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A Detection-Theoretic Analysis of
Auditory Streaming and Its Relation
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Abstract

Research on hearing has long been challenged with understanding our exceptional ability to hear out individual sounds in a

mixture (the so-called cocktail party problem). Two general approaches to the problem have been taken using sequences of

tones as stimuli. The first has focused on our tendency to hear sequences, sufficiently separated in frequency, split into

separate cohesive streams (auditory streaming). The second has focused on our ability to detect a change in one sequence,

ignoring all others (auditory masking). The two phenomena are clearly related, but that relation has never been evaluated

analytically. This article offers a detection-theoretic analysis of the relation between multitone streaming and masking that

underscores the expected similarities and differences between these phenomena and the predicted outcome of experiments

in each case. The key to establishing this relation is the function linking performance to the information divergence of the

tone sequences, DKL (a measure of the statistical separation of their parameters). A strong prediction is that streaming and

masking of tones will be a common function of DKL provided that the statistical properties of sequences are symmetric.

Results of experiments are reported supporting this prediction.
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Introduction

We take for granted our ability in noisy surroundings to
focus our attention on those sounds that have interest for
us, filtering out the rest. It is, however, a truly remark-
able ability considering that the sound ultimately reach-
ing our ears is a superposition of all sounds present at
any one time in our environment. Understanding this
ability has long been a challenge for hearing research
known as the cocktail party problem—a reference to
the everyday example of having to follow the conversa-
tion of a single speaker in a noisy crowd (cf. Cherry,
1953). Work on the problem now represents one of the
most active areas of research in acoustics, informing
related work on the problem of computational auditory
scene analysis (Wang & Brown, 2006) and serving as the
launching point for research on noise interference in
individuals with hearing loss (Kidd, Mason, Richards,
Gallun, & Durlach, 2008).

Historically, research on the cocktail party problem
has followed two parallel lines of investigation born of

two fundamentally different theoretical approaches. The
first approach takes its inspiration from work in vision
on the perception of complex scenes (Wertheimer, 1924/
1938). Here, Gestalt principles of perceptual grouping
describe how elements of the scene are organized in the
perceptual formation of objects. These principles then
serve as a heuristic to guide future research. In audition,
the approach is fundamentally the same; the cocktail
party problem is viewed as one in which Gestalt prin-
ciples of grouping govern the perception of auditory
objects making up an auditory scene (Bregman, 1990).
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The stimuli used in these studies are characteristically
long, repetitive sequences of sounds (typically tones or
tone complexes) that differ in some qualitative sound
attribute, most often pitch or timbre. After some time,
listening (typically around 5 s) the tones can be heard
to split into separate cohesive streams—much like how
one hears separate streams of ongoing conversations at
a cocktail party. The interest in perceptual streaming
stems from its identification with the formation of
auditory objects (the separate streams in this case)
comparable to the visual objects of a graphic scene.
The general observation made in these studies is that
streaming becomes less likely (grouping more likely) as
the perceptual similarity between tone sequences
increases (see Moore & Gockel, 2012 for a contempor-
ary review).

The second line of research on the cocktail party
problem has its underpinnings in the statistical theory
of signal detection. It frames the problem as a classical
signal-in-noise detection task. The heuristic, in this case,
is the decision variable of an ideal observer, an observer
who, based on what is known regarding the statistical
properties of signal and noise, maximizes the likelihood
of reporting correctly whether a signal is present in the
noise. The focus is on masking studies wherein the nature
of the interference produced by the noise can be com-
pared with what may be expected based on the analysis
of ideal observers. As in streaming studies, the stimuli of
these masking studies are often tones, but unlike the long
repetitive sequences of tones used in streaming studies,
the tones are presented in brief collective bursts, typically
a half-second or less, with the pattern of tones varying at
random on each presentation or trial. The brevity and
novelty of the tone patterns introduce an element of
uncertainty regarding stimuli, closer to everyday listen-
ing. This challenges the listener’s ability to detect as
signal a change in a subset of the tones identified as tar-
gets. The focus of masking studies has been on factors
that allow a listener to overcome such detrimental effects
of stimulus uncertainty (see Kidd et al., 2008 for review).1

