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Abstract: Lysine (Lys) is essential for skeletal muscle growth and protein synthesis in mammals.
However, the regulatory network underlying Lys-regulated skeletal muscle development is unknown.
To determine whether any cross-talk occurs among mammalian targets of rapamycin complex 1
(mTORC1) and Lys in the regulation of muscle satellite cells (SCs) proliferation, we applied the
treatment rapamycin (a mTORC1 inhibitor) and MHY1485 (a mTORC1 activator) on Lys-added
or -deficient SCs. The results show Lys deprivation significantly decreases SCs viability, protein
synthesis, and cell cycling, increases autophagy and apoptosis, and inhibits the mTORC1 signaling
pathway. Restoration of Lys content significantly attenuates this effect. mTORC1 signaling pathway
activation during Lys deprivation or mTORC1 signaling pathway inhibition during Lys addition
attenuates the effect of Lys deprivation or addition on SCs viability, protein synthesis, cell cycling,
autophagy, and apoptosis. In conclusion, Lys could improve SCs proliferation, and inhibit SCs
apoptosis and autophagy, via the mTORC1 signaling pathway.

Keywords: lysine; satellite cells; proliferation; apoptosis; autophagy; mTORC1 signaling pathway

1. Introduction

Muscle growth is driven by muscle stem cells, which can eventually form the most ba-
sic structures of skeletal muscle. Muscle SCs are mainly found in the basement membrane
and myofibrils of muscle fibers [1]. Skeletal muscle is mostly composed of multinucleated
myofibers after mitosis, and myogenesis is a multistep process that includes activation,
proliferation, differentiation, and formation of multinucleated myofibers in muscle SCs [2].
The mTORC1 signaling pathway plays an important role in skeletal muscle regeneration [3].
mTORC1 consists of mTOR, raptor, mlST8, and two negative regulatory structures, PRAS40
and Deptor, which regulate cell growth by promoting translation, ribosomal biosynthesis,
and autophagy [4]. The phosphorylation of the mTORC1 signaling pathway is necessary
for the proliferation, differentiation, and activation of SCs [5,6]. In addition, insulin-like
growth factor-1 promotes SCs proliferation and reduces autophagy by increasing the phos-
phorylation level of mTORC1 and its downstream proteins [7]. Moreover, overexpression
of muscle blind-like 1 protein inhibits autophagy by regulating phosphorylation levels of
the mTORC1 signaling pathway, reversing the defective proliferation of skeletal muscle
SCs in myotonic dystrophy [8].

Lys is the first limiting amino acid (AA) for most mammals, which could promote
muscle protein synthesis and hypertrophy of muscle fibers [9,10]. Lys could inhibit some
muscle fiber protein degradation through the autophagosome–lysosome system, and
maintain body protein stability [11]. Severe Lys restriction in mice adversely affects both
body growth and the regulation of lipid and nitrogen metabolism [12]. A study shows
that Lys supplementation inhibits autophagic activity and reduces muscle protein loss in
aging mice [13]. Lys deficiency can also contribute to apoptosis [14]. In our previous study,
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supplementation with moderate amounts of Lys increases daily weight gain and improves
skeletal muscle development [15]. Similar to our study, a study shows that Lys deficiency
leads to decreased protein synthesis and diminished cell proliferation in SCs [16]. However,
the potential link between the effect of Lys on muscle growth and the mTORC1 signaling
pathway is unclear.

mTORC1 is a conserved serine/threonine (Ser/Thr) kinase, which is recognized as the
main AA receptor [17]. In recent years, many studies have shown that Lys is an important
signaling molecule and it affects the mTORC1 signaling pathway [18]. Many functions
of the mTORC1 signaling pathway are inferred by the inhibition of the mTORC1-specific
inhibitor rapamycin. As the first clinical mTORC1 inhibitor rapamycin is a natural antibiotic,
it does not directly inhibit mTORC1 activity, but through the formation of complexes with
mTORC1 domains plays the role of an allosteric inhibitor [19]. MHY1485 is a new type
of specific mTORC1 activator of the cellular permeable small molecule. The compound
directly binds to mTORC1, activates mTORC1 at µM concentrations, and significantly
increases its activity [20].

