
Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

 Original Paper 

 Neurosignals 2011;19:75–85 

 DOI: 10.1159/000324507 

 The Type I Inositol 1,4,5-Trisphosphate Receptor 
Interacts with Protein 4.1N to Mediate Neurite 
Formation through Intracellular Ca 2+  Waves 

 Michael J. Fiedler    Michael H. Nathanson 

 Cell Biology Department, Yale University,  New Haven, Conn. , USA 

 Introduction 

 Ca 2+  signals regulate a wide range of functions in neu-
rons, including exocytosis of synaptic vesicles  [1, 2] , exten-
sion of neural growth cones  [3, 4] , and gene transcription 
 [5] . Complex temporal and spatial features of Ca 2+  signals, 
such as Ca 2+  oscillations and waves, are thought to encode 
important signaling information  [6, 7] . The inositol 
(1,4,5)-trisphosphate (IP3) receptor (IP3R) is the principal 
intracellular Ca 2+  release channel in most cells, and the 
expression and subcellular distribution of its isoforms 
regulate Ca 2+  wave formation  [8–10] . This particular Ca 2+  
signaling pattern is thought to be important for neuronal 
processes such as synaptic plasticity  [11] , and non-neuro-
nal processes such as axis formation  [12] , differentiation 
 [13] , motility  [14] , fluid and electrolyte secretion  [15] , and 
epithelial polarity  [16] . However, the mechanisms by 
which IP3Rs are spatially segregated to facilitate Ca 2+  
wave formation are not entirely understood. Protein 4.1N 
is a cytoskeletal associated protein expressed in neurons 
that binds to the type I IP3R (IP3R1), targeting it to the 
subplasmalemmal space  [17, 18] . Moreover, the interac-
tion between protein 4.1N and IP3R1 regulates lateral dif-
fusion of this Ca 2+  channel within neuronal dendrites 
 [19] . The goal of this work was to determine the impor-
tance of this interaction for Ca 2+  wave formation in neu-
rons, and to determine the relevance of these Ca 2+  waves 
for a specific Ca 2+ -mediated event, neurite formation.
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 Abstract 

 Ca 2+  waves are an important mechanism for encoding Ca 2+  

signaling information, but the molecular basis for wave for-

mation and how this regulates neuronal function is not en-

tirely understood. Using nerve growth factor-differentiated 

PC12 cells as a model system, we investigated the interaction 

between the type I inositol 1,4,5-trisphosphate receptor 

(IP3R1) and the cytoskeletal linker, protein 4.1N, to examine 

the relationship between Ca 2+  wave formation and neurite 

development. This was examined using RNAi and overex-

pressed dominant negative binding regions of each protein. 

Confocal microscopy was used to monitor neurite formation 

and Ca 2+  waves. Knockdown of IP3R1 or 4.1N attenuated 

neurite formation, as did binding regions of IP3R1 and 4.1N, 

which colocalized with endogenous 4.1N and IP3R1, respec-

tively. Upon stimulation with the IP3-producing agonist car-

bachol, both RNAi and dominant negative molecules shifted 

signaling events from waves to homogeneous patterns of 

Ca 2+  release. These findings provide evidence that IP3R1 lo-

calization, via protein 4.1N, is necessary for Ca 2+  wave forma-

tion, which in turn mediates neurite formation. 
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  Materials and Methods 

 Mammalian Tissue Culture and Differentiation Conditions 
 PC12 cells were grown in F-12K media (ATCC), 2.5% fetal bo-

vine serum (ATCC), 15% horse serum (ATCC), and 1% penicillin/
streptomycin (Gibco). Cells were differentiated with 7S nerve 
growth factor (100 ng/ � l; Sigma) for 24–48 h. 

  Molecular Biology and Transient Transfections 
 Dominant negative constructs were generated using IP3R1 

and protein 4.1N plasmid constructs  [18, 19] . Primers for the 
IP3R1 dominant negative were: 5 � -GCGCAAGCTTCACCTT-
TGCTGACCTGAG-3 �  and 5 � -GCGCGAATTCCTAGGCCGG-
CTGCTGTGG-3 � . Primers for protein 4.1N were: 5 � -GCGCG-
AATTCTCCAGGCCCACAGAC-3 �  and 5 � -GCGCGGATCCT-
CAGGATTCCTGTGGCTTCTTGTC-3 � . Primers were intro-
duced into a C1-DsRed-Express Vector (Clontech). Silencer �  
Select siRNA (Applied Biosystems) corresponded to IP3R1, pro-
tein 4.1N, IP3R3, or scrambled negative control. PC12 cells were 
transfected using Lipofectamine (Invitrogen). DNA plasmids 
were incubated in PC12 cells for 48 h and RNAi molecules for
72 h.

