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Abstract: The abuse of agricultural antibiotics has led to the emergence of drug-resistant phy-
topathogens. Rifampicin and streptomycin and streptomycin resistance Pectobacterium carotovorum
subsp. carotovorum (PccS1) was obtained from pathological plants in a previous experiment. Rheum
tanguticum, derived from the Chinese plateau area, exhibits excellent antibacterial activity against
PccS1, yet the action mode has not been fully understood. In present text, the cell wall integrity of the
PccS1 was tested by the variation of the cellular proteins, SDS polyacrylamide gel electrophoresis
(SDS-PAGE), scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometer
(FTIR) characteristics. Label-free quantitative proteomics was further used to identify the DEPs in
the pathogen response to treatment with Rheum tanguticum Maxim. ex Balf. extract (abbreviated as
RTMBE). Based on the bioinformatics analysis of these different expressed proteins (DEPs), RTMBE
mainly inhibited some key protein expressions of beta-Lactam resistance, a two-component system
and phosphotransferase system. Most of these membrane proteins were extraordinarily suppressed,
which was also consistent with the morphological tests. In addition, from the downregulated flagellar
motility related proteins, it was also speculated that RTMBE played an essential antibacterial role by
affecting the swimming motility of the cells. The results indicated that Rheum tanguticum can be used
to attenuate the virulence of the drug-resistant phytopathogenic bacteria.

Keywords: Pectobacterium carotovorum; Rheum tanguticum; resistant; morphology; antibacterial
effect; virulence

1. Introduction

Phytopathogenic Pectobacterium carotovorum subsp. carotovorum (Pcc, formerly called
Erwinia carotovora subsp. carotovora) is a Gram-negative bacterium that can cause wilt,
soft rot and blackleg on several plants, such as celery, potato, broccoli, carrots, etc. [1,2].
As one of the top 10 plant pathogenic bacteria based on scientific/economic importance,
this pathogen causes a serious loss of product quality during its growth, transit and even
storage [3]. Synthetic pesticides and agricultural antibiotics are always used to protect crops
against these bacteria. However, it was indicated that the excessive utilization of pesticide
can not only lead to human cancers, leukemia and asthma [4–6] but also pose a great threat
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to the emergence of resistant bacteria [7]. Nowadays, some toxic chemical pesticides are
restricted, and environmentally friendly natural pesticides are urgently encouraged.

The main pathogenicity determinant of Pcc was plant cell wall-degrading enzymes
(PCWDEs), involving pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel) and pro-
tease (Prt) [8,9]. It has been previously reported that ClpP, FlgK and MreB played essential
roles in the virulence of plant pathogens. The Pectobacterium carotovorum subsp. carotovorum
strain (PccS1) was obtained from pathological summer-flowering calla lily (Zantedeschia
spp.) and induced rifampicin and streptomycin resistance in our previous experiment [10].
With the availability of genomic sequences for this rifampicin and streptomycin-resistant
PccS1, the virulence determinants and the protein expression patterns in the host plant
were also investigated [11]. However, the change of protein expression patterns on PccS1
influenced by inhibitors, even multi-drugs, remains poorly understood.

Natural medicine extracts are attractive alternatives to synthetic pesticides due to their
low residue and environmental degradability. For example, A. saligna flower extract, L.
camara leaf extract, E. camaldulensis bark ButE and C. viminalis flower ButE can inhibit the
growth of phytopathogenic bacteria P. carotovorum compared with the positive control to-
bramycin [12–14]. As one of the three genuine rhubarbs in Chinese pharmacopoeia, Rheum
tanguticum Maxim. ex Balf. contains several chemical components, such as anthraquinones,
anthrones, saccharides, stilbenes and tannins. Rhein, emodin, aloe-emodin, physcion and
chrysophanol are well-recognized as biologically active compounds [15]. Rhubarb was
traditionally used as a folk medicine in China and was confirmed to have strong antibac-
terial, antipyretic, antiaging, antipasmolytic and cardiovascular protection effects [16–18].
However, to the extent of our knowledge, there are no reports in the literature regarding the
identification of the antibacterial effect of rhubarb against Pcc. Based on our previous drug
sensitivity screening experiments from more than 30 herbs, the Rheum tanguticum Maxim.
ex Balf. extract (abbreviated as RTMBE) was first detected to remain the best antibacterial
activity against this resistant PccS1 and was thus selected in the present study to obtain a
detailed inhibitory effect by SDS-PAGE, SEM and FTIR analysis. In addition, the label-free
based LC-MS/MS quantitative proteomic approach was also adopted to analyze the global
protein alteration of the PccS1 in response to RTMBE treatment. This may help us develop
some potential lead compounds against antibiotic-resistant bacterial infection and discover
new pesticide targets.

