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Available transcriptomes of the mammalian kidney provide limited information on

the spatial interplay between different functional nephron structures due to the

required dissociation of tissue with traditional transcriptome-based methodologies. A

deeper understanding of the complexity of functional nephron structures requires a

non-dissociative transcriptomics approach, such as spatial transcriptomics sequencing

(ST-seq). We hypothesize that the application of ST-seq in normal mammalian kidneys

will give transcriptomic insights within and across species of physiology at the functional

structure level and cellular communication at the cell level. Here, we applied ST-seq in six

mice and four human kidneys that were histologically absent of any overt pathology. We

defined the location of specific nephron structures in the captured ST-seq datasets using

three lines of evidence: pathologist’s annotation, marker gene expression, and integration

with public single-cell and/or single-nucleus RNA-sequencing datasets. We compared

the mouse and human cortical kidney regions. In the human ST-seq datasets, we further

investigated the cellular communication within glomeruli and regions of proximal tubules–

peritubular capillaries by screening for co-expression of ligand–receptor gene pairs.

Gene expression signatures of distinct nephron structures and microvascular regions

were spatially resolved within the mouse and human ST-seq datasets. We identified
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7,370 differentially expressed genes (padj < 0.05) distinguishing species, suggesting

changes in energy production and metabolism in mouse cortical regions relative to

human kidneys. Hundreds of potential ligand–receptor interactions were identified within

glomeruli and regions of proximal tubules–peritubular capillaries, including known and

novel interactions relevant to kidney physiology. Our application of ST-seq to normal

human and murine kidneys confirms current knowledge and localization of transcripts

within the kidney. Furthermore, the generated ST-seq datasets provide a valuable

resource for the kidney community that can be used to inform future research into this

complex organ.

Keywords: spatial transcriptomics, kidney, human, mouse, cell-cell interactions

INTRODUCTION

The mammalian kidney contains millions of nephrons, each
composed of functional structures including the distal tubule,
the loop of Henle, the proximal tubule, and the glomerulus.
Nephrons are connected to a collecting duct network and
surrounded by stroma andmicrovasculature (1, 2). The nephrons
maintain homeostasis of body fluids, electrolyte and acid–
base balance, and the excretion of metabolic waste products
(3–5). The spatial organization of nephrons facilitates the
homeostatic function of the mammalian kidney. However, to
date, transcriptome studies of normal human and murine
nephrons have utilized bulk RNA-sequencing, single-cell and/or
single-nucleus RNA-sequencing (scRNA-seq/snRNA-seq), which
require manipulation of tissue, including tissue homogenization
or cell dissociation and resulting in the loss of crucial spatial
information (6–13).

Unlike bulk RNA-seq, scRNA-seq, and snRNA-seq, ST-seq
provides crucial spatial information with transcriptome profiling
by integrating histology with RNA-seq within intact tissue (14–
32). Both histological assessment and RNA-seq are completed
sequentially on the same tissue section placed on a glass slide
with printed oligo-dT spots, termed ST-spots (14, 17, 33, 34).
Transcriptomes within the tissue section are captured by the
underlying ST-spots and receive a spatial barcode in the process.
The sequenced ST-spot transcriptomes are subsequently aligned
with the Hematoxylin and Eosin (H&E) image to visualize gene
expression within the intact tissue. Current applications of ST-
seq in mammalian kidneys have been limited to inflammatory
or developmental murine models, with no to minimal studies in
normal/control mouse and human kidneys (6–9).

In this study, we used a commercially available 10x Genomics
ST platform to investigate spatially resolved gene expression
in normal mouse and human kidney tissues. We generated
transcriptional profiles of the mammalian kidney to identify
functional nephron structures and major cell types. Next,
we used the generated ST-seq data to investigate differences
in gene expression and biological processes between cortical
regions of mouse and human kidneys. Last, we predicted cell-
cell interactions within glomeruli and regions of proximal
tubules–peritubular capillaries (PT–PC). We found that the
generated spatial transcriptomic data from normal human and

murine kidneys matched current knowledge and localization of
transcripts. The generated ST-seq datasets are a valuable data
resource for the kidney community to inform future research into
this complex organ.

MATERIALS AND METHODS

Kidney Tissue Samples
Whole mouse kidneys utilized in this ST study were from three
male (8 weeks old) and three female (6 weeks old) C57BL/6J wild-
type mice (Animal Ethics Committee approval UQDI/452/16
and IMB123/18). The mouse kidneys were collected during
tissue harvesting and snap frozen in standard biopsy cryomolds
(Tissue-Tek, Sakura Finetek, United States) with optimum
cutting temperature (OCT) compound (Tissue-Tek). These
freshly frozen adult mouse kidneys were then stored at −80◦C
on site. Cryosections of 10µmwere cut from the mouse samples,
stained with H&E, and confirmed as normal by a Consultant
Pathologist. These samples were subsequently used for ST-seq
with the ST platform (100µm ST-spots; Figures 1, 2A).

We utilized human cortical kidney tissues taken a minimum
of 3 cm away from the tumor margins of four patients that were
matched for comorbidities (2 women, 51–53 years old and 2men,
54 and 56 years old; Table 1). The use of human kidney tissues
was approved by the Royal Brisbane and Women’s Hospital
Human Research Ethics Committee (2002/011). Human kidney
tissue was snap frozen in standard biopsy cryomolds (Tissue-
Tek) with OCT compound (Tissue-Tek). Cryosections of 10µm
were cut from the human kidney samples, stained with H&E, and
confirmed as normal by a Consultant Pathologist. These samples
were subsequently used for ST-seq with the Visium ST platform
(55µm ST-spots; Figures 1, 3A and Supplementary Figure 1A).

RNA Quality
Two 10µm scrolls of tissue were collected in pre-chilled 1.5ml
Eppendorf tubes from each frozen OCT block of mouse whole
kidneys (n = 6) and human cortical kidneys (n = 4). RNA
from each sample was extracted from the cryosectioned scrolls
according to the QIAGEN RNeasy micro kit (Hilden, Germany).
RNA content was quantified according to the Qubit RNA HS
assay kit (Invitrogen, Thermo Fisher Scientific, Singapore) and
the RNA integrity number (RIN) was assessed according to
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FIGURE 1 | A schematic of the workflow for generation and analysis of mammalian kidney ST-seq datasets. (From left to right) We performed ST-seq on four human

kidney cortical tissues (2 women, 51–53 years old and 2 men, 54 and 56 years old) and six mice whole kidneys (3 males, 8 weeks old and 3 females, 6 weeks old).