  Immunoblots 
 Blots were performed as described  [20] . For IP3R1 blots, 35  � g 

of protein lysate was combined with 5 !  loading buffer/ � -mer-
captoethanol in  ! 50  � l and subjected to SDS PAGE electrophore-
sis. Protein 4.1N and IP3R3 blots were done with 100 and 80  � g 
of protein, respectively. For M1 and M5 muscarinic receptor blots, 
100  � g of protein was used. Protein lysate was transferred to 
PVDF membranes then blocked using Tris buffer saline and 0.1% 
Tween-20 plus 5% milk. IP3R1 blots used a rabbit primary poly-
clonal antibody (Upstate) at a concentration of 1:   5,000. Protein 
4.1N and IP3R3 blots used monoclonal primary antibodies (BD 
Biosciences) at a concentration of 1:   1,000. M1 and M5 blots used 
polyclonal antibodies (Novus Biologicals and Abcam, respective-
ly) at a concentration of 1:   400. Blots were visualized by chemilu-
minescence.

  Immunofluorescence and Confocal Microscopy 
 PC12 cells were fixed in paraformaldehyde, then perme-

abilized/blocked with 1 !  phosphate-buffered saline, 0.01% 
Tween-20, 1% bovine serum albumin, and 5% normal goat serum. 
Cells were stained with primary antibodies at a dilution of 1:   100, 
then washed and stained with fluorescently labeled secondary an-
tibodies    [21] . TO-PRO-3 (Invitrogen) was used for nuclear stain-
ing. A Zeiss LSM 510 confocal microscope was used for imaging. 
Scale bar = 10  � m.

  Neurite Quantification 
 Neurites were quantified as described  [22] . Briefly, immuno-

fluorescence images were obtained of fields of nerve growth factor 
(NGF)-stimulated cells. The length of each neurite was measured 
and the number of nuclei was counted. Total neurite length in 
each field was then divided by the number of nuclei in the same 
field to determine average neurite length per cell ( � m/nuclei). At 
least 150 cells were included per experiment and experiments 
were performed in triplicate. For dominant negative studies, only 
transfected cells were counted.

  Ca 2+  Signaling 
 PC12 cells stimulated with NGF for 0, 24, or 48 h were studied. 

Cells were placed in serum-free F-12K media, then loaded with
6  �  M  Fluo-4AM (Invitrogen) and perfused with a Hepes buffer 
while stimulated with 50  �  M  carbachol (CCH, Sigma ca No. 4382) 
and visualized with a Zeiss LSM 510 confocal microscope. Re-
gions of interest (ROIs) in the neurite and soma were analyzed 
using ImageJ. To quantify the delay between Ca 2+  signals in the 
neurite and soma, the percentage of the maximum amplitude in 
the soma was calculated when the amplitude of the signal in the 
neurite was at half-maximum. Between 15 and 30 cells were used 
for each condition.

  Statistics 
 Significance of differences was determined by either Student t 

test or one-way analysis of variance (ANOVA) using GraphPad.
p  !  0.05 was taken to indicate a statistically significant difference.

  Results 

 Expression and Colocalization of IP3R1 and Protein 
4.1N 
 The subcellular distribution of IP3R1 and protein 4.1N 