2. Results and Discussion
2.1. UPLC-ESI-MS Analysis of RTMB Active Ingredients

UPLC was performed on a Thermo Scientific (Waltham, MA, USA) reversed-phase
according to the chromatographic conditions described in Section 2.2. Due to more infor-
mation that can be observed in the negative ion mode, it was chosen for the MS analysis
rather than the positive ion mode. Finally, the components of the total 25 peaks in the total
ion current (TIC) chromatogram were identified (Figure 1). The baseline of the RTMBE
sample was stable, and the chromatographic peaks of each active ingredient were sep-
arated perfectly. Based on a comparative analysis of the retention time, m/z of [M-H]−

and MS/MS fragmentation patterns with the reference substances [15,19–24], the major
bioactive constituents can be classified into six categories (Table 1), including tannins
(1–4 and 7); butyrophenones (5, 6, 17, 18, 20 and 21); naphthoside (8); stilbenes (10 and
11); naphthopyrones (12) and the most abundant anthraquinone compounds (9, 13–16,
19 and 22–25). The analysis indicated that the anthraquinones compounds are the main
antibacterial active ingredients [25,26]. In addition, it was also suggested that emodin and
aloe-emodin derivatives could be considered as promising lead compounds for further
investigations as anticancer drugs [27,28].
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Table 1. Characterization of the bioactive constituents of RTMB by UPLC-ESI-MS detection in the negative mode.

No. RT (min) Formula Measured Mass
[M-H]− (m/z)

Theoretical
Mass (m/z) MS/MS Identification Reference

1 0.66 C13H16O10 331.0638 332.0638 125.0208,169.0153 Gallic acid-3-O-glucosidea [19]
2 1.96 C13H16O10 331.0640 332.0671 125.0617, 169.0345 Gallic acid-4-O-glucosidea [19].
3 7.05 C15H14O6 289.0718 290.0718 271.0652, 179.0033, 161.0523 catechin [19]
4 7.50 C30H26O12 577.1264 578.1352 425.0423, 289.0742, 125.0241 Procyanidin B [19,20]
5 17.03 C23H26O11 477.1453 478.1402 313.0147, 169.0135 Lindleyin [19,21]
6 18.09 C23H26O11 477.1453 478.1402 313.0147, 169.0135 Isolindleyin [19,21]
7 18.91 C44H34O20 881.1753 882.1571 729.1460, 559.1257, 541.0923 477.1452,

289.0909 procyanidin B-2-3,3′-di-O-gllate [19,24]

8 22.44 C19H22O19 393.1192 394.4113 231.0256 6-Hydroxymusizin-8-O-b-D-
glucopyranoside [21,24]

9 25.25 C21H18O11 445.0702 446.0776 283.0281, 239.0978, 211.0514 Rhein-8-O-glucopyranoside [19]

10 27.72 C27H26O12 541.1352 542.4321 313.0562, 227.0296, 169.0123 Resveratrol-4′-O-(2”-galloyl)-b-d-
glucopyranoside [20,23]

11 28.75 C27H26O12 541.1353 542.1352 313.0562, 227.0296, 169.0122 Resveratrol-4′-O-(6”-galloyl)-b-d-
glucopyranoside [20,23]

12 32.86 C20H24O9 407.1348 408.3990 313.0256, 245.0823, 230.0572 Torachrysone 8-O-glucoside [21,22]
13 33.79 C21H20O10 431.0928 432.0984 269.0261, 240.9125, 211.0392 169.0077,

125.0299
Aloe-emodin-8-O-β-D-

glucopyranoside [19,23]
14 35.75 C21H20O10 431.0931 432.0984 269.0261, 240.0439, 225.0518 Emodin-1-O-β-D-glucoside [19]

15 42.68 C21H20O10 431.0934 432.3780 269.0261, 239.0077, 211.0158 Aloe-emodin-3-(hydroxymethyl)-O-
β-D-glucopyranoside [19]

16 44.03 C21H20O10 431.0934 432.3780 269.0261, 253.0253, 225.0565 169.0077 Emodin-8-O-β- D-glucoside [19,23]

17 44.95 C32H32O13 623.1873 624.1770 459.0034, 307.3884, 235.0591 169.0167,
125.0231

4-(4-Hydroxyphenyl)-2-butanone-4′-
O-β-D-(6”-O-galloyl-2”-O-

cinnamoyl)-glucopyranoside
[19]

18 45.55 C32H32O13 623.1763 624.1770 459.0032, 235.0581, 169.0167
4-(4-Hydroxyphenyl)-2-butanone-4

-O-β-D-(2”-O-galloyl-6”-O-p-
coumaroyl)-glucopyranoside

[19]

19 46.82 C22H22O10 445.0703 446.1140 283.0281, 240.0381, 225.0498 212.0453 Rhein-8-O-β-D-glucopyranosid [19,23]