With the generated ST-seq datasets, we performed clustering and label transfer to define the location of specific nephron segments or regions in human and mouse

kidneys, respectively. We selected the cortical kidney regions in the mouse ST-seq datasets and performed functional analysis on genes that were differentially

expressed between species in the cortex. In the human cortical kidney tissues, we performed multiplexed IF on consecutive deeper sections to correlate the label

transfer annotation of the functional nephron segments with histomorphology. Last, we investigated the CCI by screening for L–R gene pair co-expression in

glomerular and PT–PC ST-spots identified by deconvolution.

the Agilent 2100 Bioanalyzer RNA 6000 Pico assay (Agilent
Technologies, Inc., United States). The measured RINs for all
kidney tissues were >7.

Tissue Optimization
Tissue optimization was performed according to the 10x
Genomics ST Tissue Optimization Manual (version 190219, 10x
Genomics, United States) to determine the ideal permeabilization
time. Frozen 10µm cryosectioned tissue frommouse and human
kidney tissues were utilized for this optimization. The kidney
tissue sections were dried at 37◦C for 1min, fixed in pre-chilled
100% methanol at −20◦C for 30min, and stained in Mayer’s
Hematoxylin (Dako, Agilent Technologies, Inc., United States)
for 5min and Eosin (Sigma–Aldrich Pty. Ltd., Australia) for
2min. Imaging was performed on an Aperio XT brightfield slide
scanner (Leica).

After H&E imaging, the kidney tissue sections were placed in
a permeabilization mix over a range of time points to allow the
mRNA to drop down from the tissue sections and bind to the
oligo-dTs printed on the slide. The captured mRNAs on the slide
surface were then reverse transcribed to fluorescently labeled
cDNA. This fluorescent cDNA signal was imaged on a Leica
confocal microscope (SP8 STED 3X). The ideal permeabilization
time of 12min was determined by comparing both the H&E
and fluorescent images from the tissue optimization slide. This
optimized permeabilization time was utilized for generating
ST libraries for sequencing from mouse and human kidney
tissue sections.

Library Preparation
ST library preparation of the mouse kidney tissues (n = 6)
was performed according to the ST Library Preparation Manual
(version 190219, 10x Genomics, United States). ST library
preparation of the human cortical kidney tissues (n = 4) was
performed according to the Visium Spatial Gene Expression
Reagent Kits User Guide (CG000239 Rev C, 10x Genomics,
United States). In brief, 10µm cryosectioned mouse and human
kidney tissues were placed onto pre-chilled library preparation
slides. The mouse kidneys were multiplexed into two arrays
based on gender (three mouse kidneys per array). Sections of
the human kidney were placed in four separate arrays such
that each patient received an individual array. We placed two
consecutive sections in arrays A and D. Tissue sections were
dried on the slides at 37◦C for 1min, then fixed in pre-chilled
100% methanol at −20◦C for 30min, and stained in Mayer’s
Hematoxylin for 5min and Eosin for 2min. Brightfield imaging
was performed on an Axio Z1 slide scanner (Zeiss). Based on the
shorter (539–683 bp) cDNA libraries generated from the human
cortical kidney tissue sections, we reduced the fragmentation
reaction and the SPRI bead ratio from the manufacturer’s
recommendation. To further remove smaller library insert sizes,
we gel extracted the library preparations for patients A, B, and
C, followed by DNA clean-up according to the Monarch PCR
and DNA clean-up kit (New England BioLabs). All libraries
were loaded at 1.8 pM. Libraries from patients A, B, and C,
and mice kidneys were sequenced using a High output reagent
kit (Illumina). Library from patient D was sequenced using a
Mid output reagent kit (Illumina) on a NextSeq500 (Illumina)
instrument. Sequencing was performed using the following
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FIGURE 2 | Mouse ST-seq consensus labels. (A) H&E images of the mouse kidney tissues from three females and three males. (B, C) The functional cortical and

medullary regions, which were annotated within the mouse ST-seq datasets by a Consultant Pathologist were mapped to the H&E tissue sections and presented in

the UMAP. (D, E) The spatial organization of the KNN clusters was mapped to the H&E tissue images and presented in a UMAP. (F,G) The spatial organization of the

consensus-based label transfer results was mapped to the H&E tissue images and presented in a UMAP, respectively. (H) The spatial organization of the

deconvoluted functional structures was mapped to the H&E tissue images and presented as simple pie charts to demonstrate the proportions.
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TABLE 1 | Patient cohort characteristics.

Patient ID A B C D

Age (years)/ gender (M/F) 51/F 54/M 53/F 56/M

eGFR (mL/min/1.73m2) >90 88 89 86

Serum creatinine (mmol/L) 50 86 68 86

Pathology ccRCC ccRCC ccRCC ccRCC

Metastasis neg neg neg neg

Co-morbidities

Hypertension neg neg neg neg

Smoker neg neg neg yes

Coronary artery disease neg neg neg neg

Peripheral vascular disease neg neg neg neg

Diabetes mellitus neg neg neg neg

Hepatitis B and C neg neg neg neg

Key, ccRCC is clear cell renal cell carcinoma.

protocol: Read1–28bp, Index1–10bp, Index2–10bp, Read2–
120bp.

ST-Seq Data Processing and Mapping
Illumina generated ST-seq libraries were first converted from raw
base call (BCL) files to FASTQ files using bcl2fastq/2.17. Complex
ST-seq libraries were retained and the FASTQ reads were
trimmed of poly-A sequences on the 3’ end and TSO sequences
on the 5’ end using cutadapt/1.8.3 (35). The cleaned FASTQ files
were then mapped by Space Ranger V1.0 (10x Genomics) to
the mouse reference genome and gene annotations (GRCm38–
mm10) or human reference genome and gene annotations
(GRCh38–3.0.0). The captured genes were mapped to the spatial
coordinates across the H&E image obtained during the library
preparation based on the detection of the tissue area and the
alignment to fiducial markings. The multiplexed mouse ST-seq
datasets were extracted to individual tissue sections using Loupe
Browser (v4.0, 10x Genomics, United States).