In the current work, we compared our research with previous studies [13–16]. We
investigated the effect of Lys on SCs proliferation, protein synthesis, and the mTORC1
signaling pathway by precisely controlling the level of Lys in the cell culture medium,
and demonstrate the function of the mTORC1 signaling pathway in Lys regulating SCs
metabolism. In addition, we explored the link between autophagy and apoptosis with the
mTORC1 signaling pathway and Lys.

2. Materials and Methods
2.1. Isolation and Identification of SCs

Single muscles were first isolated from the dorsolumbar muscles of 3 day old rabbits
(3 rabbits), excess fat and connective tissue were cut off with ophthalmic scissors, and
the muscles were cut into minced meat and digested in 0.3 mg/mL collagenase I (Sigma,
Aldrich, St. Louis, MO, USA) and 0.25% trypsin–ethylene diamine tetraacetic acid (Trypsin–
EDTA) (Gibco, Carlsbad, CA, USA) for 60 min before the addition of Dulbecco’s modified
eagle medium/F-12 (DMEM/F12, Gibco, Carlsbad, CA, USA) containing 10% fetal bovine
serum (FBS, Invitrogen Corporation, Carlsbad, CA, USA) to terminate the digestion. Tissue
debris with cell suspension was collected by passing the cells through a 70 µm cell sieve,
centrifuged at 1200 rev/min for 8 min at room temperature. The supernatant was then
removed, and the cells were initially resuspended by adding complete medium to obtain a
cell suspension. Cells were suspended in selection medium containing 15% FBS, 10 ng/mL
basic fibroblast growth factor (BFGF), 10 ng/mL epidermal growth factor (EGF), 2 mM/L L-
glutamine, and 1% penicillin–streptomycin in DMEM/F12 (all from Invitrogen Corporation,
Carlsbad, CA, USA). The cell suspensions were inoculated into T25 culture flasks and
cultured at 37 ◦C in 5% CO2 for 2 h. Then, later, the suspensions were transferred onto
new plates, and differential apposition was repeated 3–4 times to remove a large number
of fibroblasts, labeled as P0 generation cells, and SCs started to culture for about 24 h.
The culture was maintained until confluency reached about 80%, and the cells were then
washed twice with sterile phosphate buffer solution (PBS, Gibco, Carlsbad, CA, USA),
dissociated by 0.25% trypsin–EDTA. The cells were passaged onto new plates at a ratio of
1:2. As the number of passages increased, the cells continued to proliferate.

P0 generation cells were inoculated into six-well microplates for immunofluorescence
and induction of differentiation identification. Anti-desmin, anti-myogenic differentiation
(MyoD), anti-paired box 7 (Pax7), and anti-myosin heavy chain (MYHC) were used; all
antibodies came from Cell Signaling Technology (Danvers, MA, USA). Immunofluorescent
detection was performed as previously described [21].

2.2. Effect of Lys on SCs Proliferation, Apoptosis, and Autophagy (Experiment 1)

Cells adhered to the wall after inoculation for 24 h, then starved for 12 h in the medium
without Lys and FBS, and divided into three groups: cultured in the medium with 0.92
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mmol Lys for 120 h (Control, CON); cultured in the medium with 0.02 mmol Lys for 120 h
(Lys deficiency, LD); cultured in the medium with 0.02 mmol Lys for 48 h, and then cultured
in the medium with 0.92 mmol Lys for 72 h (Lys addition, LA). The cell proliferation was
measured at 24, 48, 72, 96, and 120 h, and the cell samples were collected at 120 h (Figure 1).
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Figure 1. Test procedure.