Because of the fundamental differences in stimuli and
task, streaming and masking studies have long coexisted
as separate lines of investigation, each offering a some-
what different take on the cocktail party problem. This
situation has changed in recent years as authors have
begun to show interest in applying principles of percep-
tual grouping, gleaned from streaming studies, to the
design of masking studies and the interpretation of
their results. The approach is perhaps best exemplified
by the work of the Boston group of researchers (Durlach
et al., 2003; Kidd, Mason, & Arbogast, 2002; Kidd,
Mason, Deliwala, Woods, & Colburn, 1994; Kidd,
Mason, & Richards, 2003). These authors report multi-
tone masking studies wherein the patterns of target and
masker tones are made qualitatively similar to one

another so as to promote perceptual grouping of target
and masker (failure of streaming). For example, in one
such study (Durlach et al., 2003), the masker was a com-
plex of tone glides with random starting frequencies, all
sweeping upward in frequency at the same rate. The
target was a tone glide that swept upward in frequency,
identically to that of the masker, or downward in fre-
quency over the same frequency range. Consistent with
the Gestalt principle of grouping by common fate, sig-
nificantly more masking was found when the target was
swept upward in frequency identical to the masker (cf.
Bregman, 1990, pp. 213–393). Similar effects on masking
have been reported for other factors expected from
streaming studies to promote perceptual grouping.
These include grouping by common onsets (Durlach
et al., 2003), common timbre (Bey & McAdams, 2003),
similar spectral content (Hartman & Johnson, 1991;
Micheyl & Oxenham, 2010; van Norden, 1975; Vliegen,
Moore, & Oxenham, 1999), close spatial proximity
(Durlach et al., 2003; Hartman & Johnson, 1991; Kidd
et al., 1994), temporal coherence (Micheyl, Kreft,
Shamma, & Oxenham, 2013), harmonicity (Micheyl,
Kreft, et al., 2013; Oh & Lutfi, 2000; Vliegen et al.,
1999), and frequency and amplitude comodulation
(Dau, Ewert, & Oxenham, 2009; Kidd et al., 1994,
2002, 2003; Micheyl, Shamma, & Oxenham, 2013;
Oxenham & Dau, 2001).

The findings of these more recent studies raise the
important question as to how streaming and masking
are to be interpreted in the broader context of the cock-
tail party problem. Given the many parallels evidenced
between the two phenomena, one might begin by asking
whether there is a compelling reason to distinguish
between them. Might they be, at least in the context of
relevant studies, complementary phenomena; streaming
being synonymous with release from masking and mask-
ing being synonymous with perceptual grouping? Several
of the authors mentioned earlier have hinted at the pos-
sibility in ruling out alternative explanations for the
release of masking observed in their studies (cf. Kidd
et al., 2003; Micheyl, Shamma, et al., 2013). And, in
light of the supporting evidence cited thus far, the pre-
sumption that the phenomena are complementary con-
tinues to be a major force motivating contemporary
theory and research on auditory masking and hearing
loss (Moore, 2002). Still, it is difficult to conclude this
or any other relation between streaming and masking at
this point because the relation has so far only been half
explored. While the Gestalt approach has proven suc-
cessful in predicting the effects of target-masker similar-
ity on masking, the effects of stimulus uncertainty on
streaming have so far been virtually ignored (cf.
Bendixen, Denham, Gyimesi, & Winkler, 2010;
Bendixen et al., 2013; Micheyl, Shamma, et al., 2013;
Szalardy, Bendixen, Bohm, Davies, & Denham, 2014).

2 Trends in Hearing



This study attempts somewhat to remedy this situ-
ation. It uses detection theory to make predictions for
the effects of stimulus uncertainty on streaming based on
the premise that listeners approach the streaming task as
would an ideal observer. By this view, streaming is
simply the perceptual by-product of an auditory system
that has evolved to maximize the likelihood that sounds
emanating from separate sources will, in fact, be per-
ceived as separate. The premise gives rise to a strong
prediction regarding the relation between streaming
and masking that is evaluated in the present study. The
prediction is that stimulus uncertainty and similarity are
conflated in masking and streaming, that a single func-
tion of the statistical separation of tone sequences
describes the effects of both factors on both phenomena.

Ideal Observer Analysis

Our problem can be stated generally as follows: Given
two sequences of sounds A and B varying along some
acoustic dimension x, (a) what is the best strategy for
deciding, based on the observed values of x, whether A
and B belong to the same or separate sources (streaming
experiment), and (b) under what conditions are these
decisions expected to agree or disagree with those of an
optimal decision strategy for detecting a change in B
alone (masking experiment)?