20 47.81 C30H30O15 629.1561 630.2315 465.1231, 313.2586, 169.1358
4-(4′-Hydroxyphenyl)-2-butanone-4′-

O-b-D-(2”-O-galloyl-6”-O-
galloyl)glucopyranoside

[21]

21 48.27 C32H32O12 607.1840 608.1821 443.1002, 295.0456, 169.0345
4-(4′-Hydroxyphenyl)-2-butanone-4′-

O-b-D-(2”-O-cinnamoyl-6”-O-
galloyl)glucopyranoside

[19,21]

22 50.78 C16H12O5 283.0274 284.0612 240.0426 6-methyl-aloe emodin [19]
23 53.14 C15H10O5 269.0427 270.0445 241.0371, 225.0597, 182.0562 emodin [19]
24 54.17 C15H10O4 253.0505 254.0506 225.0534, 181.3284 Chrysophanol [19]
25 55.49 C16H12O5 283.0608 284.0612 239.1295, 211.0185 Physcion [19,23]
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Figure 1. Base peak chromatograms of RTMBE.

2.2. The MIC and the Growth Curves of PccS1

Using the twofold dilution method, the analysis showed that the MIC value of the
RTMBE was 24.96 mg/mL, whereas the solvent dimethylsulfoxide (DMSO) had no effect
on the growth of PccS1. As shown in the growth curves Figure 2a, PccS1 in the control
group entered the rapid growth logarithmic phase after 2 h, and the growth rate slowed
down gradually after 10 h. The 1/4 ×MIC and 1/2 ×MIC RTMBE could partially delay
the growth of the PccS1, especially during the first 4 h, while the bacterial concentration
thereafter increased rapidly. It was worth noting that the growth was completely inhibited
at 1 ×MIC during a relatively long incubation period of 12 h. To observe the changes of
the intracellular proteins, the 1/4 ×MIC after incubating for 8 h was chosen for a further
proteomics assay in this study based on the minimal effective concentration principle.

The extracellular protein content was also examined as a degree of cell injury and non-
selective micropore formation [29]. Compared with the untreated group, the extracellular
protein concentrations of other groups were changed apparently. The protein concentration
increased with the increment of the drug concentration at the first 6 h, and the highest
protein concentration was 0.583 g/L when treated with 1 ×MIC RTMBE. This suggested
that RTMBE changed the intracellular membrane permeability and caused the release of
the intracellular protein. Then, the protein concentrations were gradually decreased and
reached the lowest values at 8 h, which suggested that a small part of the protein was
consumed by the bacteria during the growth process. This may be ascribed to the bacterial
cell self-repairing functions. The protein concentrations were gradually increased again
after 8 h, and the maximum value of 0.671 g/L was obtained after 24 h when the sample
was treated with 1 × MIC RTMBE, which indicated that the bacterial cell structure was
probably destructed and the intracellular substances consequently flowed out.
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Figure 2. Effects of RTMBE on the bacterial growth (a) and extracellular protein concentration (b).
Cells treated with the same volume of PBS were used as the control. Values are the mean ± SEM of
three repeats and significantly different from the control group (* p < 0.05 and # p < 0.01).

2.3. Fourier Transform Infrared Spectrophotometer (FTIR) Analysis

FTIR is considered as a comprehensive and sensitive method to detect the molecular
changes in cells [30]. From Figure 3, it is shown that these FTIR spectra were generally
similar, whereas the most differences were observed particularly in the complex spectral
region at 1700–700 cm−1 and 3100–2200 cm−1. A noticeable variation of the bands at
2971.79 cm−1 was attributed to the asymmetric CH2 stretching of lipids, and the band
around 2877 cm−1 was identified as the symmetric CH3 stretching of lipids [30]. For
both the control and treated groups, the absorbance of dominant bands at 1639.21 cm−1

was attributed to protein amide I bands, which were gradually increased along with the
increased concentrations. The bands at 1407.79 cm−1 and 1373.08 cm−1 were attributed to
the asymmetric and symmetric CH3 bending modes of the end ethyl groups and branched
methyl groups of the proteins and lipids, respectively [31], which showed a significant
enhancement in the intensity of all the treated samples. The bands at 1089.59 cm−1 were
attributed to stretching O-H coupled with bending the C-O of the polysaccharides capsule
and peptidoglycan [31].
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Figure 3. FTIR spectra of PccS1 treated by RTMBE. Cells treated with the same volume of phosphate-
buffered saline were used as the control.