2.3. Function of the mTORC1 Signaling Pathway on Lys Regulating SCs Proliferation, Apoptosis,
and Autophagy (Experiment 2)

Cells adhered to the wall after inoculation for 24 h, and were then starved for 12 h in
the medium without Lys and FBS, and divided into five groups: cultured in the medium
with 0.92 mmol Lys for 120 h (Control, CON); cultured in the medium with 0.02 mmol Lys
for 120 h (Lys deficiency, LD); cultured in the medium with 0.02 mmol Lys for 48 h; and
then cultured in the medium with 0.92 mmol Lys for 72 h (Lys addition, LA); cultured in
the medium with 0.02 mmol Lys for 48 h, and then cultured in the medium with 0.92 mmol
Lys and 1 µM rapamycin for 72 h (Lys addition + 1 µM Rapamycin, LAR); cultured in the
medium with 0.02 mmol Lys for 48 h, and then cultured in the medium with 0.02 mmol Lys
and 1 µM MHY1485 for 72 h (Lys deficiency + 1 µM MHY1485, LDM). Cell proliferation
was measured at 120 h and the cell samples were also collected at 120 h (Figure 1).

2.4. Cell Proliferation Assay

For the Cell Counting Kit-8 (CCK8, Sigma, Aldrich, St. Louis, MO, USA) method,
20 µL of water-soluble tetrazolium salt was added to each well, incubated for 1 h at 37 ◦C
in a constant temperature incubator, and then removed and restored to room temperature.
The OD of each well was measured at 450 nm using a microplate reader (Bio-Rad, Hercules,
CA, USA).

2.5. Flow Cytometry

Cell cycle progression and apoptosis were measured using PI/RNase standing buffer
(BD Biosciences, cat: 550825, New York, NY, USA) and PE Annexin V Apoptosis Detection
Kit I (BD Biosciences, cat: 559763, New York, NY, USA), respectively, with flow cytometry
(BD Accuri C6, BD, New York, NY, USA). The results were analyzed with ModFit LT 5.0
software (5.0.0.0, Verity Software House, San Francisco, CA, USA).

2.6. Western Blotting

Total protein was extracted from SCs using a radioimmunoprecipitation assay (RIPA)
lysis buffer (Beyotime, Shanghai, China), and the protein concentrations were determined
using a bicinchoninic acid assay (BCA) protein assay Kit (Biotechnology, Beijing, China).
The extracted proteins (50 ng/sample) were solubilized in 40 mL of sodium dodecyl sulfate
(SDS) loading buffer (Solarbio, Shanghai, China) and then resolved by electrophoresis (Bio-
Rad, Hercules, CA, USA) on 12.5% SDS-polyacrylamide gel electrophoresis (PAGE) gels
prior to electrophoretic transfer to polyvinylidene fluoride (PVDF) membranes (Millipore,
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Billerica, MA, USA). Standard markers for protein molecular masses were purchased from
Thermo (Waltham, MA, USA). The proteins were closed in fast closing solution at 37 ◦C for
30 min and incubated with primary antibodies at 1:2000 dilution (anti-mTOR; anti-phospho-
mTOR, Ser2448; anti-ribosomal protein S6 kinase I (P70S6K1); anti-phospho-P70S6K1,
Thr389; anti-ribosomal protein S6 (S6); anti-phospho-S6, Ser235/236; anti-eukaryotic trans-
lation initiation factor 4E binding protein 1 (4EBP1); anti-phospho-4EBP1, Ser65; anti-
eukaryotic translation initiation factor 4E (eiF4E); anti-muscle atrophy F box protein (Atro-
gin1); anti-muscle specific finger protein 1 (MuRF1); anti-microtubule-associated protein
1 light chain 3 beta (LC3B); anti-apoptosis-related cysteine peptidase 3 (caspase-3); anti-
tubulin; anti-β-actin; and anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH), all
from Proteintech (Wuhan, China). The membranes were then washed with Tris-buffered
saline containing tween (TBST; Solarbio, Shanghai, China), and incubated with a 1:1000
dilution of a horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG antibody (Be-
yotime, Shanghai, China) at 37 ◦C for 1 h. The proteins were visualized using Beyo ECL
reagents (Beyotime, Shanghai, China) as the reference [22]. The intensity of the bands was
quantified with a Pro Plus 6.0 Biological Image Analysis System.

2.7. Protein Synthesis Assay

To detect protein synthesis, we used a non-radioactive technical method called surface
sensing of translation (SUnSET) [23]. In our study, 1 µg/mL of puromycin (Sigma, Aldrich,
St. Louis, MO, USA) was added to each well, incubated for 40 min, and the total amount
of puromycin incorporated into the peptide chain was assayed using anti-puromycin
(Millipore, Billerica, MA, USA) and Western blotting methods to assess the rate of protein
synthesis. The total protein concentration in the samples was determined using a BCA
protein assay kit.