in neurons was determined through immunolabeling of 
endogenously expressing primary hippocampal neurons 
( fig. 1 A). IP3R1 localized along the dendritic processes of 
these neurons as well as in the soma, but not in the nucle-
us. 4.1N was limited to the periphery of the soma and the 
dendritic processes. IP3R1 and 4.1N strongly colocalized, 
particularly in the dendrites. Expression of these two pro-
teins was examined by Western blot in mouse cerebral 
cortex, PC12, and HEK293 cells ( fig. 1 B). Both IP3R1 and 
4.1N were detected in primary neuronal tissue as well as 
in PC12 cells, a model system for neuronal development 
 [23] . HEK293 cells expressed only IP3R1. Because NGF 
 [14]  mediates the neuronal phenotype of PC12 cells, ex-
pression of IP3R1 and 4.1N was measured at 0, 24, and
48 h of NGF stimulation ( fig. 1 C). Expression of IP3R1 
was similar at each time point, as was 4.1N, consistent 
with previous studies  [24] . To complement these expres-
sion studies, immunofluorescent staining of IP3R1 and 
4.1N was performed at identical time points ( fig. 1 D). Be-
fore stimulation with NGF, IP3R1 and 4.1N colocalized 
along the periphery of PC12 cells, and cells exhibited a 
spherical morphology. At 24 h of NGF stimulation, PC12 
cells adopted a partial neuronal appearance with the de-
velopment of budding neurites. At this time point, IP3R1 
and 4.1N continued to colocalize along the cell periphery. 
After 48 h of NGF stimulation, prominent neurites were 
visualized, which resemble the morphology of primary 
hippocampal neurons. At this stage, the pattern of colo-
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calization between IP3R1 and 4.1N was similar to what 
was observed in neuronal processes in primary neurons. 
Together, these findings suggest that PC12 cells serve as 
a model cell system to investigate the IP3R1/protein 4.1N 
interaction in developing neurons. 

  RNAi Knockdown of IP3R1 and Protein 4.1N, but Not 
IP3R3, Attenuates Neurite Formation 
 To determine the functional significance of IP3R1 and 

protein 4.1N expression and colocalization, RNAi exper-
iments were performed to selectively knock down each 

protein in cells stimulated with NGF for 48 h. Reducing 
IP3R1 expression ( fig. 2 Aii) caused a significant decrease 
in neurite formation ( fig. 2 Aiii). In contrast, mock-trans-
fected cells or cells transfected with scrambled (SCR) 
 siRNA retained neurite processes, with IP3R1 and 4.1N 
(inset, red) localized along the cell periphery and into the 
neuronal extensions ( fig. 2 Ai). To quantify this pheno-
type, total neurite length ( � m) in a 40 !  field was summed 
and divided by the total number of cells (nuclei). Under 
mock and SCR transfection conditions, cells averaged 
46.4  8  7.8 and 40.8  8  2.4  � m neurite length/nuclei, re-
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  Fig. 1.  Localization and expression of IP3R1 and protein 4.1N in 
primary and tissue culture cells.  A  Confocal images of primary 
hippocampal neurons immunolabeled with antibodies against 
IP3R1 and protein 4.1N. Left column: single hippocampal neu-
ron. Right column: dendritic processes only. IP3R1 is localized to 
both the soma and dendritic processes. Protein 4.1N is localized 
along cell periphery and within dendritic processes. Colocaliza-
tion (yellow) shown in the merged image.  B  IP3R1 and protein 
4.1N Western blots from mouse total cortex, PC12 cells, and 

HEK293 cells. IP3R1 is expressed in both neuronal (cortex and 
PC12) and non-neuronal (HEK293) cells but protein 4.1N is not 
expressed in HEK293 cells.  C  Western blot of IP3R1 and protein 
4.1N from PC12 cells 0, 24, and 48 h after NGF stimulation. Ex-
pression of both proteins is similar at each time point.  D  Immu-
nofluorescent images of IP3R1 and protein 4.1N in PC12 cells 0, 
24, and 48 h after NGF stimulation. Regions of colocalization can 
be appreciated in merged images (yellow). Colors refer to the on-
line version only. 
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  Fig. 2.  RNAi knockdown of IP3R1 or protein 4.1N, but not IP3R3, 
attenuates neurite formation.  A  Confocal immunofluorescence 
images, immunoblot, and neurite quantification of PC12 cells 
stimulated with NGF for 48 h and IP3R1 knocked down via RNAi. 
 i  Immunofluorescence images of mock, SCR-transfected, and 
IP3R1 siRNA-transfected (shIP3R1) cells. Under control condi-
tions IP3R1 and protein 4.1N ( inset , red) both localize along the 
cell periphery and in neurites.  ii  Immunoblot of IP3R1 from 
RNAi-transfected cells with  � -tubulin loading control demon-
strates efficacy of knockdown.  iii  Neurite quantification of RNAi-
transfected PC12 cells with units ‘average neurite length ( � m) per 
nucleus’. Average neurite lengths in nontransfected and scram-
ble-transfected cells are 46.4  8  7.8 and 40.8  8  2.4, respectively, 
while cells transfected with shIP3R1 averaged 13.8  8  3.3 ( *  *  p  !  
0.01).  B  Confocal immunofluorescence images, immunoblot, and 
neurite quantification of PC12 cells stimulated with NGF for 48 h 
and protein 4.1N knocked down via RNAi.  i  Immunofluorescence 
images of mock, SCR-transfected, and protein 4.1N siRNA-trans-
fected (sh4.1N) cells. Under control conditions protein 4.1N and 

