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Abstract: The ability of the skin to “remember” has been a potential mechanism for studying recurrent skin diseases. While it has 
been thought that the ability to retain past encounters is the prerogative of immune cells, it has recently been discovered that skin tissue 
stem cells can also take on this task. Epithelial stem cells undergoing inflammation retain their “memory” through epigenetic 
reprogramming and exhibit rapid epithelialization and epidermal proliferation upon secondary stimulation. This is a non-specific 
memory modality independent of conventional immune memory, in which histone modifications (acetylation and methylation) and 
specific transcription factors (AP-1 and STAT3) are involved in the establishment of inflammatory memories, and AIM2/Caspase-1/IL- 
1β mainly performs the rapid effects of memory. This finding is intriguing for addressing recurrent inflammatory skin diseases, which 
may explain the fixed-site recurrence of inflammatory skin diseases and develop new therapeutic strategies in the future. However, 
more research is still needed to decipher the mysteries of memory. 
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Introduction
The skin has the ability to remember past injuries. However, “memory“ is two sides of the same coin; it plays a protective 
role against trauma and infection, but it can also be the cause of recurrence of inflammatory skin diseases. For example, 
psoriasis and fixed drug rashes, which often recur in the same tissue area.1,2 Understanding and recognizing “mem-
ory“ has always been the focus of the treatment of inflammatory skin disease flares. Previous studies have focused on 
immune cells such as Tissue-Resident T Cells (TRM), Langerhans Cells, and Regulatory T Cells. Some studies have 
demonstrated that the phenomenon of “immune memory” in immune cells is an important factor in the recurrence of 
psoriasis, vitiligo, pemphigus, and atopic dermatitis (AD).3–6 However, the immune memory does not fully explain the 
complex mechanism of skin “memory”. It has been shown that the expression of epidermal structural genes is 
upregulated in the “residual gene profile” of healed psoriasis skin tissues.7,8 These studies show that the role of skin 
tissue cells in “memory” cannot be ignored. In 2017 Naik et al proposed in Nature that epithelial stem cells (EpSCs) 
“remember” primary inflammatory stimuli by maintaining a chromosomal landscape induced during inflammation, and 
that subsequent stimuli exhibit rapid epithelialization and epidermal proliferation, and they termed this phenomenon 
“inflammatory memory”.9 This finding shifts the perspective of skin “memory” from immune cells to epithelial stem 
cells. Recently, more and more studies have focused on the mechanisms of inflammatory memory. Inflammatory memory 
has now been found to be characterized by several features:1) Inflammatory memory is independent of innate and 
adaptive immune memory, and experiments have shown that the rate of healing of skin wounds experiencing inflamma-
tion is enhanced in the absence of immune cells.2) This memory is not specific to a particular type of inflammation, and 
is prevalent in models of psoriasis or atopic dermatitis, as well as in models of sterile wounds or Candida albicans 
infections.3) It is long lasting, at least 6 months in experimental settings. 4) Although long-lived epithelial stem cells 
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have the ability to continuously differentiate, they retain a “memory” that has transgenerational effects. The memory 
effect is only present in localized EpSCs undergoing an inflammatory response and is not transmitted through the 
circulation, and has not been found in distal parts of the skin. 5) The root cause of inflammatory memory is the alteration 
of EpSCs chromatin dynamics after the inflammatory response, which belongs to epigenetic memory. These surprising 
findings hold the promise of unraveling the mystery of skin “memory” from the perspective of skin tissue cells, which 
could become a new target for the treatment of recurrent inflammatory skin diseases. Here, we review the process of 
inflammatory memory discovery and focus on the mechanism of inflammatory memory in epidermal stem cells, which 
will help us to further precise intervention in the future.

What is Inflammatory Memory
Descriptions of inflammatory memory were first found in immune cells, such as the protective effect of macrophages 
experiencing Staphylococcus aureus infection against Candida albicans infection.10 Subsequently, immunological mem-
ory properties for past insults have also been described in monocytes, natural killer cells.11,12 In 2011 Netea et al referred 
to the ability of innate immune cells to retain insult experience to enhance resistance to secondary stimuli as trained 
immunity (or innate immune memory). Presently, it is believed that training immunity occurs by experiencing semi-
specific changes in the number and/or function of inflammatory immune cells, leading to increased resistance to a broad 
spectrum of secondary infectious agents.13 This finding challenges the previous privileging of memory phenotypes as 
adaptive (acquired) immunity and expands the scope of immune memory.

