [50,51]. In a typical well-
folded protein the exchange rates may differ by many
orders of magnitude reflecting local and global stability
[46].

Two step model of amide exchange
The exchange rates are governed by the folding energy
landscape. However, the correspondence is not straight-
forward and it is necessary to consider all factors contrib-
uting to the overall exchange rate. In order to simplify
such analysis several reasonable assumptions and approx-
imations are made. For amides within protected regions
(secondary structure, hydrophobic core, subunit inter-
faces) structural opening is the rate-limiting step and the
exchange process may be considered as a two step reaction
(Fig. 2C): (1) structural opening which is governed by rate
constants k1 and k-1. (2) chemical exchange step which is
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governed by rate k2 and considered irreversible under the
condition of excess D2O. Then the overall HDX rate can be
described by:

kex = k1k2/(k2+k-1) (1)

There are two limiting cases that are considered when
interpreting HDX exchange rates:

(EX1) k2 >>k-1, i.e. the chemical exchange is fast compared
to the structural opening step:

kex = k1 (2)

The EX1 limit is typical for exchange via global unfolding
under strongly denaturing conditions or for subunit dis-
sociation in large assemblies. The rate does not depend on
pH. The temperature dependence of the rate yields the
activation energy for the unfolding event, i.e. provides

information about the heights of barriers (roughness) on
the energy landscape.

(EX2) k-1 >> k2, i.e. the open state is short lived compared
to the rate of the chemical step:

kex = k1k2/k-1 = Kopk2 (3)

where Kop is the apparent equilibrium constant for struc-
tural opening. EX2 is typical for exchange from the folded
state under native or mildly denaturing conditions and is
strongly pH dependent (through k2). EX2 is a product of
the local unfolding equilibrium constant and the chemi-
cal step rate constant. When site-specific exchange rates in
unfolded state are available it is possible to factor them
out and to obtain the protection factor:

p = k2/kex (4)

Mechanism of HDXFigure 2
Mechanism of HDX. (A) Mechanism of the chemical step. Inset on the right illustrates the pH and temperature (solid line 
25°C, dashed line 0°C) dependence of the intrinsic exchange rate (B) Influence of quaternary, tertiary and secondary structure 
on HDX. (C) Overall reaction scheme and the two limiting cases.
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This factor is then related to the local stability, i.e. depths
of "wells" on the energy landscape:

∆Glocal = -R·T·ln(p) (5)

where R is the universal gas constant and T is absolute
temperature.

Because different mechanisms of local opening usually
operate simultaneously, neighboring amides within the
same element of secondary structure may exchange with
different rates under native conditions. Upon destabiliza-
tion under progressively more denaturing conditions,
these rates converge to a value that is characteristic of the
cooperative unfolding unit to which these sites belong
[36,52]. This approach identifies structural characteristics
of partially unfolded states and enables to map the energy
landscape in structural terms [10].

HDX detection by mass spectrometry
We first compare various methods for HDX detection and
then explain practical issues involved in HDX-MS meas-
urements. More detailed discussion of experimental
implementation has been provided in recent reviews
[46,53,54].

Comparison of different methods for HDX detection
Several experimental techniques for measurement of HDX
are available. NMR, which determines HDX through dis-
appearance/appearance of amide proton resonances in
D2O/H2O solutions, is the most widely used and provides
site-specific probe of protection. Presently, NMR is not
applicable to large protein complexes (>200 kD) and

requires high concentrations (>10 mg/ml). HDX dynam-
ics of large macromolecular complexes can be readily
examined by Fourier transform infrared (FTIR) [55-60]
and Raman spectroscopy [29,32,61,62]. These techniques
probe incorporation of deuterium by monitoring shifts of
frequencies arising from collective vibrations of the pep-
tide bond and the amide NH group (so called amide
bands, deuterium incorporation increases the local mass
and hence these bands shift to lower frequencies). These
techniques differentiate the exchange rates only by the
type of secondary structure and do not provide mapping
onto the protein sequence.

Mass spectrometry measures deuterium incorporation as
an increase of apparent mass, more specifically as a
change in the isotopic composition. Advances in protein
MS enabled routine resolution of isotopic composition
for oligopeptides with masses up to several kDa. Simi-
larly, shifts due to deuterium incorporation are readily
discernible in mass spectra of intact proteins. This in turn
allowed to probe HDX kinetics for large proteins [63,64]
and macromolecular complexes [33,65-68] and map sub-
unit-subunit interactions in assemblies [51,69-72]. Clear
advantages of MS detection over NMR are the lower pro-
tein concentrations and sample quantities needed.
Although, in principle, MS allows for residue-specific res-
olution of HDX kinetics this is seldom achieved and only
region-specific information is obtained [53,73,74].

Data acquisition and instrumentation
The extent and rate of HDX is measured from mass
increases of peptide fragments after enzymatic cleavage of
a protein (Fig. 3). The exchange is usually initiated by
diluting the protein into D2O exchange buffer (Fig. 3A).

Practical aspects of HDX measurementFigure 3
Practical aspects of HDX measurement. (A) Simplified exchange and protease digestion protocol. (B) Cooled LC-MS 
setup, INJ = injector [64].
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The sample is incubated under the exchange conditions
for the desired exchange period (usually 30 s to 10 h) and
then quenched by rapid acidification to pH 2.5 on ice
(usually done with formic acid). This effectively slows
down any further exchange (so called exchange-in) and
minimizes pickup of hydrogens during subsequent han-
dling in H2O solutions (so called back-exchange). The
quenching solution may be supplemented with a denatu-
rant (e.g. guanidine hydrochloride or urea) to facilitate
dissociation of stable complexes prior to proteolytic diges-
tion. The quenched sample may be analyzed immediately
or flash-frozen and stored for up to several weeks in liquid
nitrogen for off-line analysis.