IP3R1 ( inset ) localize along cell periphery and in neurites.  ii  Pro-
tein 4.1N RNAi Western blot with  � -tubulin used as a loading 
control demonstrates efficacy of knockdown.  iii  Neurite quanti-
fication: mock and SCR-transfected cells yield neurite length val-
ues of 41.0  8  13.3 and 36.0  8  9.0, respectively, while sh4.1N-
transfected cells average 11.5  8  2.2 units of neurite length ( *  p  !  
0.05).  C  Confocal immunofluorescence images, immunoblot, and 
neurite quantification of PC12 cells stimulated with NGF for 48 h 
and IP3R3 knocked down via RNAi.  i  Immunofluorescence im-
ages of mock, SCR, and IP3R3 siRNA-transfected (shIP3R3) cells. 
Under control conditions IP3R3 is localized within soma and 
IP3R1 ( inset ) extends into neurites.  ii  IP3R3 RNAi immunoblot 
with  � -tubulin loading control demonstrates efficacy of knock-
down.  iii  Neurite quantification: mock, scramble, and shIP3R3-
transfected cells have neurite length values of 35.6  8  3.9, 35.9  8  
19.0, and 38.0  8  13.8, respectively (difference not significant; n = 
3, 150 cells assessed per experiment). Colors refer to the online 
version only. 
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spectively. However, under shIP3R1 transfection condi-
tions, cells averaged 13.8  8  3.3  � m neurite length/nuclei, 
a statistically significant reduction (p  !  0.01,  fig. 2 Aiii). 

  Similarly, when protein 4.1N expression is reduced via 
RNAi, neurite formation is impaired ( fig. 2 B). Confocal 
immunofluorescent labeling revealed 4.1N and IP3R1 
(inset, green) localization along cell extensions (mock 
and SCR,  fig. 2 Bi). However, when 4.1N expression was 
decreased ( fig. 2 Bii), neurite formation was dramatically 
inhibited. When quantified, mock- and SCR-transfected 
cells exhibited 41.0  8  13.3 and 36.0  8  9.0  � m neurite 
length/nuclei, respectively, whereas sh4.1N-transfected 
cells averaged 11.5  8  2.2  � m neurite length/nuclei, a sta-
tistically significant reduction (p  !  0.05,  fig. 2 Biii). 

  Neurite formation also was measured in cells with re-
duced expression of IP3 receptor type III (IP3R3), an iso-
form that does not interact with 4.1N  [17] , and does not 
have the same localization pattern as IP3R1 in PC12 cells 
 [25]  ( fig. 2 C). Under mock and SCR conditions, the local-
ization of IP3R3 was within the soma, while IP3R1 (inset, 
green) extended into the neuronal processes ( fig.  2 Ci). 
However, when the expression of IP3R3 was reduced 
( fig. 2 Cii), cells continued to form neurites with no dif-
ference among experimental conditions ( fig. 2 Ciii). Un-
der mock, SCR, and shIP3R3 transfection conditions, 
cells averaged 35.6  8  3.9, 35.9  8  19.0, and 38.0  8  13.8 
 � m neurite length/nuclei (difference not significant, 
 fig.  2 Ciii). These findings illustrate that expression of 
IP3R1 and protein 4.1N, but not IP3R3, are necessary for 
neurite formation. 