Consider the first question. Here the task of deciding
whether A and B belong to the same or separate sources
can be framed as a statistical test of whether the A and B
values of x represent samples drawn from the same or
different population distributions. This manner of stat-
ing the problem has the desirable property of being quite
general, but it is too general to allow the specification of
a single ideal decision statistic; that statistic must depend
on what the listener knows about the form and param-
eter values of the underlying distributions. Rather than
consider special cases, we consider a good statistical test,
not necessarily optimal in every case, that has broad
application to such problems; this is the two-sample,
Kolmogorov–Smirnoff (KS) test (Noether, 1978). The
two-sample, KS test estimates the likelihood that two
samples are drawn from different populations by provid-
ing a nonparametric measure of the difference between
their cumulative distribution functions (cdfs). Let P and
Q represent the cdfs of the sampled x for the A and B
sequences. KS is then given as the supremum (maximum)
of the absolute value of the difference between P and Q

KS p, qð Þ ¼ supremum P�Q
�� �� ð1Þ

where p and q are the associated probability densities
(pdfs) for each sample.

KS has three properties of interest here. First, it is a
dimensionless quantity; its predictions for streaming

depend less on the acoustic properties of sequences
than their statistics given by p and q. The acoustics are
expected to affect streaming only to the extent that they
cause interactions among tones peripherally, in the coch-
lea or auditory nerve, or in cases where streaming is
based on the statistics of derived higher level features
computed centrally (e.g., interaural time differences or
fundamental frequency). Second, KS does not explicitly
distinguish between the effects of stimulus similarity and
uncertainty. Stimulus similarity could conceptually be
associated with a difference in the central tendencies of
p and q, and uncertainty with their spread, but there is
little reason to make such as distinction as the two fac-
tors are entirely conflated in KS. Third, KS is symmetric,
its value is the same whether p is considered with respect
to q or q is considered with respect to p,
KS p, qð Þ ¼ KS q, pð Þ. It thus makes the strong prediction
that the variance and higher moments of the pdfs for the
A and B sequences can be entirely interchanged without
any impact on the listener’s judgments of streaming.

Now consider how these predictions compare with
those for the ideal observer in masking experiments
(Question 2). The task is to detect a change in B;
hence, the values of A now represent an additive
source of interference or noise whose effect must
depend on the degree to which the pdfs of A and B over-
lap. Focusing exclusively on the degree of overlap of the
pdfs (ignoring the change to be detected), the relevant
statistic is Kullback–Leibler divergence (DKL), also
known as information divergence, discrimination infor-
mation, or relative entropy (cf. Kullback & Leibler,
1951). DKL is defined as the expected value of the log-
likelihood ratio of x under p and q

DKL p q
��� �
¼ E ln

p xð Þ

q xð Þ

� �
ð2Þ

and, in fact, has been shown to be predictive of many of
the results of multitone masking experiments (Lutfi,
1993; Lutfi & Doherty, 1994; Lutfi, Gilbertson, Chang,
& Stamas, 2013; Oh & Lutfi, 1998, 1999). As an index of
the statistical overlap of pdfs, DKL shares many of the
same properties of KS. Like KS, it is a dimensionless
quantity; it depends on the statistical properties of
sequences not their acoustics. Like KS, and for the
same reason, DKL conflates stimulus similarity and
uncertainty. However, unlike KS, DKL is asymmetric,
DKL p q

��� �
6¼ DKL q p

��� �
; only in special cases will its

value remain the same when the statistical properties of
p and q are interchanged. For masking experiments, this
means that results can differ depending on whether the A
or the B sequence is identified as the target.

This article is one in a series intended to evaluate these
three properties of streaming and masking predicted by
the ideal observer analysis. The first property,

Chang et al. 3



nondimensionality, has so far been evaluated for mask-
ing by Lutfi, Gilbertson, et al. (2013) and for streaming
by Chang, Lutfi, and Lee (2015). Results of these studies
do, as predicted, show for both phenomena a strong
dependence on the statistical properties of stimuli,
independent of their acoustic properties. The second
property, the conflation of stimulus similarity and uncer-
tainty, is evaluated in the present study. The prediction is
that a single function of DKL (or KS) will describe the
data in both cases for both phenomena. The third prop-
erty, (a)symmetry is the one case where streaming and
masking are expected to differ. This property will be
evaluated in a future study.