In higher biology, there are two main forms of immune response, innate immunity and acquired immunity. Innate 
immunity is a nonspecific rapid defense mechanism that recognizes conserved pathogens through pattern recognition 
receptors, which are phagocytosed and lysed by innate immune cells (eg, monocytes, macrophages), and which used to 
be thought to lack immune memory.14 Acquired immunity, also known as adaptive immunity, is manifested by the 
formation of a highly specific long-term immune memory in the form of T and B lymphocytes upon recognition of 
a pathogen. Upon a second attack by the same pathogen, a rapid response is induced by clonal expansion of memory 
T and or B cells, which is referred to as classical immune memory.15 And these two types of immunization do not fully 
explain the complex immune mechanisms. For example, Bacillus Calmette-Guérin (BCG)-vaccinated mice are resistant 
to Candida albicans, Mycobacterium tuberculosis.16 The proposal of training immunity complements the explanation of 
this nonspecific cross-protection phenomenon. Unlike classical immune memory mediated by gene rearrangements, 
training immunity relies on epigenetic reprogramming that induces changes in transcriptional programs and belongs to 
the category of epigenetic memory.17 Innate immune cells undergo activation induced by primary stimulation, which 
activates gene transcription accompanied by the acquisition of specific chromatin marks (eg histone modifications). Most 
of these marks persist when the stimulus is removed, leaving the chromatin in a “standby state”, which leads to faster and 
enhanced transcription of genes with specific marks upon secondary stimulation, resulting in altered physiological 
functions of the immune cells. NK cells recovering from CMV virus infection differ from typical NK cells in DNA 
methylation patterns, transcription factor levels, associated gene promoter levels, and at least 30% of the chromatin is in 
a state of significant accessibility, rendering these adaptive NK cells altered in their ability to secrete cytokines.18

Although this ability to respond more rapidly and strongly is attractive, this memory effect in short-lived monocytes 
and macrophages lasts only a few days or weeks, which is in contrast to epidemiologic studies that show that the 
nonspecific anti-infective effects of vaccines such as BCG or measles last for months or even years.19 Some scholars 
have proposed that training immunity may be at the stem or progenitor cell level. Kaufmann et al found that 
hematopoietic stem cells cultured with BCG vaccine produced epigenetically modified macrophages that provided better 
protection against tuberculosis viral infection than initial macrophages.20 De Laval et al reported that after bacterial 
lipopolysaccharide (LPS) exposure, hematopoietic stem cells undergo expansion and myeloid differentiation to acquire 
epigenetic memory and increase protective responses against the Gram-negative bacterium Pseudomonas aeruginosa.21 

This extends the scope of trained immunity to the tissue stem cell level. In 2017 by Naik et al it was proposed that 
epithelial stem cells “trained” by inflammation enhance anti-inflammatory capacity through epigenetic memory, the first 
time a non-immune cell has been found to retain inflammatory memory.7 Subsequently, bronchial epithelial cells, 
microglia, and hair follicle stem cells have also been reported to have inflammatory epigenetic memory.22–24 
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Inflammatory memory mechanisms have been applied to cancer, cardiometabolic diseases, neurodegenerative diseases, 
systemic sclerosis, and vaccine development.25–27

How Inflammatory Memories are Formed
Skin responds to external stimuli through self-renewing epithelial stem cells (EpSCs) by fine-tuning gene expression - 
epigenetic and transcriptional reprogramming - to maintain epidermal homeostasis.28 Epigenetic modifications synergize 
complex mechanisms that regulate chromatin adaptation and regulate heritable changes in gene expression through 
molecular interactions that affect chromosome structure and gene activity with no alterations in DNA sequence.29 Among 
them, microRNAs, histone modifications, and DNA methylation regulate cell differentiation, proliferation, and apoptosis 
in skin tissues.30 Epigenetic modifications play an important role in many inflammatory skin diseases, contributing to 
susceptibility, onset, and progression of inflammatory skin diseases by participating in the inflammatory cascade, 
transcription of pro-inflammatory factors, and establishment of an inflammatory setting.29,31,32 S For example, 
Ghaffarinia et al found in resolved psoriasis lesions that epigenetic mechanisms may be involved in localized recurrence 
34.33 Nedoszytko et al found that the epigenome of AD patients differed from that of healthy individuals in innate 
immunity and epidermal structural protein genes.34