We collectively detected more than 22,000 genes (GRCm38 –
mm 10) across 1,160 ST-spots within the mouse ST-seq datasets.
The median number of genes per spot ranged from 3,310 to
5,994 while median UMIs captured per spot spanned 10,491–
31,145 (Supplementary Figure 2A). Within the human ST-seq
datasets, we collectively detected over 23,000 genes (GRCh38-
3.0.0) across 4,918 ST-spots. The median number of genes
per spot ranged from 674 to 1,519, while the median unique
molecular identifiers (UMIs) captured per spot spanned from
1,139 to 3,037 (Supplementary Figure 3A).

Spatial Analysis Using a Seurat Analytical
Pipeline
Both mouse and human ST-seq datasets were analyzed using
Seurat v4 (36–39). Preliminary quality control steps involved the
filtration of ST-spots containing more than 50% mitochondrial
genes (mtRNA) or 50% ribosomal genes (rbRNA). No ST-
spots reached this rbRNA threshold. In the mouse ST-seq
datasets, the level of mtRNA expression was consistently below

20% (Supplementary Figure 2B). However, high levels (median
∼ 12–28% total reads) of mtRNA expression were observed
in the human ST-seq datasets (Supplementary Figure 3B).
Thus, we used a threshold to filter only those ST-spots
where mtRNA represented less than 50% of total reads for
the human ST-seq datasets. Visual inspection of the mtRNA
distribution in human kidney tissue sections with filtering
(Supplementary Figures 3C,D) and the mouse kidney tissue
sections with no filtering (Supplementary Figure 2C) showed a
similar mtRNA expression pattern.

The top 2,000 most variable genes across ST-spots were
detected by Seurat and were normalized using Scran before
running principal component analysis (40, 41). Uniform
manifold approximation and projection (UMAP) dimensionality
reduction and clustering were performed using the top 50
principal components (42). Clustering was tested using a range
of resolution values from 0.1 to 1.6, and the highest average
stable resolution value was selected for each sample using the SC3
stability measure from Clustree (43). The generated clustering
results were visualized in both two-dimensional UMAP space
and spatial context mapped over the H&E images.

We performed label transfer in two sequential steps using
a collection of publicly available snRNA-seq and/or scRNA-seq
kidney datasets to predict cell types (Supplementary Tables 1, 2).
This label transfer method projects existing reference datasets
and new datasets with unknown cell types (query) into a
shared low-dimensional space. The equivalent cell types (or
anchor cell types) are arranged in the same neighborhood
thus, allowing for inference of cell types in the new query
datasets from the reference datasets. For each query cell type,
a confidence score (scaled 0 to 1) was calculated based on the
shared neighbor information with the reference cell type. First,
label transfer annotation from mouse scRNA-seq and human
snRNA-seq reference datasets was used to determine high-
confidence ST-spot annotations. In the second round, mouse
and human scRNA-seq reference datasets were used to label
the remaining unlabeled ST-spots (Supplementary Figures 4, 5).
In both rounds, the transfer of cell-type annotations from the
reference to a query ST-spot was made if the confidence score
for the top match was >0.6.

Differential Gene Expression Analysis
Within the Cortical Regions Between
Species
We focused the differential gene expression analysis on the 708
cortical kidney ST-spots in the mouse ST-seq datasets. Raw gene
expression counts were first aggregated by tissue samples to
remove potential technical variation between intra-sample ST-
spots and to account for species as two conditions and samples
as biological replicates (44). The aggregation was performed
using aggregateAcrossCells() function in Scater package and then
normalized by library size, using sample-specific normalization
factors calculated by the function calcNormFactors() in edgeR
package (45, 46). Each tissue sample was treated as pseudo-
bulk data to fit in a gene-wise linear model glmQLFit(), which
estimates quasi-likelihood dispersions across species (conditions)
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FIGURE 3 | Annotation of functional structures within patient D. (A) H&E image and a zoomed-in region of interest (ROI) of the pathologist’s annotation of glomeruli

and large vasculature. (B) The spatial organization of the KNN clusters was mapped to the H&E tissue images, presented in a UMAP and a zoomed-in ROI of

clustering. (C) The spatial organization of the consensus-based label transfer results was mapped to the H&E tissue images, in a UMAP, a simple bar chart, and a

(Continued)
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FIGURE 3 | zoomed-in ROI of consensus-based label transfer. A zoomed-in ROI stained with mIF (red = anti-CD31 for endothelial cells, green = anti-AQP1 for

proximal tubule cells, and blue = DAPI for nuclei) demonstrates the abutting nature of functional structures within the cortical kidney tissue. (D) Further deconvolution

demonstrates the distribution and proportions of functional structures within the cortical kidney tissue which are mapped to the H&E image, presented as a simple pie

chart and a zoomed-in ROI. For the annotation of functional structures within patients A, B, and C cortical kidney tissue, see Supplementary Figure 1.

and samples (biological replicates). We then implemented
empirical Bayes quasi-likelihood F-tests in the glmQLFTest()
function to identify differentially expressed genes (all genes with
an FDR < 0.05 and no log-fold change cut-off).

Deconvolution at the Functional Structure
and Cell-Type Level
Deconvolution compares the expression profile from thousands
of genes detected in each ST-spot to the expression patterns of
cell type–specific marker genes within the reference datasets, to
predict the proportion of different functional structures present
in each ST-spot. We identified the proportion of specific cell
types within each ST-spot using robust cell-type decomposition
(RCTD)—amethod that accounts for technical variation between
different technologies, (47). In both mouse and human ST-seq
datasets, we completed deconvolution to the functional structure
level. In the human ST-seq datasets, we selected the ST-spots that
were deconvoluted at the functional level as glomerular, proximal
tubular, and peritubular capillaries for further deconvolution to
cell-type level to perform cell-cell interaction (CCI) analysis.

StLearn Cell-Cell Interaction Analysis
Within the Human ST-Seq Datasets
Cell-cell interaction analysis was performed using stLea “rn to
predict interactions between spots or within each spot (48).
“Between-spot” mode tests for significantly enriched CCI scores
between any given ST-spot and its adjacent neighbors within the
tissue, while “within-spot” mode tests for significantly enriched
CCI scores within each ST-spot itself as multiple cells could
be present within the each ST-spot. Briefly, there are four
main steps in the CCI analysis. Step 1: CCI identifies cell-
type diversity across the tissue. Step 2: CCI identifies L–R co-
expression (CCI–LR) between or within spots for every ST-spot
underlying the tissue.We used connectomeDB for the human ST-
seq datasets (49). Step 3: The cell-type diversity score CCI–HET
spot and CCI–LR spot score are standardized to unit variance
and multiplied to form composite CCI scores that account for
both cell-type diversity and the level of local co-expression values
for each L–R pair. A high CCI score for an L–R pair indicates
tissue areas that are most likely to harbor active CCI of the pair.
Step 4: A negative binomial model is fitted to a null distribution
of CCI scores calculated for thousands of random pairings of
non-interacting protein–protein pairs. The best fit model is then
used to statistically test for significance of discovering highly
interacting spots, by calculating the probability of observing a
CCI score for a given L–R pair given the null distribution.