Method

Stimuli

Figure 1 gives a schematic of the stimuli used in the
present experiment. In keeping with past streaming
studies, the stimuli were standard ABA-ABA tone
sequences, where the A and B tones differed in fre-
quency. The present sequences departed from the stand-
ard only inasmuch as a small level increment of 3 dB was
added to every other B tone; a requirement for the mask-
ing experiment. The tones were 100ms in duration and
were gated on and off with 5-ms, cosine-squared ramps.
A silent interval of 100ms separated each ABA tone
triplet. The programming language MATLAB (version
r2015a) was used to synthesize tones played over an
RME audio interface at 16-bit resolution and a 44100-
Hz sampling rate. From the interface, the sounds were
buffered through a Rolls RA62c headphone amplifier
and then delivered diotically over Beyerdynamic

DT 990 headphones to listeners seated individually in a
double-wall, IAC sound-attenuated chamber. A loud-
ness balancing procedure was used to calibrate tone
level to be approximately 65 dB SPL at the eardrum,
68 dB SPL for every other B tone (Lutfi, Liu, &
Stoelinga, 2008).

The frequencies of the A and B tones were drawn at
random on each presentation from equal variate normal
distributions differing in mean. The distributions thus
define the p and q values used in the computation of
KS and DKL in this study. The only constraint on sam-
pling was that the two A tones within each triplet have
the same frequency. The A and B sequences were made
perceptually more similar, as is commonly done in
streaming studies, by reducing the mean frequency sep-
aration, �, between the sequences. They were made more
uncertain, as is commonly done in masking studies, by
increasing the range, in this case s; over which the fre-
quencies of tones varied at random. Nine conditions
were tested in which three values of � (100, 600, and
1,500 cents, ref: 500Hz) were combined with three
values of s (100, 200, or 600 cents, ref: 500Hz), with
the mean frequency of the A tones fixed at 500Hz.

Procedure

On a given trial, the tone sequences were played continu-
ously for 1min (corresponding to 150 ABA triplets) with
the values � and s fixed. During this time, listeners rated
continuously their level of confidence hearing the A and
B sequences form separate streams (streaming experi-
ment) or, in a separate condition, their level of confi-
dence hearing the B tones alternate in level (masking
experiment). The signal (separate sequences or alternat-
ing level) was always present during this time so as to be
consistent with past streaming studies. The confidence
ratings thus reflected both the listener’s bias to report
hearing the signal as well as their sensitivity to hearing
the signal, a point we shall return to later. The confidence
ratings were obtained by having the listener adjust, with
a computer mouse, a video pointer on a sliding scale. The
pointer began each trial in the middle of the scale and
could be adjusted continuously from very confident to not
at all confident labels assigned to each end of the scale.
Pointer readings were recorded at a rate of 50 per second
with the first 10 s rejected, yielding a total of 2,500 read-
ings per trial. The first 10 s were rejected so not to allow
buildup of streaming to influence the data. However, to
test whether buildup may have extended over longer dur-
ations mean confidence ratings were computed for the
first and second half of each trial (after the first 10 s).
The difference is mean ratings was negligible, 0.04 for
streaming and 0.01 for masking. The average of the
2,500 readings was therefore taken as a single estimate
of confidence and five such estimates were obtained for

Figure 1. Schematic of stimulus configuration. The frequencies

of the A (black) and B (gray) tones were drawn at random from

equal variance normal distributions (p and q) separated in mean,

with the mean of the A tones fixed at 500 Hz. The independent

variables were the distribution parameters � and s. The listener’s

task in different conditions was to report their confidence of

hearing the B tones alternate in level indicated by width of gray

rectangles (masking task) or hearing the A and B tones split into

separate cohesive streams (streaming task).
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each task and combination of � and s. The final esti-
mate of confidence for each condition was taken to be
the mean of the five estimates after using the method of
Thompson Tau to reject outliers (Thompson, 1985). Of
the total 630 trial estimates obtained for all conditions
and all listeners in the study, 20 (3%) were identified as
outliers.