  Expression of Soluble IP3R1 and Protein 4.1N Binding 
Regions Attenuates Neurite Formation 
 IP3R1 consists of multiple distinct functional domains 

including the IP3 binding site, internal coupling domain, 
transmembrane/channel domain, and the protein 4.1N 
binding site  [26]  ( fig. 3 A). 4.1N has two major domains, 
the FERM (4.1, ezrin, radixin, moesin) domain, which al-
lows for cytoskeletal targeting, and the IP3R1 binding re-
gion  [18]  ( fig. 3 A). These respective binding regions for 
IP3R1 and protein 4.1N have been characterized previ-
ously and used to uncouple the interaction between these 
two proteins  [17, 19, 27] . The soluble binding region of 
each protein was conjugated downstream of DsRed to 
generate dominant negative fusion proteins. PC12 cells 
transfected with these constructs were differentiated 
with NGF for 48 h to determine the role of the IP3R1/4.1N 
relationship in neurite formation. In cells transfected 
with DsRed alone, red fluorescence was distributed 
throughout the cytoplasm, and protein 4.1N labeling was 

found in its usual location in the neurite process and at 
the cell periphery ( fig. 3 B). In contrast, DsRed conjugated 
to the soluble protein 4.1N binding region of IP3R1 
(DsRed-IP3R1 DN) strongly colocalized with endoge-
nous protein 4.1N along the plasma membrane (yellow). 
This colocalization is consistent with previous findings 
 [18] , and provides evidence that this fragment of IP3R1 
prevents protein 4.1N from targeting endogenous IP3R1 
to the cell periphery. When comparing the morphology 
of cells transfected with DsRed alone to cells transfected 
with DsRed-IP3R1 DN, there was a significant reduction 
in neurite formation in IP3R1 DN-transfected cells. Un-
der DsRed conditions, cells averaged 57.8  8  17.2  � m neu-
rite length/transfected cell, whereas cells transfected with 
the IP3R1 DN averaged 12.2  8  1.6  � m neurite length/
transfected, a statistically significant reduction (p  !  0.01, 
 fig. 3 D). Moreover, neurite formation was normal in non-
transfected cells in close proximity to IP3R1 DN cells, 
providing further evidence that the IP3R1/protein 4.1N 
interaction is important for neurite formation ( fig. 3 B).

  Similar to what was observed in cells transfected with 
the IP3R1 DN, neurite formation was reduced in cells 
transfected with the IP3R1 binding region of protein 
4.1N (DsRed-4.1N DN). In cells transfected with DsRed 
alone, red fluorescence was distributed throughout the 
cell and neurite formation was normal ( fig. 3 C). However, 
when the 4.1N DN was introduced, colocalization of red 
fluorescence and IP3R1 (yellow) was observed and neu-
rite formation was attenuated. Without the FERM do-
main, this protein chimera appeared to ineffectively 
 target IP3R1 to the cell periphery, thus uncoupling the 
endogenous IP3R1/protein 4.1N interaction and redis-
tributing IP3R1 throughout the cytosol. This finding is 
consistent with previous work regarding the localization 
of IP3R1 in association with protein 4.1N  [19] . In quanti-
fying this phenotype, cells transfected with the 4.1N DN 
exhibited 26.1  8  2.2  � m neurite length/transfected cell, 
which is a statistically significant reduction relative to 
DsRed alone, 57.8  8  17.2  � m neurite length/transfected 
cell (p  !  0.05,  fig. 3 D). Together, these dominant negative 
studies provide evidence that the interaction between 
IP3R1 and protein 4.1N is necessary for neurite forma-
tion. 

  Ca 2+  Waves Develop in PC12 Cells Stimulated with 
NGF 
 To understand the functional significance of the 

IP3R1/protein 4.1N relationship, we examined Ca 2+  sig-
naling events during neurite formation. At 0, 24, and
48 h of NGF differentiation, PC12 cells were stimulated 



 Fiedler/Nathanson

 

Neurosignals 2011;19:75–8580

with the IP3-producing agonist CCH, which can induce 
Ca 2+  signals through either nicotinic or muscarinic re-
ceptors  [25, 28] . Both nicotinic- and muscarinic-mediat-
ed signaling events utilize intracellular Ca 2+  stores and 
IP3Rs  [29, 30] . At these time points, expression of varying 
nicotinic receptor subunits shifts considerably, with de-
clining levels of  � 2 and  � 4, and increasing levels of 
 � 3. Despite this, overall function of nicotinic receptors
in PC12 cells does not appear to change in response to 
NGF  [28] . The two PLC-coupled muscarinic isoforms 

 expressed in PC12 cells, M1 and M5  [25, 31] , maintain 
constant expression across all time points (online suppl. 
fig.  1; for all online supplementary material, see www.
karger.com/doi/10.1159/000324507). 