The absorption peak at 1909.19 cm−1, ascribed to carbonyl groups, was gradually
increased with the increased RTMBE concentration. The band was also significantly in-
creased at 1047.16 cm−1, which can be ascribed to the vibrational modes of -CH2OH and
the C-O stretching vibration coupled to the C-O bending mode of cell carbohydrates [32].
The spectral region between 1300 and 900 cm−1 was characterized by vibrational features
of cellular proteins, nucleic acids, cell membranes and cell wall components [31]. With the
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increase of the drug concentration, the integral strain structure was gradually collapsed,
which might be characterized by stretching vibrations of polysaccharides in the cell wall
peptidoglycan layer and lipopolysaccharide outer leaflet. It was also observed that the
absorbance was decreased after incubating with RTMBE in the narrow region centered
at 628.68 cm−1, which represents N-H bending of proteins [31]. The primary function of
the bacterial cell wall is known to maintain the inherent shape of the bacteria and protect
itself against the hypotonic environment. Once the original function of the cell wall was
disrupted by the RTMBE, the bacteria soon died.

2.4. SDS-PAGE Electrophoresis of the Bacterial Protein

It is shown in Figure 4 that the protein profiles of bacteria treated with RTMBE were
similar with the untreated one. In the protein electrophoresis bands, the protein bands
between 55 and 65 kDa became shallow and fainter when treated by 1/8 ×MIC and 1/16
×MIC extract and even disappeared at the concentration of 1/2 ×MIC and 1/4 ×MIC.
The protein band (40 kDa) was clear in the control group, whereas it became lighter when
treated by 1/2 ×MIC extract. It can be concluded that the RTMBE disturbed the protein
synthesis and destroyed the membrane integrity of the bacteria, which resulted in the
leakage of the total protein. However, some protein bands between 40 and 100 kDa were
gradually augmented with the increased extract concentration, which could be ascribed to
the degradation of a macromolecular protein or the chaperones and signal transduction
protein produced by bacteria in the stressful environment [33]. This was different from the
lighter protein bands [34]. According to the time–kill kinetics, 1/4 ×MIC was determined
to analyze the bacterial intracellular proteome profiling response to RTMBE treatment in
this text.
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2.5. Scanning Electron Microscopy (SEM) Analysis

The SEM observations were carried out based on Reference [35], with slight modifica-
tions in the text. The PccS1 cells at the exponential phase were harvested and dissolved
in PBS. Then, the RTMBE was added with different concentrations for 12 h. As shown in
Figure 5a, the PccS1 cell was smooth, integral and typical short rod-shaped in the control
group, whereas the cell membrane and cell wall integrity were gradually disrupted in the
treatment. No visible holes or morphologic changes were observed after treatment with
1/8×MIC RTMBE, except for a small number of cell surface wrinkles (Figure 5b); however,
most of the cell membranes and cell walls were completely destroyed and became more
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shrunken and hollower in Figure 5e, resulting in cytoplasmic material leakage. In addition,
the treated strain showed an obvious aggregate reaction, which may be ascribed to the
quorum sensing produced by the bacteria in response to external stimulation [36]. The
results supported that RTMBE has a severe impact on the permeability and integrity of cell
walls [37]. It was speculated that the proteins associated with bacterial biofilms played an
important role in understanding the antimicrobial mechanism.
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2.6. Proteomic Analysis

In order to further investigate the effects of RTMBE on PccS1 at the molecular level,
the label-free based LC-MS/MS quantitative proteomic approach was utilized. By using
the MaxQuant program, a total of 3273 proteins derived from 28,372 unique peptides in
the treated sample were identified, while there were 3258 protein groups detected in the
untreated control sample. Among these proteins, the expression levels of 953 proteins were
shown to be significantly different (FC > 2.0 or FC < 0.5, p < 0.05) between the treated
and untreated bacteria, including 466 upregulated and 487 downregulated proteins. A
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hierarchical clustering analysis (Figure 6) was also applied to visualize the expression levels
of all proteins in the groups, showing that the proteins were significantly changed using R
studio software. To gain insight into the functional categories of the 953 different expressed
proteins (DEPs), the identified proteins were further analyzed by GO annotation using the
UniProt database, which is the main way to understand the gene functions.
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As shown in Figure 7, the majority of the enriched DEPs were mainly annotated into
several cellular components (Figure 7a), including the membrane (26.3%), integral compo-
nent of membrane (25.1%) and intrinsic component of membrane (25.1%). In the molecular
functional category (Figure 7c), 21.2% of the proteins were related to transporter activity,
followed by the transmembrane transporter activity (16.1%) and active transmembrane
transporter activity (8.7%). The KEGG pathway analysis showed that the most notable
pathway was beta-Lactam resistance (Figure 7d), a major determinant of this resistance
in Gram-negative pathogens [38]. Previous studies showed that resistance to beta-lactam
could be primarily ascribed to the presence of β-lactamase, the mutation of β-lactam targets
and overexpression of efflux pumps [39]. In this case, type I secretion outer membrane
protein TolC, penicillin-binding protein PBP1A, efflux pump membrane transporter and
AmpG involved in beta-Lactam resistance were obviously downregulated. It was suggested
that TolC could be a better target for the development of efflux pump inhibitors [40]. The
downregulation of the TolC protein in this case indicated that Rheum tanguticum extract
can be considered a natural antimicrobial agent, which may also increase the sensitivity
to antibiotics.
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The membrane-associated PBP1A protein is the main component of bacterial cell
walls and can bind to the β-lactam antibiotic penicillin [41]. The protein PBP1A was
downregulated after dealing with RTMBE, suggesting that its active ingredients may
inhibit the formation or structural stabilization of cell walls. This was also consistent with
the morphological tests of bacteria after RTMBE treatment by SEM and FTIR detection. The
ampG encodes a transmembrane protein functioning as a specific permease to transport
peptides, which are the signal molecules involved in ampC expression [42]. The membrane
protein AmpG was significantly downregulated in this case, indicating that the permeability
and stability of the cell membrane were repressed, and, correspondingly, the bacterial
adhesion, invasion and resistance to complement sterilization and pathogenic processes
were also affected. It was convinced that the outer membrane was seriously damaged and
intracellular proteins were gradually released, which was consistent with the results of
SDS-PAGE electrophoresis.