Naik et al used ATAC sequencing (ATAC-seq)—A high-throughput sequencing method for obtaining chromatin 
accessibility at the genome-wide level35—to analyze inflammation’s alteration of the chromatin landscape of epithelial 
stem cells, and found that epigenetic memory exists in post-inflammatory (PI) epithelial stem cells, with >1000 peaks still 
maintaining the accessibility pattern (>44,000 peaks at IMQ induction 6 days).3 Subsequently, Larsen et al built on this 
foundation by further analyzing and clarifying the extent of the memory domains in which epithelial stem cells retain 
chromatin accessibility after an inflammatory response, and defined the regions of chromatin that gained access during 
the inflammatory response and remained accessible after it subsided as memory structural domains.36 Although the 
memory domains remain “on standby”, their genes are rarely transcribed after the inflammatory response subsides. This 
retention of the chromatin-open state after the inflammatory response is a key mechanism for our study of inflammatory 
memory (Figure 1). When trauma was used as a secondary attack, this upregulated 73 (52%) of the 140 genes that were 
upregulated within 12h post-trauma, which were associated with ATAC seq spikes that were acquired and sustained 
during IMQ treatment of inflammation. This suggests that genes associated with the memory domain are rapidly 
transcribed during secondary attacks, which is why we see a rapid and strong response to secondary stimuli, and the 
memory domain is the vehicle that carries the “memories”. Although RNA polymerase II (RNA Pol II) prevents 

Figure 1 Mechanisms of inflammatory memory in epidermal stem cells. Epidermal stem cells undergoing inflammatory stimulation establish epigenetic memory by regulating 
chromatin accessibility through histone modifications (H3K4me1, H3K27ac) and the binding of specific transcription factors (AP-1, STAT3); after inflammation subsides, 
homeostatic transcription factors and JUN are involved in inflammatory memory; and upon secondary stimulation, FOS rapidly bind to the memory domains and reactivate 
transcription.
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transcription and keeps chromatin open, it is not a factor in keeping the memory domains open in the PI state without 
active gene transcription. How then does this memory domain retain chromatin accessibility, and understanding the 
formation of memory domains is key to our solving this mystery.

Upon inflammation triggering, inflammation-associated chromatin undergoes histone modification, which results in 
a “loose” open and interrogable state of inflammation-associated chromatin, followed by the rapid recruitment of 
transcription factors and RNA polymerase II, resulting in the transcriptional expression of the associated genes. Using CIP- 
seq sequencing, it was found that H3K4me1 and H3K27ac are more strongly expressed in enhancers and promoters of 
genes where inflammatory memory domains are located than in non-memory regions, and >90% of memory domains are 
located in enhancers at the site of transcriptional initiation. H3K4me1 and H3K27ac are common histone modifications, 
which are often thought to be reflective of the state of the already open chromatin.37 H3K4me1 is monomethylated on lysine 
(K) residues of histone H3 and is usually highly enriched in chromatin enhancer regions, suggesting that the gene is in an 
initiation state.38,39 H3K27ac is acetylated on the lysine (K) residue of histone H3, and H3K27ac is enriched at promoters 
and enhancers of active transcribed genes, which can form large extensive structural domains, so-called super-enhancers, in 
the intergenic region, suggesting that the gene is in an active state.37 Sahlén et al. By labeling H3K27ac could screen for 
enriched regions of differentially expressed genes and associated transcription factors in psoriasis and AD.40 Histone 
modifications play an important role in the regulation of chromatin state, mainly through the deposition or removal of 
histone modifying enzymes, histone acetyltransferases, and histone kinases dynamically and reversibly regulating the 
expression of chromosomally structurally activated or silenced genes to produce different cellular functions.41

The effects of histone modifications on inflammatory skin diseases are focused on two main areas: immune cells and 
histiocytes.42 The study showed that histone deacetylase (HDAC) is dominantly expressed in epidermal stem cells.30 

Markova et al found that histone deacetylase (HDAC) is involved in the regulation of epidermal differentiation.43 In 
addition, 60% of the regions of genes overexpressed in psoriasis were detected to be significantly enriched for 
H3K27ac.44 Among them, elevated levels of histone acetylation were detected in the promoter region of the IL-17A 
gene (an inflammatory factor characteristic of psoriasis).45 Ovejero-Benito et al found that after treatment with biologics 
H3K27ac and H3K4me1 could be significantly changed in psoriatic lesions.46