  Prior to treatment with NGF and development of neu-
rites ( fig. 1 D,  4 Ai), stimulation with 50  �  M  CCH resulted 
in a uniform increase in Ca 2+  throughout the cell ( fig. 4 Ai). 
This Ca 2+  signaling pattern was quantified by comparing 
changes in Fluo-4 fluorescence intensity at central and 
peripheral ROIs. The Ca 2+  signals in the central (purple) 
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  Fig. 3.  Soluble protein 4.1N and IP3R1 binding regions function 
as dominant negatives and attenuate neurite formation.  A  Car-
toon diagram of IP3R1 and protein 4.1N with labeled motifs and 
binding domains.  B  Confocal immunofluorescence images of 
PC12 cells stimulated with NGF for 48 h and transfected with 
DsRed alone (left) and IP3R1 dominant negative (IP3R1 DN) 
(right). DsRed alone is distributed diffusely throughout the cell 
and endogenous protein 4.1N localizes along the cell periphery 
and in neurites. Cells expressing DsRed-IP3R1 DN retain a glob-
ular morphology and endogenous protein 4.1N colocalizes with 
the fusion protein at the cell periphery (yellow). Nearby nontrans-
fected cells retain wild-type morphology and protein 4.1N local-
ization.  C  Immunofluorescence images of PC12 cells stimulated 

with NGF for 48 h and transfected with DsRed alone (left) and 
protein 4.1N dominant negative (4.1N DN) (right). DsRed alone 
is diffuse throughout the cell and endogenous IP3R1 is localized 
to both soma and neurites. Cells expressing DsRed-4.1N DN re-
tain a globular morphology and endogenous IP3R1 colocalizes 
with the fusion protein in the cytoplasm (yellow). Nearby non-
transfected cells retain wild-type morphology and IP3R1 local-
ization.  D  Neurite quantification: average neurite lengths were 
57.8        8  17.2, 12.2  8  1.6, and 26.1  8  2.2 in cells expressing DsRed, 
IP3R1 DN, and 4.1N DN, respectively ( *  p    !  0.05;                  *  *  p  !  0.01; n = 
3, 150 cells assessed per experiment). Colors refer to the online 
version only.                 
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or peripheral (red) ROIs were nearly superimposable 
( fig. 4 Aii and online suppl. movie 1). PC12 cells stimu-
lated with NGF for 24 h exhibited a spatially restricted 
wave pattern of Ca 2+  release when stimulated with CCH 
( fig. 4 Bi). Budding neuronal extensions were observed at 
this stage of differentiation and a distinct separation of 
central and peripheral Ca 2+  signals was observed ( fig. 4 Bii 
and online suppl. movie 2). Similarly, PC12 cells stimu-

lated with NGF for 48 h exhibited an even clearer neurite-
to-soma wavelike pattern of Ca 2+  release similar to what 
is observed in neurons, which initiates at the terminal 
end of neuronal extensions and propagates towards the 
soma ( fig. 4 Ci and online suppl. movie 3). At room tem-
perature (21   °   C) and 50  �  M  CCH, these Ca 2+  waves had a 
velocity of  � 25  � m/s, which is consistent with previous-
ly observed kinetics in PC12 cells  [25]  and primary neu-
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  Fig. 4.  Ca 2+  signals in PC12 cells shift from homogeneous to waves 
during NGF differentiation.  A  PC12 cell 0 h after NGF stimulation 
and perfused with 50        �  M  CCH exhibits Ca 2+  signals that are uni-
form throughout the cell.  i  Time lapse confocal images of a repre-
sentative undifferentiated PC12 cell loaded with Fluo-4 and per-
fused with CCH. Signal amplitude was calculated as percent in-
crease relative to baseline fluorescence using the equation  � F = 
100%  !  (F – F o )/F o .            ii  ROI intensities from periphery (red) and 
center (purple) of the cell, plotted against time.  B  Representative 
PC12 cell 24 h after NGF stimulation perfused with 50    �  M  CCH 
exhibits a Ca 2+  wave.  i  Serial confocal images of a partially differ-
entiated PC12 cell perfused with CCH.  ii  ROI intensities from the 