It was reported that the flagellar motility was considered as an accessory virulence
determinant in plant bacterial pathogens [10,43]. Previous studies showed that the motility
phenotypes of PccS1 were altered when some key genes, mreB, flgK and hfq, were knocked
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out; simultaneously, the virulence and plant cell wall-degrading enzyme activities were
decreased [10]. From the downregulated flagellar motility-related protein in this text,
such as flagellar hook protein FlgE, flagellar motor switch protein FliG, flagellar L-ring
protein, flagellar motor protein MotA, flagellar basal-body rod protein FlgC and flagel-
lar biosynthetic protein FliP, it was speculated that the RTMBE also played an essential
antibacterial role by affecting the swimming motility of the cells. In addition, all of the
proteins for pectate lyase were conversely upregulated after RTMBE treatment, which was
similar to the previous work that genes of pectate lyase were positively plant-induced
types during the bacteria inflection process [44]. This may ascribe to the bacterial general
stress response, which plays a critical role in stress priming that increases bacterial fitness
to threats from the environment [45]. In addition, the type I secretion outer membrane
protein and virulence-related outer membrane protein were suppressed after dealing with
RTMBE, indicated that the soft-rot pathogenic microbial decreased its ability to attack the
host plants and compete with environmental bacteria [46,47].

2.7. Protein–Protein Interactions (PPI) Analysis

STRING is an online analysis tool used to analysis protein–protein interaction net-
works, which is a remarkable method for understanding the biological responses in health
and disease [48]. As shown in Figure 8, the PPI network of the DEPs and their pathways
contained 72 nodes and 145 edges, and the average number of neighbors was 4.028. The
PPI enrichment p-value was 0.0025, which means more interactions among these proteins.
Some proteins were related simultaneously to two pathways: butanoate metabolism and
a two-component system, such as fumarate reductase subunit C (PC1_3760), 3-oxoacid
CoA-transferase (PC1_1161), fumarate reductase iron-sulfur subunit (PC1_3759) and fu-
marate reductase flavoprotein subunit (PC1_3758). The response regulator receiver protein
(PC1_2606) of the two-component system interacted with 17 proteins (15 proteins were
downregulated), suggesting its essential role in the network interactions. The actual
quantity of the edges was more than the expected quantity of the edges in the PPI of
the DEPs, indicating that more interactions existed among these proteins, especially the
suppressed ones.
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3. Materials and Methods
3.1. Chemical Reagents, Bacterium and Growth Condition

Rheum tanguticum Maxim. ex Balf. was obtained from Gannan Tibetan Autonomous
Prefecture more than 3000 m above the sea level (Gansu Province, China) and was identified
by Professor X. Luo (Chemical Engineering, Northwest Minzu University, Lanzhou, China).
Ammonium bicarbonate, dimethyl sulfoxide (DMSO), dithiothreitol (DTT), iodoacetamide
(IAA) and sodium carbonate were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Urea and sodium dodecyl sulfate (SDS) were purchased from Bio-Rad (Hercules, CA, USA).
Acetonitrile and water for nano-LC-MS/MS were purchased from J.T. Baker (Phillipsburg,
NJ, USA). Trypsin was purchased from Promega (Madison, WI, USA). All other chemical
reagents were analytical grade. The resistant PccS1 strain was obtained from the Key
Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural
University. The strain was activated in LB broth at 28 ◦C under shaking conditions.