After the inflammatory response subsided (PI), histone modifications in most inflammation-associated chromatin 
structural domains (except the memory domain) returned to their original state, the chromatin-accessible state was turned 
off, and most genes ceased transcription. However, the memory domains H3K4me1 and H3K27ac were still highly 
expressed, suggesting that the gene repression state H3K27me3 remained largely unchanged during and after the 
inflammatory response. H3K27me3 is a trimethylated lysine (K) residue of histone H3.39 This suggests that histone 
modifications of memory domain-related genes persist after inflammation subsides. This phenomenon was also observed 
in immune cells.16,47 Long-term persistence of some histone modifications in bone marrow cells observed after removal 
of the initial activating stimulus.48 However, whether histone modifications are responsible for memory domains 
remaining accessible after inflammation subsides, the persistence of histone modifications may reflect the continued 
activation of signaling and transcription factors that control their upstream signaling, in addition to the fact that more 
stable modifications (histone methylation) may be better suited to maintain functional changes than modifications with 
the typical short half-life (histone acetylation).18 These are critical in advancing our understanding of epigenetic 
transcriptional memory.

Transcription factors are also critical in maintaining chromatin in an open state and promoting transcriptional activity, 
binding to a number of histone modifying enzymes, as well as acting as heralds that bind to nucleosomes and directly open 
chromatin,49,50 For example, AP-1 (activator protein-1 is a universally important transcriptional regulator) is required for open 
chromatin formation during T cell activation.51 AP-1 has been shown to be enriched in the inflammatory memory domain of 
hematopoietic stem cells (HSC).21 EpSCs undergoes an inflammatory response many key epidermal transcription factors 
(TFs) are involved in the transcriptional activity of inflammatory genes, like AP-1 (member of Jun, Fos, ATF), AP2γ, KLF5, 
ETS2, GRHL2/3, p63, as well as nuclear factor kB (NF-kB) and STAT1/3 are enriched in inflammation-related genes. 
However, not all of the above transcription factors are involved in the establishment of memory structural domains, in which 
AP-1 (Fos and/or Jun) and STAT3 were identified to be involved in the establishment of memory domains using CUT&RUN 
a high-resolution, high-throughput strategy for reflecting TF-DNA interactions. Both AP-1 and STAT3 are key transcription 
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factors in the development of inflammatory skin diseases, regulating keratinocyte proliferation, differentiation and 
apoptosis.52–54 For example, in several studies it has been shown that AP-1 is an initiator of the etiology of psoriasis.54–57 

More importantly, the finding that AP-1 binds extensively to genes related to the pathogenesis of psoriasis (especially genes in 
terms of histopathological features) was revealed by sequencing techniques in the presence of increased chromatin 
accessibility.58 In addition to psoriasis, AP-1 also plays an important role in AD lesion development.59,60 As the most widely 
studied transcription factor in inflammatory dermatoses, STAT3 is directly involved in the inflammatory response to keratin 
formation. In epidermal keratinocyte-specific Stat3-deficient mice more severe psoriasis-like and AD-like lesions are 
produced.61,62 AP-1 (Jun, Fos member) and STAT3 are strongly expressed during inflammation and are significantly enriched 
and bound in the memory domains, but not C/EBP, NF-kB, p63, MAF, and ETS family members (homeostatic IFs, with 
homeostatic roles in naive EpSCs in the absence of inflammation). If loss of AP-1 or STAT3 severely affects the accessibility 
of the memory domains, global chromatin remains in an accessible state. This suggests that AP-1 and STAT3 are necessary for, 
but not exclusive to, the “opening” of the memory domain. In addition, there is a hierarchical synergy between the two, with 
STAT3 playing a major role in memory domains and FOS-JUN promoting chromatin remodeling and transcription of relevant 
inflammatory response genes. Because in the absence of STAT3, the failure of FOS and JUN to bind and open the memory 
domains not only significantly attenuates chromatin accessibility on the structural domains of memory, but also attenuates the 
sustained transcription of genes hosted by the memory domains in the PI state (eg, genes such as Runx1, Tmprss11g, and 
Tnfaip2, which represent a high level of transcription that remains high long after the inflammation subsides few genes).

After inflammation subsides only JUN remains among the transcription factors STAT3, FOS, and JUN, and the static 
EpSCs TFs (AP1 homologs) ATF3 and P63 bind to the memory structural domain. Surprisingly, while FOS-JUN is 
essential for establishing the memory domain, the other homeostatic transcription factors TFs are sufficient to maintain 
chromatin accessibility. In the absence of JUN ATF3 was still able to bind to the ATF3-binding motifs that are prevalent 
in memory domains, as well as with AFOS (dominant-negative form of FOS), and memory domains remained accessible 
during the PI state. It is suggested that the maintenance of inflammatory memory is a joint effort of multiple homeostatic 
transcription factors, reflecting the complex mechanisms of organismal adaptation.