Multiplex Immunofluorescence Staining
Consecutive deeper 10µm cryosections from the human cortical
kidney tissues (n = 4) used for ST-seq were placed onto room

temperature SuperFrost Ultra Plus slides (Thermo Scientific,
United States). The tissue sections were then adhered to the slides
by drying for 1min at 37◦C and fixed with pre-chilled 100%
methanol at−20◦C for 30min. Non-Specific binding was blocked
with 10% donkey serum (Merck–Millipore, Burlington, MA,
United States) for 15min. Sections were incubated in a primary
antibody mix comprising anti-endothelial cells (monoclonal
mouse anti-human CD31; Clone JC70A; Dako Omnis) and
anti-Aquaporin-1 (polyclonal rabbit anti-human AQP1 (H-55);
SC-20810; Santa Cruz Biotechnology) for 20min. Fluorescent
labeling was obtained with AlexaFluor-conjugated secondary
antibodies [donkey anti-mouse AlexaFluor PLUS 555 and
donkey anti-rabbit AlexaFluor PLUS 488 (Invitrogen)] and
DAPI (Sigma) incubation for 15 mi. Slides were coverslipped
with a fluorescence mounting medium (Agilent Technologies,
Santa Clara, CA, United States). Imaging was performed on an
Axio Z1 slide scanner (Zeiss) at 20x objective with Cyanine
3 (567 nm), FITC (475 nm), and DAPI (385 nm) fluorescent
channels. Image acquisition and analysis were performed within
ZEN software (ZEN 2.6 lite; Carl Zeiss). Annotation of specific
functional structures seen in the H&E image from the library
preparation slide was compared against the deeper consecutive
multiplexed immunofluorescence image of the human cortical
kidney tissue sections.

RESULTS

Annotation of Cortical and Medullary
Regions in Mouse ST-Seq Datasets
We used the pathologist’s annotation of the functional mouse
kidney regions (Figures 2B,C) to explore and predict functional
nephron regions within the generated ST-seq dataset (38).
Louvain clustering based on the K-nearest neighbor (KNN) of the
ST-spots identified two to three distinct clusters in each sample
(50). ST-spot clusters were thenmapped to theH&E tissue images
to examine the spatial distribution of the resulting clusters.

In female mice, three distinct clusters were mapped to the
cortex and outer medulla, composed of the outer and inner stripe
layers (Figures 2D,E). Within the cortex cluster, an additional
small sub-cluster (Cluster 3 blue) was mapped to the edges
of the tissue sections. This sub-cluster contained hemoglobin
genes in the top 10 significant marker genes, implicating the
presence of accumulated blood (Supplementary Table 3). Both
spatial mapping and UMAP demonstrated colocalization of this
sub-cluster with the cortex cluster (Cluster 0 yellow). Thus, we
have classified them together as a cortex for further analysis.

In male mice, we noted two distinct clusters that mapped
to the cortical and the outer stripe of the outer medulla
(Figures 2D,E). Within the cortex cluster, an additional small
sub-cluster (Cluster 2 green) was mapped to the edges of the
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outer stripe of the outer medulla. We observed that the top
10 significant genes within this sub-cluster contained genes
that mapped to the female mice’s outer stripe of the outer
medulla (Supplementary Table 3). Both spatial mapping and
UMAP demonstrated colocalization of this sub-cluster with the
outer stripe of the outer medulla cluster (Cluster 1 orange).
Therefore, we have classified them together as outer medulla for
further analysis.

We observed that clusters mapped to the cortex contained
marker genes for glomeruli (Nphs2 and Gpx3; padj <0.05).
Clusters mapped to the outer stripe of the outer medulla
contained marker genes for proximal tubules (Acy3 and Aqp1;
padj <0.05). Clusters mapped to the inner stripe of the outer
medulla contained marker genes for the loop of Henle (Egf
and Umod; padj <0.05) (51–53). Subsequent visualization of
the clusters mapped to the H&E tissue images confirmed the
presence of these dominant functional nephron structures in the
mouse kidneys.

After implementing an unbiased clustering approach, we
performed label transfer at the functional structure level to
determine the cellular identities of all ST-spots (54, 55). The
consensus annotations were then mapped to the H&E tissue
images (Figures 2F,G). This consensus-based label transfer
annotated the majority of the ST-spots in the cortex and the
outer stripe of the outer medulla as proximal tubules (Lrp2 and
Slc22a7; padj <0.05) and those in the inner stripe of the outer
medulla as the loop of Henle (Slc12a1 and Umod; padj <0.05;
Supplementary Table 4).

We performed deconvolution at the functional structure
level in the mouse ST-seq datasets. This demonstrated that all
the mouse ST-spots contained multiple functional structures
(Figure 2H). Deconvolution within the ST-spots overlying the
cortical regions detected a higher proportion of proximal tubule
signatures and a lower proportion of glomerular signatures.
Re-examination of the clusters mapped to the cortical region
confirmed the expression of proximal tubule marker genes (51,
52).

Annotation of Functional Structures Within
the Human ST-Seq Datasets
We performed similar identification of functional structures,
their transcriptional signatures, and spatial locations within the
human cortical ST-seq datasets using Seurat clustering and label
transfer (38). We initially defined the spatial organization of
the human cortical kidney by performing Louvain clustering
based on KNN to identify ST-spots with distinct transcriptome
profiles. We mapped these cluster identities to the H&E tissue
images (Figure 3B; Supplementary Figure 1B). For patient A,
two clusters were mapped to the glomerular and mixed cortical
renal parenchyma ST-spots. For patients B–D, three clusters were
mapped to the glomerular, tubules, and mixed cortical renal
parenchyma ST-spots. We observed that clusters mapping to
the glomerular ST-spots contained marker genes for podocytes
(PODXL and NPHS2; padj <0.05; Supplementary Table 5) (51,
52). Clusters mapping to the tubules contained marker genes
for proximal tubules (LRP2 and GPX3; padj <0.05) (51, 52).