3.2. Preparation of the Extract of the Natural Medicine

Rheum tanguticum was first crushed into small pieces and mixed, then soaked in 75%
ethanol (1:10, w/v) and refluxed for 2 h. The filtrates were collected, and the residues were
refluxed in 75% ethanol for 1.5 h. Two batches of filtrates were combined, filtered and
evaporated with rotary evaporation; finally, the powder was obtained by using a vacuum
freeze dryer. The RTMBE was adjusted to the corresponding concentration by adding
DMSO (5% v/v). Afterwards, the solution was filtered through a 0.22-µm filter and stored
in a seal at 4 ◦C.

3.3. Ultra-Performance Liquid Chromatography-Electrospray-Mass Spectrometry
(UPLC-ESI-MS) Analysis

UPLC was performed by using a Thermo Scientific reversed phase C18 Column
(100 mm × 2.1 mm, 3 µm). RTMBE was adjusted to 1 g/mL by methanol and filtered
through a 0.22-µm filter. Chromatographic separations were performed at a column
temperature of 30 ◦C, a flow rate of 20 µL/min and an injection volume of 0.5 µL. A
linear gradient elution of methanol (A) and water with 1% formic acid (v/v) (B) was
applied with the following program: 0–1 min, 5% A; 1–8 min, 5–20% A; 8–14 min, 20–20%
A; 14–16 min, 20–25% A; 16–17 min, 25–27% A; 17–21 min, 27–32% A; 21–30 min, 32–32% A;
30–35 min, 32–35% A; 35–40 min, 35–40% A; 40–45 min, 40–50% A; 45–55 min, 50–90% A;
55–62 min, 90–95% A; 62–64 min, 95–95% A; 64–65 min, 95–5% A; 65–68 min, 5–5% A. The
ultraviolet detection wavelength was set as 254 nm. Mass spectra were acquired with an
ESI source in the range of m/z 100–1000. The optimized MS parameters were set as follows:
spray voltage 3.78 Kv, spray current 16.03 µA, temperature 215.22 ◦C, sheath gas flow rate
19.99 arb, aux gas flow rate 4.99 arb, sweep gas flow rate 0.99 arb and capillary temperature
257.34 ◦C. Electrospray ionization was applied either in the negative mode to obtain better
chromatograms. The software Elemental composition TM was used for data acquisition
and processing.

3.4. The Minimum Inhibitory Concentration (MIC)

According to the method described in Reference [49], the MIC of RTMBE was deter-
mined by the twofold dilution method in a 96-well microplate. After cultivation in the
log phase, the final concentration of bacteria suspension was adjusted to ~106 CFU/mL.
RTMBE with different concentrations were added in each hole. The bacteria cultured in
LB without drugs was used as the positive control, while the liquid without bacteria was
regarded as the negative control. Then, the color change of the mixture was assessed
visually, and Microplate Reader determined the OD600 after incubating for 24 h at 28 ◦C.
The lowest concentration inhibiting the growth of the strain was considered as the MIC [50].
All the tests were repeated three times.
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3.5. Measurement of Antibacterial Curves

The strain PccS1 was cultivated in LB broth at 180 rpm and 28 ◦C; then, the cells
were collected by centrifugation (8000× g, 10 min). When the OD600 value was 0.8, the
bacterial suspensions were adjusted to 0.5 McFarland using fresh LB medium. Finally,
the treated suspensions with RTMBE concentrations of 1 ×MIC, 1/2 ×MIC, 1/4 ×MIC
and 1/8 ×MIC, respectively, were obtained. The OD600 of the supernatants was finally
measured by an ultraviolet spectrophotometer to draw a bacteriostasis curve, which used
the time as the abscissa and the OD600 value as the ordinate.

3.6. Measurement of Extracellular Protein Content

The PccS1 cells at exponential phase were treated for 2, 4, 6, 8, 10, 12, and 24 h using
RTMBE in the same manner as antibacterial curves. After centrifugation, the supernatants
were used to detect the extracellular protein content by Commassie Blue Staining Kit based
on Bradford method (Nanjing Jiangcheng Bioengineering Institute, China). The supernatant
turns blue if the protein sample is combined with the Coomassie Brilliant Blue G-250, the
protein content can be calculated by measuring the absorbance:

The protein content (g/L) =
OD595sample −OD595blank

OD595standard −OD595blank
× Sc×Df

where the Sc means the Standard concentration (g/L), the Df means the Dilution factor.