2.8. Data Analysis

The data were expressed as the mean± SD and analyzed using one way ANOVA with
SAS software. Multiple comparisons between the groups were performed with Tukey tests.
Differences between treatments were considered statistically significant when p < 0.05.

3. Results
3.1. Isolation and Identification of SCs

In the present study, we isolated SCs from 3 day old rabbit dorsal girdle muscles and
identified SCs by the induced differentiation method and immunofluorescence before the
start of the experiment. The results of induced differentiation show that SCs appear as
distinct orange–red lipid droplets after oil red O staining, and SCs successfully differentiate
into adipocytes. The results of immunofluorescence show that almost all anti-desmin,
anti-MyoD, anti-Pax7, and anti-MYHC are co-localized with 4′,6-diamidino-2-phenylindole
(DAPI)-labeled nucleic acids, which is evidence that these cells are SCs (Figure 2).

3.2. Effect of Lys on Proliferation, Apoptosis, and Autophagy in SCs (Experiment 1)

Compared with the control group, the SCs proliferation rate is significantly reduced
between 24 and 120 h of continuous Lys deficiency, which is significantly restored when Lys
is added (p < 0.05) (Figure 3A). The SUnSET detection technique was used to analyze the
change of SCs protein synthesis rate. SCs protein synthesis is significantly inhibited after Lys
deficiency for 120 h (p < 0.05), and significantly recovers with adequate Lys supplementation
(p < 0.05) (Figure 3B). The expression of ubiquitin-related proteins (atrogin-1 and MuRF-1)
is not affected by Lys deficiency and supplementation (p > 0.05) (Figure 3C). Lys content
in the culture medium affects the protein expression related to the mTORC1 signaling
pathway (Figure 3D). The levels of P-mTOR and its downstream proteins P-S6K1, P-S6,
P-4EBP1, and eiF4E in the Lys deficiency group are significantly lower compared with the
control. The addition of Lys in the Lys-deficit medium attenuates the Lys deficiency effect
(p < 0.05).
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Figure 2. SCs identification results and test procedure. (A) SCs lipogenesis is induced for 1 d; (B) SCs
morphology becomes flattened after lipogenesis induction. (C,D) SCs lipogenesis is induced for
14 d; (E,F) SCs lipogenesis is induced after oil red O staining, and intracellular lipid droplets are
stained orange–red; (G) SCs immunofluorescence staining for anti-desmin, anti-MyoD, anti-Pax7,
and anti-MYHC is indicated in green, and nuclei are stained blue with DAPI. Scale bar: 50 µm.
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Figure 3. Lysine deficiency attenuates SCs proliferation, protein synthesis, and phosphorylation
levels of the mTORC1 signaling pathway. (A) Cell proliferation; (B) representative images of cell
protein synthesis levels with Western blotting; (C) representative images of protein ubiquitination
level marker protein atrogin1 and MuRF1 expression levels with Western blotting; (D) representative
images of phosphorylation levels of mTORC1 signaling pathway-related proteins with Western
blotting. * p < 0.05, ** p < 0.01. The data shown represent mean ± SEM of three independent
experiments (n = 3).

After Lys deficiency, the proportion of SCs in resting state/gap one (G0/G1) is signifi-
cantly increased (p < 0.05), and in the second gap/mitotic phase (G2/M) is significantly
decreased (p < 0.05) compared with the control group. Compared with the Lys deficiency
group, the proportion of SCs in G0/G1 is significantly reduced (p < 0.05), and in G2/M
is significantly increased (p < 0.05) in the Lys addition group. Lys level has no significant
effect on cell proportion in the S phase (p > 0.05) (Figure 4A–F).
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(%); (E) G2 phase cell ratio (%); (F) S phase cell ratio (%). * p < 0.05, ** p < 0.01. The data shown
represent mean ± SEM of three independent experiments (n = 3).

