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Abstract. Antibodies to chicken gizzard myosin, 
subfragment 1, light chain 20, and light meromyosin 
were used to visualize myosin in stress fibers of cul- 
tured chicken cells. The antibody specificity was tested 
on purified gizzard proteins and total cell lysates using 
immunogold silver staining on protein blots. Immu- 
nofluorescence on cultured chicken fibroblasts and 
epithelial cells exhibited a similar staining pattern of 
antibodies to total myosin, subfragment l, and light 
chain 20, whereas the antibodies to light meromyosin 
showed a substantially different reaction. 

The electron microscopic distribution of these anti- 
bodies was investigated using the indirect and direct 
immunogold staining method on permeabilized and 
fixed cells. The indirect approach enabled us to de- 
scribe the general distribution of myosin in stress fi- 
bers. Direct double immunogold labeling, however, 

provided more detailed information on the orienta- 
tion of myosin molecules and their localization rela- 
tive to a-actinin: a-actinin, identified with antibodies 
coupled to 10-nm gold, was concentrated in the dense 
bodies or electron-dense bands of stress fibers, whereas 
myosin was confined to the intervening electron-lucid 
regions. Depending on the antibodies used in combi- 
nation with a-actinin, the intervening regions revealed 
a different staining pattern: antibodies to myosin (re- 
active with the head portion of nonmuscle myosin) 
and to light chain 20 (both coupled to 5-nm gold) 
labeled two opposite bands adjacent to a-actinin, and 
antibodies to light meromyosin (coupled to 5-nm 
gold) labeled a single central zone. Based on these 
results, we conclude that myosin in stress fibers is 
organized into bipolar filaments. 

S 
INCE the beginning of tissue culture, cytoplasmic fibrils 
in the form of stress fibers or tension striae have been 
observed in various types of cultured cells (31, 35). They 

were believed to develop under tension and to be reversible 
when tension is altered or relaxed. Already at that time they 
were associated with "contractile substances" or "contractile 
protoplasm" that was thought to coagulate into flbrillae of 
various sizes (31). In addition to cells in culture, stress fibers 
have been described in various tissues in situ, including en- 
dothelial cells (1, 10, 17, 32, 36, 44, 47), retinal pigmented 
epithelium (22), and fish scale fibroblasts (6) (for a review see 
reference 7). In the electron microscope they are seen as 
parallel bundles of 5- to 7.5-nm microfilaments (4). Their 
major structural component has been identified as F-actin (2, 
8, 24, 41). In addition, stress fibers or microfilament bundles 
contain proteins similar to smooth muscle filamin (43), a- 
actinin (15, 30), myosin (16, 45), tropomyosin (29, 46), 
myosin light chain kinase (11), caldesmon (34), and vinculin 
(18). In immunofluorescent preparations, some of these, such 
as a-actinin, myosin, myosin light chain kinase, and tropo- 
myosin, show an alternating periodic arrangement similar to 

that seen in muscle sarcomeres. This regular arrangement is 
further reflected in electron microscope images of fixed and 
thin sectioned cells where regularly spaced electron-dense 
material resembling the dense bodies of smooth muscle cells 
can be observed in microfilament bundles (20, 42). 

More recently, we as well as other investigators have been 
able to identify these dense bodies as a-actinin-containing 
structures (26, 37). Furthermore, we have shown that filamin 
is localized in both electron-dense and electron-lucid regions 
(26). Myosin also was thought to be present in dense bodies 
(23, 48). However, double label immunofluorescence and 
comparative light and electron microscopic studies have in- 
dicated that a-actinin and myosin are not co-localized (21, 
48). Not only has it been unclear where myosin is located 
relative to a-actinin, but the molecular arrangement of 
myosin has remained largely unknown. 