Subjects

A total of nine listeners (two men), with an average
age of 23.9 (range 19–47) years, were recruited online
from University of Wisconsin–Madison campus. All
listeners had normal pure-tone hearing thresholds at
the audiometric frequencies from 250 to 8000Hz
(ANSI3.6–2004, 2004) and were paid at an hourly
rate for their participation. Prior to data collection,
the listeners were given practice trials to familiarize
them with the masking and streaming tasks. For the
masking task, they were given a block of trials in
which the A tones were absent. For the streaming
task, they were given a block of trials in which �
was 1,500 cents and s was 0. In both cases, mean
confidence ratings were near the very confident end of
the scale. All procedures involving human subject
recruitment and participation were performed in com-
pliance with the University of Wisconsin–Madison
Institutional Review Board guidelines.

Results

Effect of � and �

Figure 2 shows the confidence ratings averaged across
listeners for the streaming (top panel) and masking
(bottom panel) tasks as a function of � with s as par-
ameter. Two of the nine listeners were not included in the
average, as these listeners reported for all conditions
100% confidence hearing the level of the B tones
alternate and the A and B tones split into separate
streams. The pattern of results was much the same for
the remaining seven listeners; hence, only the average
data are presented. A two-way analysis of variance of
ranks, � by s, was performed separately for the data
from the streaming and masking tasks. There were sig-
nificant main effects of � and s for both tasks. As
expected, confidence ratings for streaming increased
with increasing � (F(2,294)¼ 121, p< 10–16) and
decreased with increasing s (F(2, 294)¼ 18.8, p< 10–7).
Also, as expected, confidence ratings for detection of the
alternating level increased with increasing � (F(2,
299)¼ 67.1, p< 10�16) and decreased with increasing
s (F(2, 299)¼ 56.5, p< 10�16). There was also a signifi-
cant interaction between � and s, with the effect of
s being greatest for the intermediate value of � for

both streaming and masking tasks: F(4, 294)¼ 4.739,
p< .00102 and F(4, 299)¼ 6.26, p< 10�4, respectively.

Effect of KS and DKL

The rough similarity in the effects of � and s for stream-
ing and masking, as seen in Figure 2, tends to support
the hypothesis of a complementary relation between the
two phenomena. However, a much stronger test is given
by the prediction for the effects of KS and DKL as
described in forgoing analysis of the Methods section.
For the special case considered here, where the pdfs of
A and B are equal variance normal (are symmetric), KS
and DKL are monotonically related to one another;
hence, we need only consider the predictions for DKL.
(As previously noted, only the case for which p and q are
asymmetric do KS and DKL make different predictions

Figure 2. Confidence ratings averaged across seven listeners for

the streaming (top panel) and masking (bottom panel) tasks

plotted as a function of �. Different curves correspond to the

different values of s. Error bars not shown for clarity of presen-

tation (see, instead, analysis of variance described in the Results

section).
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for the streaming and masking tasks.) For normal pdfs
given by p and q, the formula for DKL is

DKL p q
��� �
¼
�A � �Bð Þ

2
þs2

A � s2
B

2s2
B

þ ln
sB

sA

� �
ð3Þ

For the present case, sA¼sB, so that Equation 3
reduces to

DKL p q
��� �
¼

1

2

�

s

� �2

ð4Þ

The prediction then is that the confidence ratings for
both streaming and masking tasks will be a common,
monotonically increasing function of �/s.

One approach to testing this prediction would be to fit
the data separately with some expected function and
then compare the parameters of these fits. The problem,
however, with this approach is that it amounts to an
attempt to accept the null hypothesis of no difference
in parameters. The number of datum involved in each
case (9) could very well not be enough to yield significant
differences in parameter estimates where there are, in
fact, real differences. A better approach, and the one
taken here, is to fit a single function to all the data
after adjusting for the difference in the overall difficulty
of the two tasks. To this end, a logistic function was first
fit separately to the streaming and masking data. The
data were then adjusted to equate the intercepts of
these fits as a measure of overall difficulty. A logistic
function is a natural choice in this case as the confidence
ratings are bounded between 0 and 1. The exact form of
the function used was