After 120 h of Lys deficiency, cell apoptosis rate and apoptotic protein caspase-3
expression in the Lys deficiency group are significantly increased compared with the
control group (p < 0.05). Compared with the Lys deficiency group, cell apoptosis rate and
caspase-3 protein expression decreases in the Lys addition group (p < 0.05) (Figure 5A–E).
The LC3-II/LC3-I protein ratio is significantly increased compared with the control group
(p < 0.05). The LC3-II/LC3-I protein ratio in the Lys addition group is significantly lower
than in the Lys deficiency group (p < 0.05) (Figure 5F).

3.3. Function of the mTORC1 Signaling Pathway on Lys Regulating SCs Proliferation, Apoptosis,
and Autophagy in SCs (Experiment 2)

Proliferation of SCs in the Lys addition + rapamycin group is significantly diminished
compared to the Lys addition group (p < 0.05). MHY1485 treatment in absence of Lys
significantly restores cell proliferation compared to the Lys deficiency group (p < 0.05)
(Figure 6A). Rapamycin treatment in the Lys addition condition significantly decreases SCs
protein synthesis compared to the Lys addition group (p < 0.05). In contrast, MHY1485
treatment in the Lys deficiency condition significantly increases SCs protein synthesis
compared with the Lys deficiency group (p < 0.05) (Figure 6B). Rapamycin treatment in the
Lys addition condition significantly decreases the protein expression of p-mTOR P-S6K1,
P-S6, P-4EBP1, and eiF4E compared with the Lys addition group (p < 0.05). Compared with
the Lys deficiency group, MHY1485 treatment in Lys deficiency significantly increases the
protein expression of p-mTOR P-S6K1, P-S6, P-4EBP1, and eiF4E (p < 0.05) (Figure 6C).
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Figure 5. Lysine deficiency results in increased SCs apoptosis rate, apoptosis marker protein caspase-
3 expression level and autophagy marker protein LC3-II/LC3-I ratio. (A) CON; (B) LD; (C) LA;
(D) apoptosis rate (%); (E) representative images of caspase-3 protein expression levels with Western
blotting; (F) representative images of LC3-II/LC3-I protein ratio with Western blotting. * p < 0.05,
** p < 0.01. The data shown represent mean ± SEM of three independent experiments (n = 3).

Rapamycin treatment in the Lys addition condition significantly increases the cell
ratio in G0/G1, and decreases the cell ratio in G2/M compared with the Lys addition
group (p < 0.05). In contrast, MHY1485 treatment in the Lys deficiency group significantly
increases the cell ratio in G0/G1, and decreases the cell ratio in G2/M compared with the
Lys deficiency group. The rapamycin and MHY1485 treatments have no significant effect
on cell ratio in the S phase (p > 0.05) (Figure 7).

Rapamycin treatment in the Lys addition condition significantly increases apoptosis
rate and apoptotic protein caspase-3 expression compared with the Lys addition group
(p < 0.05). In contrast, the MHY1485 treatment in the Lys deficiency condition significantly
decreases the apoptosis rate and caspase-3 expression compared with the Lys deficiency
group (p < 0.05) (Figure 8A–G). The Lys addition + rapamycin group experiences a sig-
nificant increase in the LC3-II/LC3-I protein ratio compared with the Lys addition group
(p < 0.05). In contrast, the Lys deficiency + MHY1485 group has a significant decrease in the
LC3-II/LC3-I protein ratio compared with the Lys deficiency group (p < 0.05) (Figure 8H).
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Figure 8. mTORC1 signaling pathway is involved in the regulation of apoptosis and autophagy
by lysine. (A) CON; (B) LD; (C) LA; (D) LAR; (E) LDM; (F) apoptosis rate (%); (G) representative
images of caspase-3 protein expression levels with Western blotting; (H) representative images of
LC3-II/LC3-I protein ratio with Western blotting. * p < 0.05, ** p < 0.01. The data shown represent
mean ± SEM of three independent experiments (n = 3).