The use of colloidal gold as a marker for intracellular 
proteins (14) in combination with our permeabilization fixa- 
tion procedure (26) has now enabled us to obtain a clear 
distribution pattern of myosin together with well-preserved 
microfilaments. 
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By using indirect immunogold staining with antibodies to 
chicken gizzard (ch.g.)' total myosin, myosin subfragment 1 
(SF1), and light chain 20 (L2o), we have been able to localize 
myosin in the form of regular bands in micro filament bundles. 
This approach, however, could not provide the correct infor- 
mation on the precise localization of myosin relative to a- 
actinin, and double immunolabeling was needed to identify 
the two proteins. This was achieved by coupling the myosin 
antibodies to 5-nm colloidal gold and those to a-actinin to 
10-nm gold and applying them simultaneously to permeabil- 
ized and fixed cytoskeletons. The results revealed an alternat- 
ing pattern of a-actinin and two bands of myosin separated 
by an unlabeled region. This striking arrangement prompted 
further investigations of the molecular organization of 
myosin, now known to be located between the a-actinin 
bands. Antibodies to ch.g. L2o and light meromyosin (LMM) 
were coupled to 5-nm gold and used for double localization 
studies with a-actinin. 

The results presented here indicate that myosin is present 
in the form of bipolar filaments. This bipolar organization 
suggests that myosin and microfilaments are in the necessary 
conformation to mediate a sliding filament interaction. To 
what extent, however, the complex architecture of stress fibers 
allows a sliding filament movement is not yet fully under- 
stood. 

Preliminary results have been presented in abstract form 
(27, 28). 

Materials and Methods 

Cell Culture 
Chicken embryonic heart fibroblasts and lung epithelial cells were isolated as 
described previously (26). Dissociated cells were plated onto glass coverslips for 
light microscopy and onto Permanox petri dishes (LUX, Lab-Tek Div., Miles 
Laboratories Inc., Naperville, IL) for electron microscopy (26). All cells were 
grow/~ in Eagle's minimum essential medium with Earle's salts (Flow Labora- 
tories. Irvine, Ayrshire, Scotland), supplemented with antibiotics and 10% fetal 
calf serum (Flow Laboratories). They were incubated in a humidified 5% CO2/ 
air atmosphere at 37 *C. 

Preparation of Total Cell Lysates for SDS 
Electrophoresis and Electroblotting 
Fibroblasts and epithelial cells were grown in ten 9-cm Petri dishes and allowed 
to reach confluence. A total cell lysate used for immunoblotting experiments 
was prepared as follows: the cells were washed twice in phosphate-buffered 
saline without Ca*" or Mg ÷+ (Gibco Laboratories Inc., Grand Island, NY). 
They were collected with a razor blade and transferred to 5-ml ice-cold 10% 
trichloracetic acid, which was replaced by 5% trichloracetic acid after 30 min 
on ice. The precipitate was washed twice with cold (-20"C) acetone and the 
acetone was allowed to evaporate. The dried cell residue was then solubilized 
in 1 ml boiling SDS sample buffer for 3 min. This concentrated cell lysate was 
centrifuged (15,000 g, 5 min), aliquoted, and stored until use. 

Antibody Production, Purification, 
and Characterization 
Rabbit antibodies to ch.g. a-actinin were obtained and characterized as de- 
scribed in a previous study (26). Smooth muscle myosin and SFI were made 
from ch.g. according to Sobieszek and Small (40) with the inclusion of  an 
additional DEAE-ion-exchange column purification step for SF1. ch.g. myosin 
L20 was isolated according to Sobieszek and Barylko (39), and LMM of ch.g. 
myosin was purified by R. A. Cross as described elsewhere (9). Rabbits were 
immunized with these proteins, and the antibodies obtained were affinity 
purified as reported previously (12). 

Abbreviations used in this paper." ch.g., chicken gizzard; El7 and L2o, myosin 
light chain 17 and 20, respectively; LMM, light meromyosin. 