Prior to MS analysis the sample is digested with a non-spe-
cific acid protease (e.g. pepsin, Aspergillus type XIII,
Rhizhopus type XVIII, or their mixture [75]) on ice. The
resulting digest is loaded onto a reverse-phase column
(usually short C-8 or peptide trap) and rapidly separated
by a steep gradient. As shown in Fig. 3B it is essential that
the HPLC column and the injector are cooled and kept at
constant temperature (e.g. in an ice-water bath) to mini-
mize the back-exchange and maintain reproducible con-
ditions [76]. With the advent of high-resolution MS, good
HPLC separation is not essential. The chromatography
step effectively provides rapid desalting and removal of
undigested protein before sample introduction into the
mass spectrometer. This is usually done through a stand-
ard or micro-capillary electrospray ionization interface
(ESI) [77,78]. Any mass spectrometer with resolving
power 5000 or better (e.g. a quadrupole-time of flight (Q-
TOF), an ion trap) is in principle suitable for detecting
HDX. Higher resolution enables a more accurate measure-
ment of multiply charged peptides and is essential for
resolving overlapping isotopic envelopes that are com-
monly found in MS spectra of large proteins and their
assemblies. High mass accuracy and reproducibility, usu-
ally provided by calibration with a suitable standard, are
essential. The highly repetitive nature of HDX-MS experi-
ment (i.e. collection of many time points) makes it suita-
ble for automation and several setups were reported
[53,79].

Note that the exchangeable side-chain hydrogens (e.g.
tyrosine or serine OH groups, the amino group of lysine
etc.) exchange rapidly back during digestion and HPLC
separation performed in H2O [80]. On the other hand,
deuterium at main-chain amide sites persists much longer
(see Fig. 2A). However, back-exchange of main-chain
amides, which inevitably occurs during sample handling
after quenching (i.e. peptic digestion and reverse-phase
separation), interferes with HDX data analysis by dimin-
ishing the differences between exchanged populations
and needs to be kept as low as practically possible.
Recently, several attempts were made to alleviate the back-

exchange problems during separation. In principle ultra
performance liquid chromatography (UPLC) provides
faster and superior resolution. Comparison between
UPLC and conventional HPLC in HDX/MS experiments
using cytochrome c as the benchmark protein failed to
provide convincing evidence in favor of UPLC mainly due
to higher back-exchange. This was caused by inadequate
cooling of the injector in the commercial UPLC system
[81]. A radically different approach using a supercritical
fluid chromatography (SFC) that employs non-aqueous
CO2 mobile phase and fast flow rates yielded substantial
reduction of back-exchange compared to the HDX-opti-
mized HPLC separation. The slightly impaired peptide
separation in SFC was offset by the superior resolving
power of the Fourier transform ion cyclotrone resonance
mass spectrometer (FTICR-MS) which was used in this
study [82].

Data analysis-from mass spectra to structural interpretations
Digestion with pepsin or other acidic proteases is rather
non-specific and under given conditions (e.g. digestion
time, denaturant concentration, protease-to-protein ratio)
yields overlapping fragments with lengths ranging from 5
to 15 amino acids. The same set of peptide fragments is
obtained for a given protein and digestion conditions
[75]. This assures that consistent and reproducible data
sets are obtained in independent runs. Each of the frag-
ments acquires one or more positive charges during ioni-
zation and produces a typical isotopic envelope in the
mass spectrum (Fig 4A). The relative abundance of differ-
ent ionization states and fragments strongly depends on
the particular ionization interface and mass spectrometer
design. Hence, it is advisable to use one MS instrument
throughout the whole study.

Each peak in the envelope corresponds to an increasing
number of heavier isotopes (naturally occurring 13C, 34S
and the HDX introduced 2H) and spacing between them
is inversely related to the acquired charge. Even the non-
exchanged control (t = 0 s) contains series of peaks corre-
sponding, in succession, to the monoisotopic fragment
mass (the lowest m/z, all atoms are of the lightest isotope)
followed by the peaks from species containing one or
more of the heavier, naturally occurring isotopes. Note,
that due to 1% abundance of 13C and other naturally
occurring isotopes the monoisotopic peak is usually weak
for longer fragments (>10 residues).

The fragments in non-deuterated sample are assigned to
the amino acid sequence by tandem MS (MS2; i.e. frag-
mentation of the selected peptide in the mass spectrome-
ter, usually performed by collision with gas or application
of strong electric field, followed by analysis of the result-
ing ions; see [77] for details) [83]. In favorable cases, espe-
cially when using ultra-high resolution mass
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spectrometers (e.g. FT-ICR), assignments may be based on
the exact mass alone. However, a confirmation by MS2 is
still desirable [84].

As expected, deuteration shifts the isotopic pattern to
higher m/z values (Fig. 4A). As seen in the second spec-
trum from top the monoisotopic peak may not be
resolved in the shifting isotopic envelopes and hence the
patterns are usually identified by the expected progression
of m/z peaks for the given charge state. One of the main
advantages of MS detection is that MS spectra exhibit dis-
tinctly different patterns for EX1 and EX2 mechanisms.
This provides basis for distinguishing between the two
limits without measuring the tedious and often experi-
mentally inaccessible pH dependence.