4. Discussion

In the current study, we investigated the effect of Lys deficiency or addition on SCs
proliferation, apoptosis, and autophagy, and whether the mTORC1 signaling pathway is
involved. Our data demonstrate that (1) Lys deficiency decreases SCs proliferation and
protein synthesis, and induces cell autophagy and apoptosis, which is attenuated when
Lys is added; (2) the activation of the mTORC1 signaling pathway attenuates the effect of
Lys deficiency on SCs proliferation, protein synthesis, autophagy, and apoptosis; (3) the
inhibition of the mTORC1 signaling pathway attenuates the effect of Lys addition on SCs
proliferation, protein synthesis, autophagy, and apoptosis. The results suggest that Lys
stimulates cell proliferation and inhibits cell apoptosis via the mTORC1 signaling pathway
in SCs.

4.1. Lysine Promotes Muscle SC Proliferation

Lys plays an essential role in skeletal muscle growth by acting as a cell signaling
molecule [24]. Similar to our previous study, the role of Lys in promoting skeletal muscle
growth is demonstrated in experiments on animals [25]. However, despite the fact that both
Lys and SCs are essential factors for skeletal muscle growth, the lack of association between
them has been rarely reported. In the current study, we found that cell proliferation is
diminished in Lys deprivation and is restored upon restoration of Lys levels, indicating
that Lys acts as an agonist for cell mitosis [26,27]. This is also confirmed in the results of the
cell cycle assays. The cell cycle of SCs is blocked and cell mitotic activity is diminished in
the condition of Lys deprivation, and the effects are attenuated upon the restoration of Lys
levels. Our results show that Lys deficiency fails to support cells to synthesize proteins in
order to maintain cell proliferation and the cell cycle, causing reduction in cell viability and
cell cycle arrest.
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In addition, there is a large amount of protein synthesis during cell proliferation [28].
We examined the protein synthesis of SCs using the SUnSET method. The results show that
protein synthesis of SCs is significantly inhibited in Lys deprivation, which is attenuated
after Lys restoration. This result is in agreement with a previous study by Sato et al. [11].
Cellular protein accumulation is a dynamic process of synthesis and degradation [29].
Therefore, we also investigated the effect of Lys on the ubiquitination process of cellular
protein degradation. The present results show that Lys deprivation has no significant
effect on SCs expression of atrogin-1 and MuRF-1, which play an important role in the
ubiquitination process. Our results imply that the cellular protein degradation process
may not be affected by Lys content in a culture medium. However, Sato et al. found that
the rates of myofibrillar protein degradation from the isolated rat muscles after fasting are
markedly suppressed after administration of Lys [11]. These conflicting results suggest
that the effect of Lys on cellular protein degradation may be related to cell starvation. Our
study implies that Lys only increases cellular protein synthesis and has no effect on the
degradation process.

4.2. Lysine Deprivation Stimulates Muscle SCs Autophagy and Apoptosis

Apoptosis and autophagy are two forms of programmed cell death [30], but autophagy
and apoptosis are two distinct processes. In general, the occurrence of autophagy activates
the ability of cells to overcome stress and maintain homeostasis in vivo [31]. Autophagy
can counteract apoptosis by creating an environment conducive to cell survival. Light
chain 3 is used as a marker of autophagy because it was identified as the first mammalian
protein localized in the autophagosome membrane [32]. LC3-II is increased by conversion
from type I and the ratio of LC3-II to LC3-I is correlated with the extent of autophagosome
formation [33]. In the current study, we found a significant increase in LC3-II/LC3-I protein
levels of SCs after Lys deprivation, which is attenuated after the restoration of Lys content.
The results suggest that the disruption of cellular AA metabolism after Lys deprivation
leads to enhanced cellular autophagic activity. Intracellular AA levels are maintained
by autophagy. In nutrient deprivation conditions, cells strongly induce autophagy to
compensate for cellular demands and restore the AA pool [34].