budding neurite (red) and soma (purple) of the perfused cell.
 C  PC12 cell 48 h after NGF stimulation perfused with 50                    �  M  CCH 
exhibits a more pronounced Ca 2+  wave.  i  Serial confocal images 
of a fully differentiated PC12 cell perfused with CCH.  ii  ROI in-
tensities from the budding neurite (red) and soma (purple) of the 
perfused cell. The graph illustrates that the time delay as the Ca 2+  
wave spreads from neurite to soma is more pronounced than in 
the wave detected 24 h after NGF. Each of the three cells shown 
here is representative of what was observed in 15–30 separate cells 
under the same experimental conditions. Colors refer to the on-
line version only.       
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 Fig. 5. Disruption of IP3R1/protein 4.1N interaction by RNAi or 
dominant negative constructs alters Ca   2+  signaling from a wave 
to a uniform pattern.  A  Example of two partially differentiated 
PC12 cells (24 h NGF) expressing DsRed-4.1N DN and perfused 
with 50        �  M  CCH.    i  Serial confocal images of perfused cell display-
ing a homogeneous pattern of Ca                             2+  release.  ii  ROI intensities from 
the budding neurite (red) and soma (purple) of perfused cell, plot-
ted against time. Signal amplitude was calculated as percent in-
crease relative to baseline fluorescence using the equation                        � F = 
100%            !  (F – F o )/F o .  B  Quantification of the amplitude of the Ca 2+  
signal in the soma when the neurite Ca 2+  signal has reached 50% 
of its maximum value in cells transfected with SCR, IP3R1 
(shIP3R1), protein 4.1N (sh4.1N) or IP3R3 (shIP3R3) siRNA. Note 
that the average amplitude in the soma under control conditions 
(SCR and shIP3R3) is  � 10% of its maximum when the neurite 

Ca 2+  signals reaches 50% of its maximum amplitude, whereas 
sh4.1N- and shIP3R1-transfected cells reach an average ampli-
tude in the soma of  � 40% of their maximum when the neurite 
Ca 2+  signal reaches 50% of its maximum ( *  *  *  p  !  0.001).  C  Quan-
tification of the amplitude of the Ca 2+  signal in the soma when the 
neurite Ca 2+  signal has reached 50% of its maximum in cells 
transfected with DsRed, IP3R1 DN, or 4.1N DN. Average ampli-
tude in the soma of cells expressing DsRed alone is  � 10% of its 
maximum when the Ca 2+  signal in the neurite has reached 50% of 
its maximum amplitude, whereas in IP3R1 DN- and 4.1N DN-
transfected cells the average amplitude in the soma is  � 45% when 
the Ca 2+  signal in the neurite has reached 50% of its maximum 
( *  *  *  p  !  0.001).  D  Cartoon diagram depicting functional role of 
IP3R1/protein 4.1N relationship. Colors refer to the online version 
only.     
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rons  [32] . Therefore, in addition to neurite formation, a 
progressive shift in Ca 2+  signaling, from a homogeneous 
to a spatially restricted wave pattern of release, in PC12 
cells was induced by NGF stimulation. This transition 
state offered a framework to assess Ca 2+  signaling pat-
terns during the initial stages of neuronal development. 

  Disruption of IP3R1/Protein 4.1N Binding Changes 
Ca 2+  Signals from a Wave to a Homogeneous Pattern 
in Partially Differentiated PC12 Cells 
 To investigate the functional role of the IP3R1/protein 