P DKLð Þ ¼
1� a

1þ e� �=s�bð Þ=c
ð5Þ

where the free parameters were the slope (c), intercept (b),
and upper asymptote (1� a) of the function. The upper
asymptote was included as a free parameter to reflect our
subjects’ general unwillingness to report a confidence
rating of 100%. Using the nonlinear least squares
method and the fit function of MATLAB (version
r2014b), the fitted functions accounted for 91% and
78% of the total variance, respectively, for the streaming
and masking data. For streaming, the estimated values
of parameters were a¼ 0.083, b¼ 0.143, and c¼ 0.456;
for masking, they were a¼ 0.204, b¼ 0.311, and
c¼ 0.645. Figure 3 shows the mean confidence ratings
of Figure 2 replotted as a function of �/s for both the
streaming (filled symbols) and masking (unfilled sym-
bols) tasks. The masking data have been shifted
upward along the y-axis by a constant amount so as to
equate the intercepts of the separately fitted functions.
The curve drawn through the data represents the

function given by Equation 5 fitted to both sets of data
simultaneously. The fitted function accounts for 96% of
the total variance in the data with parameters a¼ 0.082,
b¼ 0.128, and c¼ 0.573. The results tend to support the
prediction for these conditions that the confidence rat-
ings for both streaming and masking tasks can be
described by a single, monotonically increasing function
of �/s.

Discussion

Studies investigating the effects of target-masker similar-
ity on masking have led to conjecture of a complemen-
tary relation between auditory streaming and masking,
streaming being identified with release from masking
(Dau, et al., 2009; Durlach et al., 2003; Kidd et al.,
1994, 2002, 2003; Micheyl, Kreft, et al., 2013; Micheyl,
Shamma, et al., 2013; Oh and Lutfi, 2000). The results of
the present study lend support to this conjecture in show-
ing (a) streaming and masking to be a common function
of the information divergence (DKL) of tone sequences
and (b) similarity and uncertainty effects to be conflated
for both. This was the predicted outcome of a detection-
theoretic analysis of listener judgments based on the
premise that listeners approach the streaming and mask-
ing tasks as would an ideal observer. The agreement of
the results with these predictions lends support to this
basic premise and reinforces the theoretical approach
taken here.

The theoretical approach taken here is, to the authors’
knowledge, the first to offer an explicit analytic account

Figure 3. Mean confidence ratings of Figure 2 replotted as a

function of �/s for both the streaming (filled symbols) and

masking (unfilled symbols) tasks. Confidence ratings for the

masking task have been shifted upward by a constant amount to

equate overall difficulty for the two tasks (see text for explan-

ation). The curve shown is the nonlinear, least-squares fit of

Equation 5 to the data. The fit accounts for 96% of the total

variance in the data.
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of the relation between streaming and masking. It is
useful therefore to consider the implications of the ana-
lysis for the outcome of past studies that have taken a
strictly methodological approach to the problem. We
reviewed many of these studies in the introduction and
the results generally agree with theory in showing a cor-
respondence of performance in conditions of masking
with expectations of perceptual streaming. Still, a
simple correspondence provides only weak support.
Moreover, only one of these studies complemented the
masking results with subjective reports of streaming to
confirm the expectations of streaming in the same or
similar conditions. The one exception is the study of
Micheyl and Oxenham (2010). These authors obtained
reports of streaming in a temporal gap discrimination
task involving two conditions, one for which perceptual
segregation was expected to improve gap discrimination
performance, and the other for which it was expected to
impair performance. For the data averaged across lis-
teners, the correlation of streaming reports with per-
formance was statistically significant; however, the
correlations were quite small. Moreover, for most indi-
vidual listeners the correlations were not statistically sig-
nificant due both to the small effect size and the large
variability in the individual subject reports. The authors
conclude that the correlations could not reliably be used
to predict individual discrimination thresholds in their
experimental conditions.

A different approach to the problem was taken by
Lutfi and Liu (2011) and Richards, Carreira, and Shen
(2012). These authors attempted to overcome the vari-
ability and bias associated with subjective reports by
developing an objective measure of perceptual segrega-
tion, one that could be compared directly to measures of
detection and discrimination performance in the same
conditions without any additional data collection.
Their methods differed in details but were the same in
principle. The task in both cases was a masking task.
Small perturbations were added to target and masker
on each presentation along the dimension of the to-be-
detected change in the target (object size for Lutfi and
Liu and temporal position in a tone sequence for
Richards et al.). Decision weights on the target and
masker were then estimated from the correspondence
between the perturbations and listener’s trial-by-trial
response using a regression model (cf. Berg, 1990;
Lutfi, 1992). The inference regarding perceptual segrega-
tion was based on the decision weight for the masker. If
the sign on this value was negative (i.e., different from
that for the target), it could only mean that the listener
heard the target separately (segregated) from the masker.
If it was positive (same as that for target), it could only
mean that the listener somehow confused (failed to seg-
regate) target and masker. Using this approach, the
authors found, like Micheyl and Oxenham (2010), that

not all listeners show the expected correspond-
ence between measured segregation and masking;
indeed, some subjects whose masker weight was negative
showed as much or even more masking than subjects
whose masker weight was positive. Similar results using
this method and involving a larger group of subjects
have since been reported by Lutfi, Liu, and Stoelinga
(2013).