Concurrent assessment of the mapped clusters to the H&E tissue
images revealed that glomeruli were the dominant functional
nephron structures overlying the ST-spots.

We performed label transfer at functional structure level to
determine the cellular identities of all ST-spots (Figure 3C;
Supplementary Figure 1C) (6, 12). We found that the
consensus-based label transfer resulted in the identification
of collecting ducts (AQP2 and ATP6V0D2; padj <0.05), distal
convoluted tubules (SLC12A3 andDEFB1; padj <0.05), glomeruli
(PODXL andNPHS2; padj <0.05), immune cells (IL7R and CD86;
padj <0.05), interstitium (COL1A2 and COL3A1; padj <0.05),
loop of Henle (UMOD and SLC12A1; padj <0.05), proximal
tubules (SLC22A8 and ALDOB; padj <0.05) and vessels (TAGLN,
MYH11, and ELN; padj <0.05; Supplementary Table 6).

The consensus-based label transfer identified the primary
functional structure within the cortical human kidney tissue
as proximal tubules. We independently validated this result
by comparing the cortical functional structures annotated by
label transfer to the pathologist’s annotation of the H&E images
and multiplexed immunofluorescence (mIF) staining (Figure 3,
Supplementary Figure 1). The label transfer, pathologist’s H&E
annotation, and mIF staining collectively identified glomeruli,
vessels, and proximal tubules in the normal human cortical
kidney tissues.

Differential Expression Within Cortical
Kidney Regions Between Species
We compared gene signatures between human and mouse
cortical kidney regions by identifying differentially expressed
(DE) genes between the ST-seq datasets in humans and mice.
Considering that the human ST-seq datasets comprised only
cortical kidney, we used the pathologist’s annotation to select the
cortical kidney regions within the mouse ST-seq datasets. We
identified 11,997 orthologous genes among the cortical kidney
genes in the mouse ST-seq datasets (Supplementary Figure 6).
After integration and removal of lowly expressed genes, 10,830
genes shared across the cortical kidney regions were used to test
for DE genes and to assess functional and biological processes
that vary between the species (Supplementary Table 7). In brief,
we found 7,370 DE genes (FDR <0.05; no log-fold change
cut-off) between human and mouse cortical kidney regions
(Figure 4A). Examination of the top 20 DE genes showed
high consistency across biological replicates and their distinct
expression profiles between humans and mice (Figure 4B).
The cortical location of the top 20 DE genes was further
validated by their expression within cortical kidney cells in
the Kidney Cell Explorer scRNA-seq database (https://cello.
shinyapps.io/kidneycellexplorer/) and the Kidney Interactive
Transcriptomics sn/scRNA-seq database (http://humphreyslab.
com/SingleCell/, Supplementary Table 8) (56–58). We tested
functional enrichment among all the significant DE genes,
within Biological Processes Gene Ontology (GO:BP) terms
(Figure 4C). We examined the top 20 GO:BP terms with
the most significant p-values. In human cortical tissues, the
most statistically significant GO:BP terms were associated with
structural maintenance (Supplementary Table 9). In contrast,
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FIGURE 4 | Cortical kidney genes differentially expressed between species. (A) A simple pie chart demonstrates the proportion of statistically significant DE genes

identified within each species. (B) The top 20 DE genes between species are presented as a heat map. (C) Within mice and humans, the top 10 statistically significant

Gene Ontology Biological Processes.
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FIGURE 5 | Integrative analysis of glomerular morphology, deconvolution, and cellular interactions in patient D. To confirm the morphology of glomerular functional

structures, we investigated H&E and mIF images within a selected glomerulus. (A) Zoomed-in H&E image of the selected glomerulus annotated by the pathologist. (B)

Anti-CD31 (red) immunofluorescence staining confirms the presence of endothelial cells and validates the pathologist’s glomerular annotation. Next, we visualized the

ST-spots underlying the glomerulus. (C) The positions of the eight underlying ST-spots were mapped within the selected glomerulus. To perform deconvolution, we

selected the ST-spots identified by label transfer as glomeruli. (D) Deconvolution at the functional structure level for the selected glomerulus was mapped to the H&E

image. The pie chart provides a summary of functional structures underlying all glomerular ST-spots in the entire tissue section for patient D. (E) Deconvolution at a

cell-type level for the selected glomerulus was mapped to the H&E image. The pie chart provides a summary of the cell types underlying all glomerular ST-spots in the

entire tissue section for patient D. Finally, we investigated our ST-seq datasets for cellular interactions in glomerular ST-spots. (F) The spatial expression of the

(Continued)
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FIGURE 5 | NPNT-ITGA8 L–R gene pair for the selected glomerulus was mapped to the H&E image. (G) A diagrammatic presentation of parietal epithelial, podocytes,

endothelial, and mesangial cells that form the functional glomerular structures in mammalian cortical kidney regions. (H) The cellular interaction involved in extracellular

matrix maintenance within the glomerulus for integrin receptor ITGB1 was mapped between the glomerular cell types.

the most statistically significant GO:BP terms were associated
with energy production and metabolic processes in mouse
cortical regions (Supplementary Table 10).

Cell-Cell Interaction Within and Between
ST-Spots Containing Glomeruli in Human
ST-Seq Datasets
Functional structure level deconvolution results were used
to select the ST-spots that contained glomerular structures
(Figure 5). In these selected glomerular ST-spots, we further
deconvoluted to cell-type level and found that podocytes,
mesangial, endothelial, and parietal epithelial cells were
the major cell types. We identified co-expression of 330
L–R gene pairs within and between glomerular ST-spots
(Supplementary Table 11). We selected the top 40 L–R gene
pairs identified as the most statistically significant (padj <0.05)
within and between glomerular ST-spots (Table 2) (57–61).
We identified 23 L–R gene pairs involving integrin receptors
ITGA3, ITGAV, ITGA8, ITGB1, ITGB5, and laminin receptor
RPSA within the extracellular matrix maintenance group. We
identified five L–R gene pairs with co-expression of vascular
endothelial growth factor VEGF-A, KDR, and FLT1 within the
angiogenic regulation group. Additional novel L–R gene pairs
FGF-NRP1, THBS1-SDC4, and ANXA2-ROBO4 are non-VEGF
L–R pairs, identified within the angiogenic regulation group and
previously shown to regulate and maintain the microvasculature
within glomeruli (62–65). We identified six L–R gene pairs
with co-expression of Human Leukocyte Antigens (HLA-A,
HLA-B, and HLA-F) ligands, Amyloid beta Precursor Protein
(APP), Macrophage migration Inhibitory Factor (MIF), and
Megalin (LRP2) within the immune and endocytic activity group.
Additional novel L–R gene pairs GRN-SORT1 and TIMP1-CD63
identified within the immune and endocytic activity group are
known L–R pairs within the nervous system but novel within the
glomerular structure (66–68).