In the EX1 regime amides remain either all unexchanged
or become all exchanged at once and thus the mass spec-
tra show a bimodal pattern (c.f. t = 0 and 40 sec in Fig.
4B). The apparent rate constant, kex = k1 in Eq. 2, corre-
sponds to the rate of structural opening or a conforma-
tional change, and it is determined from the time-
dependence of the integrated intensity belonging to the
deuterated envelope.

In the EX2 regime exchange causes progressive shift and
binomial broadening of the isotopic envelope (Fig. 4A).
In this case the centroid of the isotopic envelope or the
average of the peak positions weighted by their intensities
are both reasonable and frequently used measures of the
degree of deuteration [46,51,64,85,86]. In this case the
HDX rate constant, kex in Eq. 3, is obtained from the
dependence of the centroid/average position on exchange
time. This analysis provides kinetics averaged over the
whole fragment and consequently corrections for the
effects of primary structure (sequence) on k2 in the EX2
limit are impossible. Such correction is not necessary
when comparing two states of the same protein, e.g. for
mapping subunit interfaces in protein assemblies.

In certain cases (e.g. high resolution spectra like those
shown in Fig. 4) the true deuteration distribution may be
obtained from the measured envelope by deconvolution
with the naturally occurring isotope distribution [87].
Such procedure allows analyzing exchange under condi-
tions when part of the fragment is exchanging via EX1
mechanism while the rest belongs to an EX2 limit [88].

Site-specific resolution of exchange will be essential for
quantitative study of enzymes and molecular motors and
for direct comparison with theoretical results [89-91]. Sev-
eral attempts to improve the resolution have been made.
One approach was to analyze simultaneously the
exchange kinetics of overlapping fragments and separate
the individual contributions computationally. In favora-
ble cases this may produce site-specific resolution for few
residues within the entire sequence. An attempt at more
reliable experimental solution was made by using MS2 for
sequencing of deuterated fragments. However, it was
found that the collision-induced fragmentation step led to
significant scrambling of deuterium among the amide
sites and hence this approach proved impractical [74].
Recent experiments using gentler fragmentation methods
demonstrated significant preservation of the deuteration
pattern [73,92].

In all cases the measured degree of exchange is always
lower than the actual value because some of the label is
lost during sample handling (e.g. digestion and HPLC)
due to the back-exchange. The true extent of exchange is
an important parameter for interpretation. Take the fol-

Example of HDX detected by mass spectraFigure 4
Example of HDX detected by mass spectra. m/z iso-
topic envelopes for EX2 (A) and EX1 (B) limit of exchange. 
Data obtained for a region that is situated within the subunit 
interface in ϕ8 P4 hexamer [114].
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lowing example: In the absence of site-specific resolution
the exchange is averaged over the whole peptide fragment.
Hence, situations, in which half of the fragment residues
are exposed and exhibits fast exchange while the rest is
buried and does not exchange at all, are common. Ignor-
ing the true extent of the exchange, which amounts to
only half of the available sites in this example, and taking
into account only the fast kinetics would lead to an erro-
neous conclusion that the whole peptide is exposed.

In order to obtain the true extent of exchange one must
correct for the back-exchange. The degree of back-
exchange depends on the experimental setup and sample
handling and varies from as little as 10% for ESI-MS to
about 40% in MALDI-TOF MS detection. There is also var-
iation between different fragments, presumably due to
sequence effects on the back-exchange. Therefore, the best
way to correct for back-exchange is to measure a fully deu-
terated control sample under identical conditions, e.g. a
protein which was first denatured and then re-folded in
D2O buffer. For some proteins refolding in D2O is impos-
sible and one must resort to approximations. For exam-
ple, it is fair to qualitatively compare the relative extent of
exchange for two states of the same protein (e.g. assem-
bled and free subunit of a virus) if the two data sets were
collected under identical conditions [70].

Automated data processing
Mass spectrometry is venerable for generating large data
sets and HDX-MS is no exception. A typical 35 kD protein
may yield about 100 assigned fragments which contribute
to the mass spectra. In addition, the spectra contain pleth-
ora of unassigned peaks e.g. from oxidized protein or
from pepsin. In HDX-MS the useful MS data is spread over
several (4–10) scans within the LC-MS run. Usually, the
full kinetics contains at least 15 time-points collected in
three independent replicas. Taken together one needs to
extract and process at least 4000 isotopic envelopes from
about 200 spectra per each kinetic curve. Such a task calls
for a considerable automation and deployment of data-
mining tools.

MS2 peptide assignments can be done using either com-
mercial proteomics add-on packages for automated data-
base searches and subsequently validated by spectral
prediction tools when necessary [93]. Despite the appar-
ent popularity of HDX-MS, specific tools are not to be
found in any of the commercial software packages that are
currently supplied with instruments. This spurred in-
house development of various HDX-MS-specific software
packages [54,79,94] and eventually led to applications
ranging from semi-automated to fully-automated process-
ing that are now freely available [88,95,96]. The utility of
some packages is still hindered by the plethora of propri-
etary data formats used by different manufacturers but

could be overcome by adopting the mzXML standard for
data interfacing [96,97]. Recently, Pascal and colleagues
launched a web application ("Deuterator") compatible
with multiple file formats for automated HDX-MS data
analysis [96,98]. Although promising, the utility of the
web-based approach is somewhat compromised by the
need to supply large datasets to a remote server.