Before concluding, we must offer two caveats regard-
ing the interpretation of the present results. The first is to
recognize that the ideal observer analysis offered here
does no more than to generate an expectation for how
listener judgments may be related in streaming and
masking tasks. It was not intended, nor should it be
taken, to be a specific model of listener performance in
these tasks. A model of listener performance would
require, at least, an internal noise parameter or some
other means of accounting for failures of streaming
where tone frequencies are fixed (no variance to bound
the value of KS). It would require a prediction for how
stimulus dimensions are weighted in the two tasks when
stimuli differ along two or more dimensions simultan-
eously (cf. Lutfi, 1995). And, it would require for the
masking task a model for how the change in target is
to be detected, for which the present analysis says noth-
ing. The analysis is perhaps better considered as a frame-
work for developing a model rather than a specific model
in and of itself. The second caveat has to do with experi-
mental design. A major difference between traditional
masking and streaming studies not captured by our
experiment is the differential effect of response bias in
the two tasks. In detection theory, a distinction is
made between what the listener hears (sensitivity) and
what they say they hear (response bias), the latter
being influenced by the particular costs and rewards
associated with the listener’s response. Streaming studies
make no attempt at separating the effects of these two fac-
tors on the listener’s response but masking studies do. In
masking studies, this is achieved by analyzing responses to
no-signal trials for which a positive response would be
scored as incorrect (see Green & Swets, 1966). In the cur-
rent experiment, there are no no-signal trials and no incor-
rect responses. We purposely allowed bias to influence the
masking results in the present design so that subjects, sti-
muli, and procedure would be identical for the both tasks;
only the instructions given to listeners differing for the two
tasks.We expected that if bias were to have any effect at all
in themasking task, it would apply equally to all conditions
in that task so that the function relating judgments toDKL
would be unaffected. That the data are well described by a
single function of DKL for both masking and streaming
appears to support this conjecture.

Lastly, we offer some speculation regarding how the
present results might be viewed in relation to past and
possibly future work on the cocktail party problem.
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We have emphasized the fundamental differences in the
two approaches taken to the problem in the past, both in
theory and in practice. Notwithstanding, the two
approaches can be thought to exist at somewhat different
ends of a continuum; streaming entailing the more pre-
dictable, more discriminable properties of individual talk-
ers’ speech that allows us to segregate one talker from
another, while masking involving the less predictable,
less discriminable properties that hinder this ability.
The results of the present study reinforce this view by
showing both streaming and masking to vary systemat-
ically along a single continuum that captures both of
these properties in the value of DKL. In this way, the
results also reinforce the connection between streaming
and masking inferred in the literature. But what implica-
tions, if any, might the results have for future research?
Notably, the past work has been mostly parametric in
nature, documenting the degree to which specific acoustic
differences between signals promote streaming or cause a
release from masking. Although clearly much has been
learned from these studies, the present results would advo-
cate more strongly for an approach that emphasizes the
statistical over the acoustical properties of signals, begin-
ning of course with a comparison of the predictions based
on KS and DKL. Particularly relevant to this point is the
study by Lutfi, Gilbertson, et al. (2013). These authors
describe masking experiments involving multitone pattern
discrimination, multitalker word recognition, sound-
source identification, and sound localization in which
manipulations of masker uncertainty and target-masker
similarity had the same effect on performance for the
same change in Simpson-Fitter’s da, an approximation
to DKL for their conditions. They interpret their results
to reflect a general principle of perception that exploits
differences in the statistical structure of signals so as to
separate figure from ground. The idea is by no means new
(cf. Attneave, 1954; Barlow, 1961); but in light of the pre-
sent results, it might serve as an impetus for research on
cocktail party listening that attaches greater importance
to the statistical properties of signals.
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