In line with a previous study [27], Lys deficiency causes SCs apoptosis. Apoptosis rel-
ative protein (caspase-3) is markedly increased in response to Lys starving [35], which may
mediate cell apoptosis in SCs. These results are in line with the function of high cholesterol,
indicating that high cholesterol induction can elevate the protein expression of caspase-3
and LC3-II, leading to the simultaneous occurrence of apoptosis and autophagy [36]. Con-
troversy remains over the effects between autophagy and apoptosis in previous studies.
Both inhibitory and stimulatory effects of autophagy on apoptosis are reported in studies
of human non-small cell lung cancer, as well as substantial mutual interference between the
proteins that regulate autophagy and apoptosis [37]. In our study, the contrary tendency
of cell autophagy on apoptosis after Lys deprivation implies apoptosis initiation in SCs
when Lys deprivation is caused by cell autophagy. Another possibility is that there are two
processes involved, and not a single cause, which needs further validation.

4.3. Function of mTORC1 Signaling Pathway in Lys Regulating Cell Autophagy, Autophagy, and
Apoptosis in SCs

mTORC1 is a conserved Ser/Thr kinase that is recognized as a major receptor for
AA [38]. mTORC1 integrates a variety of extracellular signals such as nutrients, energy,
and growth factors; participates in biological processes such as gene transcription, protein
translation, and ribosome synthesis; and plays an extremely important role in cell growth
and apoptosis [17]. In our previous study, a stimulative effect of Lys on mTORC1 signaling
pathways in rabbit muscle was found [15], which is in line with the finding in SCs. Our
results show that Lys deprivation inhibiting the mTORC1 signaling pathway decreases the
expression of P-mTOR protein and other downstream proteins (P-S6K1, P-S6, P-4EBP1, and
eiF4E), which is attenuated with Lys addition. The results suggest that the mTORC1 signal-
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ing pathway may be associated with the regulating of Lys in cell proliferation, autophagy,
and apoptosis.

To further determine the potential role of the mTORC1 signaling pathway in SCs dur-
ing Lys-regulated autophagy and apoptosis, the mTORC1 signaling pathway was blocked
by rapamycin treatment in the condition of Lys addition, and the mTORC1 signaling path-
way was activated by MHY1458 treatment in the condition of Lys deprivation. Activation
or inhibition of the mTORC1 signaling pathway attenuates the effect of Lys deprivation
and Lys addition, respectively, on cell proliferation, protein synthesis, and the cell cycle.
Similar to previous studies, activation or inhibition of the mTORC1 signaling pathway
regulates the rate of protein synthesis, which further affects cell proliferation [39,40]. These
results demonstrate that the mTORC1 signaling pathway is essential for Lys mediating the
SCs proliferation involved in numerous processes.

mTORC1 is an important suppressor of autophagy and a regulator of cell metabolism.
The role of the mTORC1 signaling pathway and its involvement in regulation of apoptosis
and autophagy remains controversial [41]. In one study, mTORC1 inhibition reduces car-
diomyocyte apoptosis and promotes cardiomyocyte autophagy by modulating cross-talk
between mTORC1 and endoplasmic reticulum stress pathways in chronic heart failure [42].
In the present experiment, activating the mTORC1 signaling pathway attenuates the stimu-
lative effect of Lys deprivation on apoptosis and autophagy in SCs. Meanwhile, inhibition
of the mTORC1 signaling pathway increases apoptosis and autophagy in SCs in the Lys
addition. These results demonstrate that the mTORC1 signaling pathway is involved in
the process of Lys regulating apoptosis and autophagy in SCs. In the development of
neuromuscular diseases, the occurrence of excess apoptosis increases the loss in muscle
fibers, and in the absence of effective primary treatment, interventions for muscle fiber
apoptosis hold promise for yielding promising therapeutic strategies [43]. The develop-
ment of human aging and muscle disease is often accompanied by loss in muscle mass.
Autophagy is a degradation pathway of macromolecules and organelles during aging and
muscle loss, and maintenance of skeletal muscle mass requires proper induction or accurate
regulation of the autophagic process [44]. In association with the present study, Lys is able
to act as a nutrient for muscle growth, and may play a role in slowing the development of
muscle disease.

5. Conclusions

Our findings demonstrate that Lys improves the proliferation, cellular protein synthe-
sis, and the cell cycle in SCs, and inhibits autophagy and apoptosis. Moreover, the mTORC1
signaling pathway mediates these processes. These effects are ultimately be reflected in the
growth and hypertrophy of skeletal muscle (Figure 9).
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