The Effector Role of Inflammatory Memory
We know that chromatin that opens after an inflammatory response retains the ability to sense tissue damage, so how does it 
function when faced with a secondary attack. This would explain the rapid response of cells experiencing inflammation in 
the face of a secondary attack. Larsen et al found that components involved in the establishment of inflammatory memory 
were not necessary for inflammatory memory to return.36 In other words, the steps and components required for a cell that 
has already experienced inflammation to experience the inflammatory response again are reduced or different. At the time 
of the secondary attack trigger, the memory domain chromatin genes, which are already in the initiation state, express 
H3K4me1 and H3K27ac faster and more intensely, although the transcription factor STAT3 is still expressed, and FOS does 
not need STAT3 to redirect its homologous binding partner JUN to bind significantly to the memory domain-associated 
genes and rapidly activate the transcription of memory-associated genes. In the absence of STAT3, FOS was present in 
wound-edge EpSCs, and memory-related genes remained rapidly upregulated. This identifies a central role for AP-1 (FOS- 
JUN) that not only drives memory establishment and associated gene expression during the inflammatory response, but also 
nonspecifically controls memory return in response to secondary stimuli.

We know that rapid transcription of genes associated with memory domains is key to the protective or pathogenic 
utility of inflammatory memory. These genes are mainly focused on gene motif enrichment related to inflammation- 
regulated cytokine production, regulation of immune system processes, response to peptides, response to TGF beta, 
hematopoietic regulation, regulation of catabolic processes, response to insulin, and regulation of ROS metabolic 
processes. By pathway analysis of fast-response transcripts of memory domain-associated genes containing these 
chromatin elements, it was found that the transcript of the AIM2 gene, the AIM2 inflammatory vesicle, and its 
downstream components, caspase-1 and IL-1β, are central regulators of the memory effects of inflammation.63 And 
after a series of failures to show wound repair advantage using depleted RORC populations, AIM2-deficient mice, and 
AC-YVAD-cmk29 (blocking CASP1) EpSCs, it was determined to show that AIM2 and its downstream effectors, 
CASP1 and IL-1β, are central regulators of the enhanced wound repair response in inflammatory memory skin (Figure 2). 
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AIM2 is strongly expressed in many inflammatory skin diseases and plays a pathogenic role.64 For example, AIM2 is 
a susceptibility gene locus for psoriasis.65 Expression is increased in psoriatic keratinocytes.66–68 And ATAC sequencing 
analysis of skin tissue samples from patients with psoriasis revealed that AIM2 is in chromatin-accessible regions and is 
a direct target of Fra-1 and or activator protein-1.69 In addition, studies have found that caspase-1 and IL-1β are involved 
in the inflammatory response of keratinocytes in psoriasis.55,70 This evidence suggests that the AIM2/Caspase-1/IL −1β 
axis may play an important role in inflammatory skin diseases.71

Prospects
The potent effect of cellular inflammatory memory in skin tissues demonstrates its potential research value in recurrent 
inflammatory skin diseases. However, there are several points that require more research in the future. First, inflamma-
tory memory can last for months in limited experimental designs, whereas how long can the inflammatory memory 
acquired by skin tissue cells last when humans are exposed to a multifactorial and complex environment. This requires 
observational studies in more humans. Secondly, inflammatory memory has two sides, protective and destructive. 
Manipulating “memory“ is a complex challenge, and it is clear that it is not feasible to inhibit or promote it. The 
balance between targeted elimination and selective recall will be more helpful for us to accurately intervene in 
“memory”. Thirdly, we already know that skin “memory” is the result of the joint action of immune cells and skin 
tissue cells, so is the collaboration between the two or is there a sequence. In addition, the maintenance of inflammatory 
memory in skin tissue cells and the rapid response value-added during memory recovery require a large amount of energy 
metabolism, which also has a “memory”, so it can be seen that the skin “memory” is a multi-mechanism interaction of 
the common alliance. “Memory linkage” may be the key to unraveling the skin’s “memory”. Lastly, despite these 
advances, we still have not fully revealed the link between the inflammatory memory phenotype and the corresponding 
signals, especially the possible crosstalk between them. Thus, information on the signals regulating inflammatory 
memory generation is insufficient and there is still a long way to go.

Figure 2 Mechanism of inflammatory memory effects; upon secondary stimulation, due to histone modification and transcription factor binding to keep chromatin in an 
accessible state, memory domain genes are rapidly expressed, of which AIM2 is the main expressed gene, and its downstream AIM2/Caspase-1/IL-1β signaling axis performs 
cell proliferation effects.
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