4.1N interaction in Ca 2+  wave formation, previously used 
RNAi and dominant negative molecules were introduced 
during CCH perfusion experiments. Transfected PC12 
cells were stimulated with NGF for 24 h to investigate 
cells in their morphological transition state. PC12 cells 
treated with these RNAi or dominant negative constructs 
exhibited homogeneous patterns of Ca 2+  release, rather 
than spatially organized waves ( fig. 5 Ai and online suppl. 
movie 4). Using ROIs in the neurite (red) and somatic 
(yellow) areas of the cell, nearly superimposable patterns 
of Ca 2+  release were observed ( fig. 5 Aii). Under control 
(SCR or IP3R3) RNAi conditions, the Ca 2+  signal in the 
soma reached only  � 10% of its maximum when the sig-
nal in the neurite had reached  � 50% of its maximum 
amplitude ( fig. 5 B: horizontal lines), indicating the sig-
nals are distinct. However, when IP3R1 or protein 4.1N 
expression was reduced via RNAi, the Fluo-4 fluores-
cence intensity in the soma reached  � 40% when the sig-
nal in the neurite had reached  � 50% of its maximum 
amplitude. This finding provides evidence that cells re-
vert to a homogeneous pattern of Ca 2+  release in the ab-
sence of IP3R1 or protein 4.1N ( fig. 5 B: horizontal lines). 
Significant differences in Ca 2+  wave formation were ob-
served between cells treated with SCR versus shIP3R1 
and SCR versus sh4.1N, but not between cells treated with 
SCR versus shIP3R3 ( fig. 5 B). Similar experiments were 
carried out with dominant negative constructs, using 
cells transfected with DsRed alone as a control. In cells 
transfected with DsRed alone, the Ca 2+  signal in the soma 
reached only  � 10% of its maximum when the signal in 
the neurite had reached  � 50% of its maximum amplitude 
( fig. 5 C: horizontal lines). In contrast, in cells transfected 
with either IP3R1 DN or 4.1N DN, the Fluo-4 fluores-
cence intensity in the soma reached  � 45% when the sig-
nal in the neurite had reached  � 50% of its maximum 
amplitude ( fig.  5 C: horizontal lines). Significant differ-
ences in Ca 2+  wave formation were observed between 
cells expressing DsRed alone versus either IP3R1 DN or 
4.1N DN ( fig. 5 C). Taken together, these findings suggest 

that protein 4.1N facilitates the positioning of IP3R1 
along the cell periphery in neuronal tissue, allowing for 
the periphery to serve as the initiation site for Ca 2+  waves 
( fig. 5 D). This in turn suggests a functional role for the 
IP3R1/protein 4.1N relationship. Ca 2+  waves have been 
implicated in several cellular processes, including cell 
proliferation  [33]  and neuronal plasticity  [11] , and the 
current work provides evidence for the molecular basis of 
Ca 2+  wave formation. This work also provides direct evi-
dence that Ca 2+  waves may in turn be responsible for a 
specific downstream event, neurite formation. 

  Discussion 

 IP3R1 is the principal intracellular Ca 2+  release chan-
nel in neurons  [3, 34, 35] . While other Ca 2+  release chan-
nels, such as the ryanodine receptor and IP3R3, are ex-
pressed in neuronal cells  [25] , their role in Ca 2+  wave for-
mation is either minor  [25]  or nonexistent  [33] . However, 
the behavior of IP3R1 is not determined solely by the 
channel itself. A number of binding partners influence 
IP3R1 activity as well as its subcellular distribution. 
Within the endoplasmic reticulum, chromogranin B 
modulates IP3R1 Ca 2+  release by enhancing channel sen-
sitivity  [36]  and determining signal initiation sites  [37] . 
Similarly, in the cytoplasm neuronal calcium sensor 1 in-
creases IP3-mediated channel activity of IP3R1 both in 
vitro and in vivo    [38] . Moreover, the complex relationship 
between these binding partners and IP3R1 has been im-
plicated in neurological disorders including schizophre-
nia and Alzheimer’s disease (chromogranin B), and bipo-
lar disease (neuronal calcium sensor 1)  [39] . Structural 
proteins are also relevant and play a role in IP3R1 local-
ization. Homer1b/c is a membrane-associated protein 
that mediates the relationship between IP3Rs and both 
TRPC1  [40]  and group I metabotropic glutamate recep-
tors  [41] . In linking ER-embedded IP3Rs with plasma 
membrane proteins, gating behavior between internal 
and external Ca 2+  stores can be coordinated, as can sig-
naling cascades necessary for synaptic function. Protein 
4.1N interacts with IP3R1 directly  [42]  and localizes the 
receptor/channel to the subplasmalemmal space  [17–19] . 
Further, while the interacting regions between these two 
proteins have previously been mapped  [27] , a functional 
role for this protein-protein interaction is not known. 
The current study took advantage of these known prop-
erties of IP3R1 and protein 4.1N to demonstrate that their 
interaction results in neurite-to-soma Ca 2+  wave forma-
tion, and that this is associated with neurite development.
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