The antibody specificity was tested with the immunogold silver staining 
method on protein blots (33). A typical blot unit consisted of the following 
lanes: (A) reference proteins at 0.5 ug per band; (B) chicken heart fibroblasts, 
25 ul of total cell lysate; (C) lung epithelial cells, 20 ul of total cell lysate; (D) 
ch.g. myosin (0.25 #g); (E) ch.g. myosin rod (0.25 ug); (F) ch.g. SFI (0.25 v.g); 
(G) ch.g. LMM (0.25 ug); and (H) ch.g. L~o (0.25 ug). In brief, the proteins 
were separated on SDS polyacrylamide gels prepared as described by Blattler 
et al. (3) and electrotransferred in 25 mM Tris-glycine buffer without methanol 
(19) onto Zeta-probe (Bio-Rad Laboratories, Richmond, CA) using a Bio-Rad 
Trans-Blot cell, 200 V for 3 h, cooled to 4"C. The blot units were quenched 
with 10% bovine serum albumin (BSA) in 20 mM Tris-buffered saline, pH 8.2, 
at 37"C for 16 h (overnight) and further processed for immunogold silver 
staining with different antibodies (at concentrations of 0.5 ug/ml in Tris- 
buffered saline + 0.1% BSA (see legend to Fig. 1) as described earlier (33). The 
staining pattern of the blots was related to the total protein pattern in the blot 
unit by staining a duplicate blot with FerriDye (Janssen Life Sciences Products, 
Beerse. Belgium). This protein stain, the first to give satisfactory results on 
positively charged nylon membranes, involves an incubation of the blot unit 
with positively charged cacodylate-iron hydroxide particles, which selectively 
bind to the proteins, and a subsequent reaction (1 rain) with fresh acid 
potassium ferrocyanide, which converts the colloid to Prussian blue. The details 
of the method will be described elsewhere (Moeremans, M., M. De Raeymaeker, 
G. Daneels, and J. De Mey, manuscript submitted for publication). 

lmmunocytochemistry 
Cytoskeletons were prepared as reported elsewhere (26), using 0.1% Triton X- 
100 extraction (30 s for fibroblasts, 45 s for epithelial cells), 0.5% glutaraldehyde 
fixation (10 min), 0.5% Triton X-100 permeabilization (30 min), treatment 
with sodium borohydride (1 mg/ml, 20 min), and incubation in normal goat 
serum (diluted 1:20, 15 min). Indirect immunofluorescence and indirect im- 
munogold staining were carried out exactly as described in our previous paper 
(26). 

Direct Double lmmunogold Staining. The antibodies to ch.g. a-actinin were 
coupled to 10-nm colloidal gold, and those to total ch.g. myosin, L2o, and LMM 
were coupled to 5-nm gold according to De Mey (13), as modified by Slot and 
Geuze (38). 

Each of the 5-rim gold complexes was mixed with anti-a-actinin-10-nm 
gold, applied to permeabilized and fixed cytoskeletons (prepared as above), and 
incubated overnight. The best results were obtained with the following concen- 
trations: anti-a-actinin-10-nm gold, optical density at 520 nm (OD~2o) = 0.3 to 
0.9: anti-myosin-5-nm gold, ODs2o = 0.6 to 1.2; anti-L2o 5-nm gold, OD~2o = 
1.2 to 1.8: and anti-LMM-5-nm gold, ODs~0 = 1.2 to 1.8. Control cells for 
direct double immunogold staining were incubated with unlabeled primary 
antibodies in concentrations of 2 to 5 ug/ml for 2 h, then washed three times 
for 10 min in Tris-buffered saline + 0.1% BSA, pH 8.2, and further incubated 
with the corresponding antibody-gold complexes in concentrations as described 
above, overnight. Control cells and double immunogold stained preparations 
were washed three times for 10 rain in Tris-buffered saline buffer + 0.1% BSA, 
pH 8.2, before postfixation. 

Electron Microscopy. Indirect and direct immunogold preparations were 
processed for electron microscopy exactly as reported in our previous paper 
(26), involving postfixation with 2% glutaraldehyde/0.2% tannic acid (for 30 
rain), fixation with 0.5% osmium tetroxide (for 10 min on ice), impregnation 
with 1% phosphotungstic acid/0.5% uranylacetate (for 30 rain), dehydration 
in ethanol, Epon embedding, and thin sectioning. 

All experiments were carried out at room temperature, unless otherwise 
stated. 