CCI Within and Between ST-Spots
Containing Proximal Tubules–Peritubular
Capillaries in Human ST-Seq Datasets
We extended the CCI investigation to ST-spots containing
PT–PC to investigate potential cross-talk within and between
these cell types. To perform this analysis, we selected human
ST-spots that after deconvolution was annotated to contain
proximal tubule cells plus endothelial cells, but not annotated as
glomerular endothelial cell types (Figure 6). Again, we tested the
>2,000 L–R pairs curated in the connectomeDB2020 database,
using stLearn CCI analysis with both within and between
spots (48). We identified significant co-expression of 170 L–R
gene pairs in PT–PC ST-spots (Supplementary Table 11). We
selected the top 20 L–R gene pairs identified as statistically
significant (padj <0.05) within and between PT–PC ST-spots

(Table 3) (57–61). We identified six L–R gene pairs with co-
expression of LRP2, APP, Low-Density Lipoprotein Receptor
(LDLR), and TIMPMetallopeptidase Inhibitor 1 (TIMP1) within
the transportation and signaling group. We identified eight L—
R gene pairs with co-expression of Integrin (ITGB1, ITGB5, and
ITGAV), CD44 molecule, and Epithelial Cell Adhesion Molecule
(EPCAM) within the adhesion group. We identified four L–
R gene pairs with the co-expression of HLA and MIF within
the immune modulation group. Finally, within the angiogenic
regulation group, we identified two L–R gene pairs with the co-
expression of Thrombospondin 1 (THBS1) and Syndecan (SDC1
and SDC4).

DISCUSSION

Available transcriptome profiles of normal nephrons have
utilized bulk and/or scRNA-seq/snRNA-seq methods requiring
the manipulation of tissue, including tissue homogenization
or cell dissociation, resulting in the loss of crucial spatial
information. In this study, we performed ST-seq to resolve
gene expression within intact normal tissues of six mice and
four human kidneys. We captured more genes and reads in
the mouse kidneys (median genes 3,310–5,994 and median
reads 10,491–31,145) compared to human kidneys (median
genes 674–1,519 and median reads 1,139–3,037). Within the
captured ST-seq datasets, we defined the spatial location of
specific nephron segments, compared DE genes between species,
and spatially mapped the putative cellular communication
occurring in glomerular and PT–PC regions in the human ST-
seq datasets.

In the mouse ST-seq datasets, we defined the functional
regions with KNN clustering to the cortex and the outer and
inner stripes of the outer medulla regions. We confirmed the
cluster identities by marker gene expression and found a direct
correlation with the pathologist’s annotation. However, label
transfer–based annotation of the functional nephron regions
using publicly available mouse scRNA-seq datasets identified
only two distinct clusters (54, 55). The outer stripe of the
outer medulla was indistinguishable from the cortical layer
in female and male mice kidneys. We attributed this curious
result to the large ST-spot size and the small size and
dense assembly of cortical functional structures, such as the
proximal tubules, in mouse kidneys. To address the latter,
we performed deconvolution with the mouse ST-seq datasets
and found multiple functional structures within all 100µm
ST-spots. Furthermore, deconvolution within both the cortex
and the outer stripe of the outer medulla identified a higher
proportion of proximal tubule signatures—a stochastic variation
noted by other transcriptome studies (51, 178, 179). Therefore,
we conclude that the discrepancy between cluster and pathologist
annotation against the label transfer annotations occurred due to
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FIGURE 6 | Integrative analysis of PT–PC morphology, deconvolution, and cellular interactions in patient D. To confirm the morphology of PT, we investigated H&E

and mIF images within an ROI. (A) Zoomed-in H&E image of PT was annotated by the pathologist. (B) mIF staining with anti-AQP1 (green) demonstrates proximal

tubules, anti-CD31 (red; white arrowheads) demonstrates peritubular capillaries, and DAPI (blue) demonstrates nuclei. The mIF staining confirms the presence of PT

and PC structures and validates the pathologist’s annotation. (Note: yellow arrowhead denotes tubular patterned DAPI staining with an absence of anti-AQP1

indicating the presence of non-PT structures). (C) The positions of eight underlying ST-spots were mapped within the selected ROI. To perform deconvolution, we

selected the ST-spots identified by label transfer as PT. (D) Deconvolution at the functional structure level for the selected eight PT ST-spots was mapped to the H&E

image. The pie chart provides a summary of functional structures underlying all PT ST-spots in the entire tissue section for patient D. (E) Deconvolution at the cell-type

level for the selected eight PT ST-spots was mapped to the H&E image. The pie chart provides a summary of the cell types underlying all PT ST-spots in the entire

tissue section for patient D. Finally, we investigated our ST-seq datasets for cellular interactions in PT–PC ST-spots. (F) The spatial expression of the APOE-LRP2 L–R

gene pair for the selected PT was mapped to the H&E image. (G) A diagrammatic presentation of PT epithelial cells and PC endothelial cells within mammalian cortical

kidney regions. (H) The cellular interactions involved in immune modulation within PT–PC cells were mapped. Functional structure level key: Ves—vessels,

PT—proximal tubules, LoH—loop of Henle, Int—interstitium, Imm—immune cells, Glom—glomeruli, DCT—distal convoluted tubule, CT—connecting tubule, and

CD—collecting duct. Cell-type level key: PT—proximal tubule cell, sPT—proximal straight tubule cell, PC—principal cell, Pod—podocytes, PE—parietal epithelial cell,

NKT—natural killer T-cell, Mono—monocytes, Mes—mesangial cell, Int—interstitium, Endo—endothelial cell, DCT —distal convoluted tubule cell, CDint - collecting

duct intercalated cell and B—B cell.
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TABLE 2 | CCI identified within and between glomerular ST-spots.