Applications
In the following sections we present selected examples of
HDX-MS use in detection and characterization of folding
intermediates, association of small oligomers and dynam-
ics in large assemblies. Later we provide illustrations of
HDX-MS utility for structural characterization of aggre-
gates and intrinsically unstructured proteins. Finally, we
discuss applications to characterize functional dynamics
in protein complexes and molecular machines.

Detection of folding and association intermediates in vitro
Native state exchange reveals folding intermediates
Multi-state and two-state protein folding cannot be often
distinguished due to instability of partially folded inter-
mediates. Meta-stable intermediates can be detected via
HDX and play a crucial role in the determination of fold-
ing kinetic and native state dynamics [85]. HDX experi-
ments are also considered most effective in teasing out the
structural details of protein folding intermediates, often
with amino-acid resolution [99].

The three-state unfolding of ubiquitin (highly structured,
partially unstructured A-state, and fully unstructured
state) was examined by HDX-MS [100]. The highly
dynamic A-state consisted of flexible, rapidly exchanging
C-terminal region while the N-terminal domain adopted
less dynamic, native-like β-strand configuration.

Time-resolved techniques and characterization of folding and 
assembly intermediates
Pulse-labeling HDX-MS techniques enable detection and
characterization of transient folding intermediates which
are not readily populated under equilibrium conditions
[101]. An on-line HDX pulse-labeling ESI MS apparatus
was developed and tested on myoglobin folding and
heme incorporation [86,102] (Fig. 5). The method is
based on tandem mixing chambers: the first one serves to
initiate folding/assembly reaction while the second one is
used to stop the folding reaction and transiently expose
the products to deuterium label. Subsequently, the
exchange is quenched and the incorporated label is quan-
tified by MS. This provides a "snapshot" of protection at a
particular stage of the reaction. Usually, this is applied to
intact proteins but there is no principal obstacle in carry-
ing out pepsin digestion and LC-MS analysis and obtain
region-specific exchange kinetics.
Page 8 of 20
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The method enabled millisecond resolution of the folding
dynamics for a well-studied model protein ubiquitin and
led to the discovery of a previously uncharacterized inter-
mediate [103]. The method was then used to follow fold-
ing and association of dimeric protein, S100A11, and
revealed three different kinetic species – a relatively
unfolded monomer, a more compact folded monomer
and the native dimer [104].

Pulse labeling can also reveal the interplay between fold-
ing and assembly in multidomain, multimeric proteins.
Rabbit muscle aldolase is a homotetramer encompassing
subunits with three domains each. A locally unfolded
aldolase was pulse-labeled with deuterium after destabili-
zation in urea for a defined period of time (1 min to 48
h). Isotope patterns revealed four populations corre-
sponding to distinct conformations: one native and three
distinct, partially unfolded intermediates. The intermedi-
ates, which were further characterized using pepsin diges-
tion, corresponded to aldolase with one, two or all three
domains unfolded, respectively. Remarkably, the com-
pletely unprotected intermediate, which also lacked sec-
ondary structure, still remained tetrameric, suggesting
strong coupling between folding and assembly of the
tetramer. The observed HDX kinetics supported sequen-
tial and cooperative mechanism of aldolase unfolding
[51,80,105].

Structural characterization of expressed proteins
When there is no high resolution structure available,
HDX-MS experiment can provide valuable information
about the domain structure and may be used to validate
structural models which are built solely on the basis of
limited sequence homology. This approach was applied
to a protein kinase scaffolding protein, D-AKAP2, which
augments interactions of signaling molecules inside cells
[106]. HDX-MS revealed two regions of low exchange
located in the midst of fast exchanging regions and iden-
tified two distinctly folded regions (Fig. 6). Fig. 6A illus-
trates a plausible representation of region-specific HDX
kinetics in the absence of three-dimensional structure.
The sequence, which was found homologous to regulator
of G-protein signaling (RGS), mapped within the first

folded region. The second folded region encompassed a
highly protected protein kinase A (PKA) binding site and
a less protected PDZ-binding motif (PDZ domain is a
potential target of D-AKAP2). HDX-MS thus confirmed
the multi-domain architecture of D-AKAP2. HDX-MS was
also used to validate a homology-based structural model
of the RGS domain (Fig. 6B–C) [106].

An interesting application of HDX-MS has been devel-
oped to follow protein folding during in vitro, cell-free,
transcription-translation [107]. This is a fast and easy way
to use method based on MALDI-TOF and yields global
degree of folding using minute protein quantities without
purification. In addition, it affords rapid identification of
the expressed protein. HDX-MS was also used to refine
protein constructs for crystallization trials [108,109]. A
somewhat similar MALDI-MS approach was used to char-
acterize stability of an expressed protein in the cell extracts
i.e. under conditions close to those found in the cyto-
plasm [38]. The method, abbreviated by the authors as
SUPREX (stability of unpurified proteins from rates of H/
D exchange) revealed that the model protein, bacteri-
ophage λ repressor, exhibited identical stability in the cell
lysate and in the dilute solution of pure protein, respec-
tively. This study was later extended to perform and detect
HDX of the λ repressor in the cytoplasm of intact E. coli
cells, i.e. in vivo [37]. This method exploited permeability
of lipid membranes for small molecules like water and
urea which allowed for rapid equilibration of D2O
between the cytoplasm and the deuterated medium con-
taining increasing amounts of denaturant. As in their pre-
vious study the authors found no difference between
repressor stability under in vivo and in vitro conditions,
respectively. However, the in vivo stability was signifi-
cantly enhanced by administering hyperosmotic shock to
the cells prior to the exchange experiment.