3.7. SDS-PAGE Analysis of Bacterial Intracellular Proteins

The strained cells in the exponential phase were treated with RTMBE at different
concentrations for 8 h; then, the bacteria were collected by centrifugation at 8000× g for
10 min and washed three times with 0.1 M phosphate-buffered saline (PBS, pH 7.2). The
protein was extracted from tissue samples using a SDT lysis buffer. The samples were
boiled for 5 min and further ultrasonicated and boiled again for another 5 min. Undissolved
cellular debris were removed by centrifugation at 16,000× g for 15 min. The supernatant
was collected and quantified with a BCA protein assay kit (Bio-Rad, Hercules, CA, USA).
Fifteen micrograms of bacterial suspension samples mixed with the loading buffer were
boiled in tubes and then loaded on the gel. Electrophoresis was performed at 80 V through
the stacking gel (5%) and at 120 V through the separation gel (12%). Coomassie brilliant
blue R-250 was used to stain the gel, and the separated protein bands were obtained after
being decolorized. The bacteria cultured in LB without treatment was used as the positive
control. All the tests were repeated three times.

3.8. Fourier Transform Infrared Spectrophotometer (FTIR) Analysis

A FTIR analysis was applied to test the variations of particular chemical moieties
of PccS1 affected by RTMBE. After the cultivation of these strains, respectively, with the
1 ×MIC, 1/2 ×MIC, 1/4 ×MIC and 1/8 ×MIC RTMBE concentrations, the cells were
washed three times by 5 mL of PBS, centrifuged at 8000× g for 5 min and then dried at
28 ◦C. The presence of various functional groups in bacterial cells samples were identified
by FTIR (Perkin Elmer Spectrophotometer 100, Waltham, MA, USA) using a KBr pellet in
a range of 650–4000 cm−1 (64 scans and 1 cm−1 resolution). The obtained spectra were
normalized, baseline-corrected and analyzed using SPECTRUM software.

3.9. Scanning Electron Microscopy (SEM)

The SEM analysis was performed based on the methods described in Reference [35]
with slight modifications. The bacterial suspensions in the exponential phase were adjusted
by using the PBS buffer, and then, RTMBE was added with the final concentration of
1 ×MIC, 1/2 ×MIC, 1/4 ×MIC and 1/8 ×MIC, respectively. The same volume of the
buffer without drugs was considered as the control. After incubation for 8 h with shaking,
the bacterial colonies were collected directly by washing and centrifugation (8000× g for
10 min). The bacterial cells were immobilized with a 2.5% glutaraldehyde solution at 4 ◦C
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for 6 h and then serially dehydrated by using gradient ethanol solutions (50–100%, v/v).
Finally, the treated cells were coated with gold and observed using a Cold Field Emission
Scanning Electron Microscope (JSM-6701F, 0.5 Kv–30 kV accelerating voltage, JEOL, Japan).

3.10. Protein Digestion and LC-MS/MS Analysis

Protein (200 µg for each sample) digestion was performed with the FASP method
described by Reference [51]. In short, the detergent, DTT and IAA in UA buffer were
added to block reduced cysteine. The protein suspension was digested with trypsin at a
ratio of 50:1 overnight at 37 ◦C. The peptide was collected by centrifugation at 16,000× g
for 15 min and desalted with C18 StageTip for further analysis. LC-MS/MS experiments
were performed on a Q-Exactive Plus hybrid quadrupole-Orbitrap mass spectrometer
coupled with Easy 1200 nLC (Thermo Fisher Scientific). Reverse-phase high-performance
liquid chromatography (RP-HPLC) separation was performed with the EASY-nLC system
at a 300-nL/min flow rate. The mobile phase was A (0.1% formic acid in water) and B
(0.1% formic acid in 95% acetonitrile). MS data was acquired using a data-dependent
top 20 method dynamically choosing the most abundant precursor ions from the survey
scan (300–1800 m/z) for fragmentation. A lock mass of 445.120025 Da was used as an
internal standard for mass calibration. The full MS scans were acquired at a resolution
of 70,000 at m/z 200 and 17,500 at m/z 200 for the MS/MS scan. The MS data were
analyzed using MaxQuant software and searching through the UniProt database. Label-
free quantification was carried out using the intensity determination and normalization
algorithm as previously described methods [52–54]. Only proteins with fold change (FC)
> 2.0-fold (or FC < 0.5) and p-value < 0.05 were considered for significantly differential
expressed proteins (DEPs).

3.11. Bioinformatics Analysis

Bioinformatics data were analyzed by Perseus software [55]. Hierarchical clustering
analysis was performed with the Pheatmap package. UniProtKB/Swiss-Prot [56], Kyoto
Encyclopedia of Genes and Genomes (KEGG) [57] and Gene Ontology (GO) [58] were used
to extract and annotate the sequences. GO and KEGG enrichment analyses were carried
out with Fisher’s exact test, and FDR correction for multiple testing was also performed.
The protein–protein interaction (PPI) networks were constructed by using the STRING
database and Cytoscape software [59].

3.12. Statistical Analysis

All data were expressed as the mean ± standard deviation (SD) of three replicates.
One-way analysis of variance (ANOVA) and Tukey’s test were used to compare parametric
data, and p < 0.05 was considered statistically significant in all experiments.