Extracellular matrix maintenance

CALR- ITGA3 CALR- ITGA3 CALR- ITGA3 CALR- ITGA3 (69–71)

TIMP2-ITGA3 TIMP2-ITGA3 TIMP2-ITGA3 TIMP2-ITGA3 (72–74)

THBS1-ITGA3 THBS1-ITGA3 THBS1-ITGA3 THBS1-ITGA3 (75–77)

SPP1-ITGAV SPP1-ITGAV SPP1-ITGAV SPP1-ITGAV (78)

CALR- ITGAV CALR- ITGAV CALR- ITGAV CALR- ITGAV (71, 79)

CX3CL1- ITGAV CX3CL1ITGAV CX3CL1- ITGAV CX3CL1- ITGAV (80–82)

COL4A1-ITGAV COL4A1-ITGAV COL4A1- ITGAV COL4A1- ITGAV (83, 84)

COL4A3- ITGAV COL4A3- ITGAV COL4A3- ITGAV COL4A3- ITGAV (85, 86)

NPNT- ITGA8 NPNT- ITGA8 NPNT- ITGA8 NPNT- ITGA8 (79, 87–90)

SPP1-ITGB1 SPP1-ITGB1 SPP1-ITGB1 SPP1-ITGB1 (79, 91–95)

TIMP2- ITGB1 TIMP2- ITGB1 TIMP2- ITGB1 TIMP2- ITGB1 (73, 74)

NPNT- ITGB1 NPNT- ITGB1 NPNT- ITGB1 NPNT- ITGB1 (79, 90, 96, 97)

COL18A1- ITGB1 COL18A1- ITGB1 COL18A1- ITGB1 COL18A1- ITGB1 (98–100)

LGALS1- ITGB1 LGALS1- ITGB1 LGALS1- ITGB1 LGALS1- ITGB1 (101, 102)

THBS1- ITGB1 THBS1- ITGB1 THBS1- ITGB1 THBS1- ITGB1 (103, 104)

LGALS3BP- ITGB1 LGALS3BP- ITGB1 LGALS3BP-ITGB1 LGALS3BP- ITGB1 (102, 105)

COL4A1-ITGB1 COL4A1-ITGB1 COL4A1-ITGB1 COL4A1-ITGB1 (86, 106)

HSPG2-ITGB1 HSPG2-ITGB1 HSPG2-ITGB1 HSPG2-ITGB1 (107–109)

TGM2- ITGB1 TGM2- ITGB1 TGM2- ITGB1 TGM2- ITGB1 (110, 111)

VCAM1- ITGB1 VCAM1- ITGB1 VCAM1- ITGB1 VCAM1- ITGB1 (112–114)

SPP1- ITGB5 SPP1- ITGB5 SPP1- ITGB5 SPP1- ITGB5 (115, 116)

THY1- ITGAV THY1- ITGAV THY1- ITGAV THY1- ITGAV (117, 118)

LAMB2- RPSA LAMB2- RPSA LAMB2- RPSA LAMB2- RPSA (119, 120)

Angiogenic regulation

TIMP3-KDR TIMP3-KDR TIMP3-KDR TIMP3-KDR (121–123)

VEGF-A-FLT1 VEGF-A-FLT1 VEGF-A-FLT1 VEGF-A-FLT1 (121, 124–126)

VEGF-A-NRP1 VEGF-A-NRP1 VEGF-A-NRP1 VEGF-A-NRP1 (121, 125, 127, 128)

VEGF-A-KDR VEGF-A-KDR VEGF-A-KDR VEGF-A-KDR (121, 125, 126, 129)

COL18A1-KDR COL18A1-KDR COL18A1-KDR COL18A1-KDR (121, 130)

FGF1-NRP1 FGF1-NRP1 FGF1-NRP1 FGF1-NRP1 (128)

THBS1-SDC4 THBS1-SDC4 THBS1-SDC4 THBS1-SDC4 (63, 64, 131)

ANXA2-ROBO4 ANXA2-ROBO4 ANXA2-ROBO4 ANXA2-ROBO4 (65, 132)

Immune and endocytic activity

APP-CD74 APP-CD74 APP-CD74 APP-CD74 (133–137)

APP-NCSTN APP-NCSTN APP-NCSTN APP-NCSTN (136, 138, 139)

MIF-CD74 MIF-CD74 MIF-CD74 MIF-CD74 (140, 141)

HLA-A-APLP2 HLA-A-APLP2 HLA-A-APLP2 HLA-A-APLP2 (136, 142–144)

HLA-B-CANX HLA-B-CANX HLA-B-CANX HLA-B-CANX (144–146)

HLA-F-B2M HLA-F-B2M HLA-F-B2M HLA-F-B2M (144, 147)

GRN-SORT1 GRN-SORT1 GRN-SORT1 GRN-SORT1 (68, 148, 149)

TIMP1-CD63 TIMP1-CD63 TIMP1-CD63 TIMP1-CD63 (150–152)

APOE-LRP2 APOE-LRP2 APOE-LRP2 APOE-LRP2 (153–155)

Key, L-R presence indicated by back text and absence indicated by the gray text.

The literature-based locations of the top 40 glomerular L–R gene pairs were confirmed in sc/snRNA-seq datasets, as an expression within glomerular cell types. In particular the

sc/snRNA-seq datasets within the Kidney Interactive Transcriptomics [Healthy Adult Kidney - Epithilia (57), Healthy Mouse Dataset (58), Human Diabetic Kidney (59), and Human Kidney

snRNA/ATAC-seq (60), and The Human Nephrogenesis Atlas (Human week 14 scRNA-seq) (61) were utilized.
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TABLE 3 | CCI identified within and between proximal tubule and endothelial

ST-spots.