Assembly and dynamics of large complexes
Macromolecular complexes, some of which are indeed
fairly sophisticated molecular machines, ensure consecu-
tiveness of cellular processes such as macromolecular syn-
thesis, transport, and metabolism. Their functions rely on
self-assembly, subunit rearrangements and conforma-
tional changes throughout the duty cycle. Viruses repre-
sent special class of such machines and, in effect they
could be considered smart containers for targeted delivery
of macromolecular cargo. They are programmed for con-
trolled replication, encapsidation, transport and release of
their genomes into new host cells. This is accomplished by
series of concerted structural changes within viral capsids.
The utility of HDX-MS in virus research and in characteri-
zation of macromolecular complexes in general was
recently reviewed [71] and here we present selected exam-
ples, mostly from the virus field, to illustrate the type of
problems this method may help to answer.

Schematics of on-line folding and pulse labeling apparatus (based on [102])Figure 5
Schematics of on-line folding and pulse labeling appa-
ratus (based on [102]).
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Domain structure of D-AKAP2 scaffolding proteinFigure 6
Domain structure of D-AKAP2 scaffolding protein. (A) Graphical representation of deuteration levels at different time 
points is shown in color (scale on the right) below the sequence. (B) Backbone homology-based model of the RGS domain (C) 
Color representation of deuteration levels after 3000 s mapped onto the modeled structure. (D) Deuteration levels after 3000 
s mapped onto the primary structure. From [106] with permission.
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Mapping subunit interfaces and association dynamics
The first step towards functional macromolecular com-
plex is assembly of subunits guided by subunit-subunit
interactions. In many instances only the high-resolution
structures of subunits are available while a medium reso-
lution electron density of the whole assembly is readily
obtained by cryo-EM. The fitting of the subunit structures
into the EM density is greatly facilitated by knowing the
subunit interfaces within the complex. This strategy was
adopted for bacteriophage ϕ12 which is a dsRNA virus
belonging to the Cystoviridae family and is structurally
related to members of the Reoviridae family [110].
Although the high-resolution structure of the virus-associ-
ated packaging ATPase, a hexameric molecular motor P4,
had been known [111] and the hexameric structure had
been resolved by cryo-EM [112,113] it was not possible to
determine which way the hexamer interacted with the
viral procapsid (Fig. 7A). HDX-MS was used to map the
subunit interfaces [94]. Fig. 7B shows comparison of the
isotopic patterns for the C-terminal helix in the free hex-
amer (red) and the PC-bound motor (blue). A substantial
increase in protection (lower final plateau in Fig. 7C) and
slower kinetic (smaller initial slope) is clearly apparent for
the assembled state. Mapping of the average exchange
rates for all resolved fragments onto the surface represen-
tation of the hexamer confirmed that P4 associates with
the procapsid using its C-terminal facet (Fig. 7D). This
information was subsequently used to fit the atomic
model of the hexamer into a refined asymmetric cryo-EM
reconstruction of a related virus ϕ6 [113] (Fig. 7E).

HDX-MS also revealed that the association of the motor
with the viral capsid stabilized subunit interfaces (c.f.
exchange of helices IH1 and IH2 in Fig. 7F) and prevented
spontaneous opening of the hexameric ring (Fig. 7G).
Ring opening had been detected by HDX-MS and associ-
ated with loading of ssRNA into the central channel (Fig.
7G) [114]. The exchange dynamics of the PC-associated
hexamer closely followed temperature B-factors derived
from the crystal structure while the free, solution state was
more dynamic [94] (Fig. 7F).

HDX-MS and crosslinking was used to identify new con-
tacts between subunits in the capsid of human immuno-
deficiency virus (HIV) [70]. The subunit of HIV capsid
(CA) encompasses N-terminal domain connected via a
linker to C-terminal domain. The capsid assembly process
was thought to be driven by association (dimerization) of
C-terminal domains and hexamer formation by six N-ter-
minal domains. While the C-terminal domain was known
to form stable dimers in solution there was no evidence
for the oligomerization of the N-terminal domain. Hence,
the assembly mechanism was far from being certain. By
comparing the exchange of the full-length CA in the mon-
omeric and the assembled state Lanman and colleagues

were able to delineate a new interface between the N-ter-
minal and C-terminal domains of neighboring subunits
[70,115]. This contact was shown to play essential role in
stabilizing hexamers during assembly.

HDX-MS can also provide information about subunit
association kinetics in functional assemblies. Small heat
shock proteins (sHSP) belong to a family of molecular
chaperones, which transiently bind partially unfolded
proteins and prevent their aggregation. One member of
this family, HSP16.9, assembles into a dodecamer at
room temperature. Surprisingly, subunit interfaces exhib-
ited no protection against HDX after incubation for 5 s in
D2O [50]. Note, that under these conditions most oligo-
meric proteins show significant protection of their subu-
nit interfaces. Almost complete exchange suggested that
large conformational motions were taking place within
the assembly, leading to the disruption of subunit inter-
faces. When pulse-labeled for just 10 ms, the subunit
interfaces showed significantly lower exchange comparing
to the 5 s experiment. Thus, the HSP16.9 oligomer under-
went fast association-dissociation dynamics on a sub-sec-
ond time scale. At 42°C, HSP16.9 forms a dimer with the
same exchange pattern and kinetics as the dodecamer at
room temperature. It is believed that HSP16.9 is heat-acti-
vated by shifting the equilibrium between the two forms
[50] and the fast association-dissociation dynamics plays
essential role in the process. This example also shows that
it is important to consider HDX kinetics on millisecond
time scale when dealing with metastable, highly dynamic
complexes.