4. Conclusions

In this text, we reported for the first time that RTMBE has an evident inhibitory
activity against the rifampicin- and streptomycin-resistant Pcc strain. The antibacterial
mechanism of RTMBE inhibition may be related to the disturbance of the outer membrane
proteins, which also play important roles in maintaining the integrity of the PccS1 cell
membrane structure and the antibiotic resistance. It was indicated that RTMBE can be
considered as good natural inhibitors, which can be used to circumvent β-lactamase-
mediated resistance by combining with other pesticides. The results presented here show
that RTMBE can decrease the virulence of the pathogenic bacteria and was considered as
an alternative natural preserver for vegetables. In-depth further studying of the structure–
activity relationship of the anthraquinone compound derivatives will help to discover more
effective antibacterial lead compounds.
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51. Wiśniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods
2009, 6, 359–362. [CrossRef] [PubMed]

52. Schwanhäusser, B.; Busse, D.; Li, N.; Dittmar, G.; Schuchhardt, J.; Wolf, J.; Chen, W.; Selbach, M. Global quantification of
mammalian gene expression control. Nature 2011, 473, 337–342. [CrossRef] [PubMed]

53. Luber, C.A.; Cox, J.; Lauterbach, H.; Fancke, B.; Selbach, M.; Tschopp, J.; Akira, S.; Wiegand, M.; Hochrein, H.; O’Keeffe, M.; et al.
Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 2010, 32, 279–289. [CrossRef]

54. Cox, J.; Hein, M.Y.; Luber, C.A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate proteome-wide label-free quantification by delayed
normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 2014, 13, 2513–2526. [CrossRef]
[PubMed]

55. Tyanova, S.; Temu, T.; Sinitcyn, P. The perseus computational platform for comprehensive analysis of (prote) omics data. Nat.
Methods 2016, 13, 731–740. [CrossRef] [PubMed]

56. Boutet, E.; Lieberherr, D.; Tognolli, M.; Schneider, M.; Bansal, P.; Bridge, A.J.; Poux, S.; Bougueleret, L.; Xenarios, I. UniProtKB/
Swiss-Prot, the manually annotated section of the UniProt knowledge base: How to use the entry view. Methods Mol. Biol. 2016,
1374, 23–54.

57. Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for integration and interpretation of large-scale molecular data
sets. Nucleic Acids Res. 2012, 40, 109–114. [CrossRef]

58. Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al.
Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [CrossRef]

59. Kohl, M.; Wiese, S.; Warscheid, B. Cytoscape: Software for visualization and analysis of biological networks. Methods Mol. Biol.
2011, 696, 291–303.

http://doi.org/10.3390/antibiotics9100635
http://doi.org/10.1094/MPMI-06-10-0143
http://doi.org/10.3389/fmicb.2019.01792
http://doi.org/10.3791/53028
http://doi.org/10.1016/j.ejmech.2016.07.062
http://doi.org/10.1038/nmeth.1322
http://www.ncbi.nlm.nih.gov/pubmed/19377485
http://doi.org/10.1038/nature10098
http://www.ncbi.nlm.nih.gov/pubmed/21593866
http://doi.org/10.1016/j.immuni.2010.01.013
http://doi.org/10.1074/mcp.M113.031591
http://www.ncbi.nlm.nih.gov/pubmed/24942700
http://doi.org/10.1038/nmeth.3901
http://www.ncbi.nlm.nih.gov/pubmed/27348712
http://doi.org/10.1093/nar/gkr988
http://doi.org/10.1038/75556

	Introduction 
	Results and Discussion 
	UPLC-ESI-MS Analysis of RTMB Active Ingredients 
	The MIC and the Growth Curves of PccS1 
	Fourier Transform Infrared Spectrophotometer (FTIR) Analysis 
	SDS-PAGE Electrophoresis of the Bacterial Protein 
	Scanning Electron Microscopy (SEM) Analysis 
	Proteomic Analysis 
	Protein–Protein Interactions (PPI) Analysis 

	Materials and Methods 
	Chemical Reagents, Bacterium and Growth Condition 
	Preparation of the Extract of the Natural Medicine 
	Ultra-Performance Liquid Chromatography-Electrospray-Mass Spectrometry (UPLC-ESI-MS) Analysis 
	The Minimum Inhibitory Concentration (MIC) 
	Measurement of Antibacterial Curves 
	Measurement of Extracellular Protein Content 
	SDS-PAGE Analysis of Bacterial Intracellular Proteins 
	Fourier Transform Infrared Spectrophotometer (FTIR) Analysis 
	Scanning Electron Microscopy (SEM) 
	Protein Digestion and LC-MS/MS Analysis 
	Bioinformatics Analysis 
	Statistical Analysis 

	Conclusions 
	References