Transportation and signaling

APOE-LRP2 APOE-LRP2 (156)

APP-CD74 APP-CD74 (133)

ALB-LRP2 ALB-LRP2 (157)

APOE-LDLR APOE-LDLR (158)

SERPINE1-LRP2 SERPINE1-LRP2 (159)

TIMP1-CD63 TIMP1-CD63 (160, 161)

Adhesion

THBS1-ITGB1 THBS1-ITGB1 (162, 163)

COL18A1-ITGB1 COL18A1-ITGB1 (130, 164, 165)

PLG-ITGB1 PLG-ITGB1 (166)

SPP1-ITGB5 SPP1-ITGB5 (167)

SPP1-ITGB1 SPP1-ITGB1 (94, 168)

SPP1-ITGAV SPP1-ITGAV (92, 169)

SPP1-CD44 SPP1-CD44 (170)

EPCAM- EPCAM EPCAM- EPCAM (171)

Immune modulation

HLA-B-CANX HLA-B-CANX (146, 172)

HLA-A-APLP2 HLA-A-APLP2 (143, 173, 174)

MIF-CD74 MIF-CD74 (175)

HLA-ERBB2 HLA-ERBB2 (163)

Angiogenic regulation

THBS1-SDC1 THBS1-SDC1 (64)

THBS1-SDC4 THBS1-SDC4 (64, 176, 177)

The literature based location of the top 20 PT-PC L–R gene pairs were confirmed in

sc/snRNA-seq datasets, as an expression within proximal tubule (segments 1, 2, and 3),

peritubular capillary, and endothelial cell types. In particular, the sc/snRNA-seq datasets

within the Kidney Interactive Transcriptomics (Healthy Adult Kidney—Epithilia (57), Healthy

Mouse Dataset (58), Human Diabetic Kidney (59) and Human Kidney snRNA/ATAC-

seq (60), and The Human Nephrogenesis Atlas [Human week 14 scRNA-seq (61)]

were utilized.

the dense assembly of functional structures in mouse kidneys,
resulting in the capture of multiple structures in individual ST-
spots.

In the human ST-seq datasets, we defined glomerular,
collecting duct, and mixed cortical renal parenchyma ST-spots
with KNN clustering. However, distinct functional nephron
tubular segments were not apparent by clustering. We, therefore,
performed further label transfer–based annotation of functional
structures using published human kidney snRNA-seq and
scRNA-seq datasets as references (6, 12). This resulted in
the annotation of collecting ducts, distal convoluted tubules,
glomeruli, immune cells, interstitium, the loop of Henle,
proximal tubules, and vessels. The low immune infiltrate within
the normal human cortical kidney tissue has been attributed
to normal immune-surveillance/immune-regulatory functions
(12, 51, 60, 179–189). We checked the cluster identities and

label transfer annotations against marker gene expression,
the pathologist’s annotation, and mIF staining, demonstrating
consistent agreement of the major functional nephron structures
in normal human cortical kidney tissue.

We subsequently performed DE gene analysis between mouse
and human cortical kidney regions. In this study, 7,370 DE
genes (p < 0.05) were identified between mouse and human
cortical kidney regions and were tested for functions associated
with the GO:BP terms. The top 10 statistically significant GO:BP
terms up-regulated within the mouse cortical regions compared
to humans associated with energy production and metabolic
processes. This higher metabolic rate is a known phenomenon in
mouse tissue, however, the actual cause remains unknown (190,
191). We hypothesize that some of the interspecies variations
between our normal mice and human kidneys may be due to
differences in age and environment (192–198). The mice in our
study were 8 weeks old corresponding to humans <20 years
of age and the human samples were from patients in their
fifth decade of life. Therefore, the changes to mitochondrial
energy production and metabolic processes detected between
species may be secondary to the large differences in relative age
and environment.

In the human ST-seq datasets, we investigated CCI in
glomerular and PT–PC ST-spots, using L–R gene co-expression.
In the glomerular ST-spots, we identified co-expression of
300 L–R gene pairs but focused on the top 40 L–R gene
pairs (padj < 0.05). Consistent with published sc/snRNA-seq
datasets (57–60), these top 40 L–R pairs were associated with
structural, vascular, and/or immune interactions within and
betweenmesangial, endothelial, podocytes, and parietal epithelial
cells. The glomeruli are unique functional filtration structures
composed of tufts of vascular endothelial capillaries surrounded
by mesangial, podocyte, and parietal epithelial cells (3, 199).
The mesangial cells, podocytes, and endothelial cells secrete
extracellular matrix (ECM) components to establish a glomerular
basement membrane (GBM) and form the glomerular filtration
barrier, which allows fluid and solutes to pass into the nephron
(200). ECM components such as integrins facilitate important
signaling interactions between the mesangial cells, podocytes,
and endothelial cells that surround and maintain the GBM (121,
201). Integrins are a large family of transmembrane receptors
which, upon ligand activation, control signal transduction, cell
adhesion, proliferation, and ECM maintenance (91, 200, 202–
204). Consistent with expectations, 22 out of the top 40 L–
R gene pairs identified were involved with integrin receptors
ITGA3, ITGAV, ITGA8, ITGB1, and ITGB5. Moreover, five L–
R gene pairs were involved in the regulation of angiogenesis
and glomerular filtration barrier maintenance via VEGF-
mediated signaling.

In the PT–PC ST-spots, we identified co-expression of 170
L–R gene pairs but focused on the top 20 L–R gene pairs (padj
< 0.05). Consistent with published sc/snRNA-seq datasets (57–
60), these top 20 L–R pairs were associated with lipid and
protein transportation and signaling, adhesion, and/or immune
interactions within and between proximal tubule epithelial cells
and peri-tubular capillary endothelial cells. Proximal tubules
are primarily responsible for the reabsorption of amino acids,
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glucose, solutes, and low–molecular weight proteins from the
glomerular filtrate (205). Components reabsorbed from the
filtrate are then taken up into the bloodstream via peritubular
capillaries surrounding the proximal tubules. Consistent with
expectations, six L–R gene pairs identified were involved in
transportation and signaling facilitated by proximal tubule-
specific endocytic receptors LRP2 and APP. Eight L–R gene
pairs identified were involved in cell adhesion primarily
involving integrin-based interactions between proximal tubule
cells aside from a predicted tubulo-vascular interaction involving
COL18A1-ITGB1. Four L–R gene pairs identified were linked
to immune modulation via the formation of the MHC class I
loading complex HLA and MIF. Furthermore, two L–R gene
pairs identified were linked to vascular maintenance via SDC1
and SDC4. The identified top L–R gene pairs within and
between glomerular and PT–PC ST-spots were validated by
both localization and co-expression within the required cell
types in published sc/snRNA-seq datasets (57–60). Additional
identification of pathways established as fundamental to normal
kidney function in published literature act as further validation of
the specificity of the ST-seq approach for examining CCI within
the glomerular and tubular compartments.

Our generated ST-seq datasets and analysis provide
demonstration and confirmation of normal kidney tissue
and physiological pathways. This is anticipated to assist with
the future description and understanding of molecular signals
and pathways in states of kidney disease, and thus support the
development of therapeutics and diagnostic interventions for
clinical translation.
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