Structure and dynamics of subunits within large assemblies
EM and X-ray diffraction yield structures of well-defined,
stable conformations. However, even highly symmetric,
icosahedral viral capsids are dynamic entities. Essential
biological processes, like delivery of viral genomes, are
mediated by structural transformations. HDX-MS enables
monitoring of these dynamic events.

Many viruses require a maturation step in which a capsid
precursor undergoes large scale structural rearrangements
in response to e.g. protease processing of the viral poly-
protein. HIV maturation is triggered by a virion-associated
protease which specifically cleaves the assembled Gag
polyprotein to releases the individual structural proteins
(NC, nucleocapsid; CA, capsid; MA matrix; ENV, envelope
glycoprotein). During the process the assembled CA col-
lapses from a spherical form into a conical core. This step
is essential for infectivity and hence the protease has been
successfully targeted by several antiviral drugs. However,
in structural terms, the maturation process has been elu-
sive [115]. HDX-MS was used to compare CA in the
mature and immature form of virus-like particles (VLP).
The intact CA protein in the mature form exhibited signif-
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Mapping subunit interfaces and dynamics in large viral assembly- P4 hexamer within ϕ12 procapsid [94]Figure 7
Mapping subunit interfaces and dynamics in large viral assembly- P4 hexamer within ϕ12 procapsid [94]. (A) 
Schematics of the viral procapsid (PC) and packaging of ssRNA precursors by the P4 hexamers associated with the capsid ver-
tices (left). The right panel illustrates the problem of determining the orientation of the hexamer with respect to the procapsid. 
(B) Bar representation of the isotopic envelopes during progressive deuteration, free hexamer in red and PC-bound in blue. 
(C) The HDX kinetics derived from centroid positions of the isotopic envelopes in panel B (and from additional data not 
shown). (D) Mapping of average exchange rates onto P4 structure in surface color representation (color scale on the bottom 
right). (E) Fitting of the P4 hexamer into the EM-derived electron density using the correct orientation from HDX experiment 
(adopted from [113]). (F) Average exchange rates mapped onto the ribbon diagram of P4 subunit for free (left) and PC-bound 
(middle) hexamer together with the scaled crystallographic temperature factors (B-factors, right panel). Color scale as in panel 
D. (G) Schematics of ssRNA loading into the hexameric packaging motor via ring opening mechanism. Top: A specific viral 
RNA structure (packaging signal) is recognized by the major capsid protein P1 which brings the polynucleotide strand to the 
vicinity of P4. Middle: P4 ring opens and lets the RNA slip in between subunit interfaces into the central channel. Bottom: The 
ring topologically encloses the bound RNA and translocates RNA in 5' to 3' direction into the capsid at the expense of ATP 
hydrolysis (packaging).
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icant protection with respect to the immature state (Fig.
8A) [116]. A bimodal pattern in the m/z spectra of the
intact, mature CA indicated two populations of CA con-
formers. The first exhibited protection similar to the
immature CA while the second was significantly more
protected. Similar bimodal HDX pattern was observed for
a peptide fragment from the interface between N- and C-

terminal domain (Fig. 8B). This demonstrated that only
half of the subunits in HIV-1 capsid matured into the con-
ical cores and that the formation of the heterotypic N-C
interface is a key feature of the maturation process. On the
other hand, the formation of new interfaces between N-
terminal domains, which had been proposed on the basis
of EM to mediate maturation, was not detected [116].

Structural changes during HIV maturation [71, 115, 116]Figure 8
Structural changes during HIV maturation [71, 115, 116]. (A) Progress of deuteration for the intact capsid protein 
(+28 charge state, 25 601 Da) in mature virus-like-particles (mVLP, red) and as disassembled monomer in solution (black). (B) 
Time-resolved isotopic envelopes for the peptic fragment encompassing residues 55–68 of the CA protein in immature (left) 
and mature (right) VLPs. The peaks marked by asterisk do not belong to the CA fragment envelopes. From [71] with permis-
sion.
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Unlike HIV dsDNA and dsRNA bacteriophages (e.g. Cysto-
viridae discussed above) mature via packaging of their
genomes into empty procapsids which simultaneously
expand and undergo substantial stabilization [117,118].
HDX-MS application to viral maturation was pioneered
using dsDNA bacteriophages P22 and Raman spectros-
copy for detection [29]. This initial investigation was sub-
sequently extended by mass spectrometry [33] and
demonstrated that the observed stabilization of the viral
lattice was due to refolding of coat protein domains. Fur-
ther study of P22 capsids by FT-ICR HDX-MS identified
the N-terminal domain as being substantially stabilized
upon maturation while the C-terminal dimerization
domain remained unaffected. Together with crosslinking
experiments HDX results assisted mapping of the refolded
domains into the EM-derived electron density [119,120].

Flexibility of virions has been demonstrated as an impor-
tant factor in the delivery of genomes by plus-sense ssRNA
viruses [121]. Capsid dynamics of human rhinovirus was
studied by HDX-MS [122]. A fast and intermediate
exchange pattern was observed for the interfaces around
the five-fold axis. These sites may serve as the initiation
site for uncoating and release of the viral RNA.

Native-state HDX of whole protein subunits within the
intact large and small ribosomal subunit was detected by
MALDI-MS [66]. While this method did not resolve subu-
nit interfaces it provided first glimpse at the overall
dynamics for almost all ribosomal proteins. The protec-
tion correlated well with the assembly pathway i.e. subu-
nits that were incorporated early during ribosomal
assembly exhibited significantly higher protection. On the
other hand, faster HDX was observed for subunits impli-
cated in tRNA translocation between sites or those
involved in pivoting of large and small ribosomal subu-
nits. These functions presumably require higher flexibil-
ity.

Aggregation, amyloid and inclusion bodies
Fluids in cells contain macromolecules at high total con-
centration, causing molecular crowding [123]. In most
cases crowding favors protein folding as well as formation
of functional complexes relative to the less compact, non-
native structures. However, under such conditions even
brief loss of native protein structure or exposure to
extreme conditions (e.g. oxidative stress, heat shock) may
lead to aggregation. Aggregation produces plethora of spe-
cies, ranging from soluble oligomers, amorphous aggre-
gates, to fibrils, amyloid plagues and inclusion bodies
[124,125]. HDX-MS has played important role in charac-
terizing structure and dynamics of protein aggregates
which are often refractory to other methods [126]. HDX-
MS also constitutes an indispensable tool in characteriz-
ing intrinsically unfolded proteins [127].

Prion proteins are prone to adopt different structures and
some mutants readily oligomerise and aggregate to form
amyloid plagues. Amyloid and inclusion body formation
is associated with severe human disorders such as Alzhe-
imer's or Huntington's diseases. The oligomers are cur-
rently thought to constitute the toxic species.

One of the proteins that are often associated with amyloid
formation is α-synuclein. HDX-MS was used to delineate
structural differences between two states of α-synuclein,
the natively unstructured soluble monomer and the aggre-
gated insoluble amyloid [128]. The monomer exchanged
with rates corresponding to an unstructured random coil.
In the amyloid state the long N-terminal and the C-termi-
nal segments remained mostly unprotected while the cen-
tral β-sheet was significantly protected. The protected β-
sheet segments exceeded the length expected for an amy-
loid ribbon and no exposed amides corresponding to the
putative interconnecting turns were observed. These
results indicate that the α-synuclein amyloid adopts a
structure similar to that of amyloid-β [129].

Ovine prion protein oligomerization was investigated by
a combination of size-exclusion chromatography, circular
dichroism and HDX-MS [130]. Three different oligomeric
species were detected and structurally characterized. Sur-
prisingly, HDX detected increased flexibility of certain
regions that were shown to play essential role in aggrega-
tion. The heterogeneity and the increased dynamic charac-
ter of these oligomeric precursors pointed to the existence
of multiple aggregation pathways.

Overexpression and inclusion body formation may facili-
tate high recovery of bioactive protein provided the pro-
tein attains native structure after solubilization [131].
Over-expression and purification from inclusion bodies
was employed to study the cytoplasmic region of tyrosine
kinase-interacting protein (TIP) from Herpes virus
saimiri. Intrinsic disorder was predicted for TIP and con-
firmed by HDX-MS but this did not compromise the
enzyme activity and binding [132].

Protein dynamics and function
Protein function is often intimately linked to protein
dynamics and involves, for example, conformational
changes during enzyme activation or segment immobili-
zation imposed by ligand binding. Conformational
changes require transient population of higher energy
states on the folding landscape and thus they can be
detected by HDX as in the case of folding intermediates
[133-135]. The importance of thermally activated protein
dynamics was demonstrated for a thermophilic alcohol
dehydrogenase by measuring temperature-dependent
HDX rates [136]. The activation energies for HDX rates of
peptides in the vicinity of the NAD+ cofactor and the sub-
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strate binding site underwent two transitions, at 30 and
45°C, respectively. These transitions correlated with
changes in NAD+ binding kinetics and enzymatic activity.

HDX-MS was used for mapping the interactions of pro-
teins with ligands [137,138] and enabled to unravel sub-
tle structural changes in troponin C upon Ca2+ binding.
These changes are important for regulation but escaped
detection by other techniques [139]. The concept is illus-
trated in Fig. 9A–D for binding of nucleotide di- and tri-
phosphates and RNA to the hexameric viral packaging
motor, protein P4 (see above). The exchange of a peptide
fragment originating from the vicinity of the ATP binding
site exhibited slower rate in the presence of ATP or ADP
but is was largely unaffected by RNA binding (Fig. 9B–D)
[114]. Further insight was obtained by computing the dis-
tribution of exchange rates by a maximum entropy
method [140] (Fig. 9C) and by classification of the amide
sites into three groups: fast (exchanged before the first
time point, i.e. 30 sec), intermediate (exchanging on the
time scale of the experiment), and protected (not
exchanged during the whole duration of the experiment,
i.e. 8 h) (Fig. 9D) [114]. The three-class analysis revealed
that reversible ligand binding affected mostly the fast
exchanging amides and provided only partial protection.
This is understandable given that ATP and ADP binding
and dissociation both happen on millisecond-to-second
time scale.

The three-class analysis proved valuable in visualizing
changes in local stability during RNA binding and ATP-
driven translocation by the hexameric packaging motor
P4. HDX information for each peptic fragment was color-
coded and mapped onto the three-dimensional structure.
For each fragment the applied color was an RGB (red-
green-blue) blend which was weighted by the relative frac-
tion of protected (blue), intermediate (green) and fast
(red) amide sites (Fig. 9F). Such representation is superior
to the simple average rate coloring scheme used in Fig. 7
because it contains more information and enables to dis-
tinguish cases in which the average rate is not affected, e.g.
when fast and slow sites shift to intermediate class. The
three-color representation revealed increased flexibility of
the hexamer upon RNA binding (Fig. 9E). During translo-
cation the protein subunits cycle between stable and flex-
ible states and this resulted in purple color of many
regions (purple = blue + red). The only exception is the
interface helix (IH, green) for which the intermediate
exchange is of the EX1 type (see the primary MS data in
Fig. 4) and represents opening of the ring during RNA
loading.

HDX-MS proved extremely useful in uncovering allosteric
activation networks in protein kinases [141,142]. The
extracellular regulated protein kinase-2 (ERK-2) is a MAP

kinase which is activated by phosphorylation. The influ-
ence of phosphorylation on conformational flexibility
was probed by HDX-MS [143]. HDX demonstrated that
phosphorylation induced flexibility in the hinge region
between two domains. Subsequently, conformational
changes upon AMP-PNP binding to the inactive and the
activated (phosphorylated) ERK-2 revealed that the DFG
motif within the catalytic site was stabilized in the pres-
ence of AMP-PNP but only in the active form [144]. Hence
phosphorylation facilitates interdomain closure that is
necessary for the precise alignment between ATP and the
polypeptide substrate.

In another example HDX-MS was used to probe allosteric
activation of coagulation factor VIIa (FVIIa) by a tissue
factor (TF), both of which play essential role in blood clot-
ting [145]. Observed HDX kinetics demonstrated stabili-
zation of the activation domain and the 170-loop in FVIIa
upon TF binding. Interestingly, the two protected regions
are distal to the TF recognition helix within FVIIa
sequence. Comparison of HDX results with molecular
dynamics simulations identified a key interaction
between Leu305 and Phe374 which is likely to transmit
the stabilizing effect from the recognition site to the acti-
vation domain. This is an example in which region spe-
cific HDX was augmented by molecular dynamics
simulations to reach conclusions at atomic level.

Conclusion
It is clear from the above illustrative but largely incom-
plete survey of HDX-MS applications that this method has
gained popularity within the community. As suitable
mass spectrometers become more affordable they will be
acquired by individual labs for dedicated HDX-MS use.
This will generate vast amounts of data and hopefully
stimulate further software developments. However, at the
moment there is no public depository for such a vast
amount of potentially useful data. The results are scattered
throughout literature in various formats which are gener-
ally not amenable to quantitative comparisons and
searches. Therefore, there is an urgent need to develop a
uniform way of how to present and deposit HDX-MS
results and time is ripe to create a fully searchable public
database.

In addition, more advanced instrumentation will enable
developments of new methods and improve sequence
coverage and site-specific resolution by e.g. tandem MS.
Another avenue is to improve the overall throughput by
decreasing the time necessary for data collection by e.g.
lab-on-chip implementation of fully automated proto-
cols. This in turn would significantly enhance temporal
resolution of HDX and enable probing faster, functional
dynamics which is often associated with enzyme action.
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Mapping functional dynamics in the hexamer of P4 from bacteriophage ϕ8 [114]Figure 9
Mapping functional dynamics in the hexamer of P4 from bacteriophage ϕ8 [114]. Mass/charge (m/z) spectra corre-
sponding to the peptic fragment encompassing residues 139–158 (m = 2210.14 Da, z = 3) during H/D exchange (only interval 0 
to 60 min shown). (B) Increase of deuterium content in the peptide (symbols) and the corresponding maximum entropy fit 
(MEM) for P4 alone (black circles, solid line), P4+1 mM poly(C) (blue triangles, dotted), P4 + 1 mM poly(C) + 1 mM ATP (red 
squares, dashed line), P4 + 1 mM poly(C) + 1 mM AMP-PNP (green diamonds, dash-dot-dot) and P4 + 1 mM ADP (cyan 
inverted triangles, dash-dot). Standard deviations (error bars) were estimated from three independent experiments. (C) Rate 
distributions obtained by MEM fitting of data in panel B. The color bar under the panel indicates the three integration regions 
which were used to obtain the number of sites within each rate class (blue = slow/protected, green = intermediate, red = fast/
unprotected). (D) Number of amide sites in the three classes and under different conditions (nucleotide di/triphosphates, RNA 
binding) obtained from data in panel C, bar colors as in panel C. (E) RGB representation of the HDX kinetics for subunit inter-
faces. The two facets (left and right) represent the facing interfaces from the neighboring subunits in a surface representation. 
Bound ATP molecule is shown in yellow ball-and-stick representation. Several regions of interest are delineated: NT-nucle-
otide binding pocket; L2H-loop 2 and α-helix 6 which constitute the moving lever of the motor; IH-interfacial helix which 
becomes transiently exposed during ring opening and RNA loading. (F) Three-color, RGB scale for number of amides exchang-
ing in the three classes.
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These later developments will make HDX-MS valuable
companion to structural genomics.
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