Results 

Antibody Characterization 
Fig. 1 illustrates the antibody reactions on immunoblots. The 
SDS-separated proteins (Fig. 1 a) were transferred to Zeta- 
probe membranes and visualized with FerriDye (Fig. 1 b). Fig. 
l c shows the reaction of antibodies to whole ch.g. myosin 
molecules. The antibody reacted with the 200-kD heavy chain 
of purified myosin, myosin in the reference protein mixture, 
and all subfragments except the light chains. Fibroblasts and 
epithelial cell extracts showed a reaction on bands that had 
the same relative mobility as the myosin heavy chain. Addi- 
tional lower molecular weight bands were present in epithelial 
cell extracts. The antibody to SF1 of ch.g. myosin (Fig. 1 d) 
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Figure 1. Characterization of antibodies to ch.g. total myosin, myosin SFI, L2o, and LM M. (a) Electrophoretic pattern of polypeptides in SDS 
polyacrylamide gels (12%) according to Blattler (3). Lane A, purified reference proteins: (1) ch.g. myosin heavy chain; (2) ch.g. a-actinin; (3) 
BSA; (4) rat brain tubulin; (5) ch.g. actin; and (6) pig stomach tropomyosin. Lane B, chicken heart fibroblasts. Lane C, chicken lung epithelial 
cells. Lane D, ch.g. myosin heavy chain. Lane E, ch.g. myosin rods. Lane F, ch.g. myosin SF1. Lane G, ch.g. LMM. Lane H, ch.g. L20. (b-f) 
Immunoblots of electroeluted proteins on Zeta-Probe: (b) vizualization of the total protein pattern by FerriDye staining enhanced to Prussian 
blue. (c-f) Immunogold silver staining of protein blots reacted with antibodies to (c) total ch.g. myosin, (d) ch.g. myosin SF1, (e) ch.g. L2o, and 
(f)  ch.g. LMM. 

reacted with the myosin heavy chain in both myosin and the 
reference proteins containing myosin, SF 1, and low molecular 
weight bands corresponding to the 17-kD light chain. In 
fibroblast and epithelial cell extracts it reacted with bands that 

had the same relative mobility as the light chain 17 (LIT) 
bands. Myosin rods and LMM fragments did not show any 
reaction. Fig, I e demonstrates the reactions of  antibodies to 
ch.g. L2o with purified L2o and with both light chains (ch.g. 
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Lzo and L�) of purified myosin, myosin in the reference
proteins, and the corresponding bands in whole cell extracts
(fibroblasts and epithelial cells). Myosin rods and LMM frag-
ments did not react. Antibodies to LMM (Fig. If) reacted
with the 200-kD heavy chain of myosin in the reference
proteins, pure myosin, and the corresponding bands in fibro-

blast and epithelial cell extracts. Bands slightly lower than the
myosin heavy chain in the protein mixture probably represent
breakdown products of myosin . The antibody did not react
with SFI or the light chains .
Light Microscopy. Immunofluorescence images of chicken

heart fibroblasts (Fig . 2, a-d) and lung epithelial cells (Fig. 2,

Figure 2. Immunofluorescence images of0.1% Triton X-100 extracted chick heart fibroblasts (a-d) and lung epithelial cells (e andf) stained
with antibodies to (a) ch.g. total myosin, (b) myosin SF1, (c) Leo, (d) LMM, (e) Lzo, and (f ) LMM. a-c and e exhibit a similar staining pattern
of long fluorescent bands interrupted by shorter unstained regions . d and f, in contrast, show a more uniform banding pattern of dark and
fluorescent regions . Insets show the different staining patterns in more detail : long fluorescent regions (a-c and e) often running in doublet
bands (arrowheads), on the one hand, and single fluorescent bands (d andfarrows), on the other.
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e and f )  show the reaction of antibodies to smooth muscle 
myosin and its subfragments with cultured cells. Cells stained 
with antibodies to total myosin (Fig. 2 a), myosin SF1 (Fig. 
2b), and LEO (Fig. 2, C and e) exhibit a similar pattern of 
relatively long fluorescent bands interrupted by shorter un- 
stained periods. Antibodies to LMM, on the other hand, 
display a more uniform banding pattern of dark and fluores- 
cent regions (Fig. 2, d and f ) .  This characteristic difference is 
seen with particular clarity at higher magnifications (Fig. 2, 
insets). In addition, we have noted that some of the long 
fluorescent regions seen in the insets to Fig. 2, a-c and e 
appear in doublets, whereas the bands in Fig. 2, d and f d o  
not show such subdivisions. 

The fixation permeabilization procedure used here involved 
0.1% Triton X-100 extraction and 0.5% glutaraldehyde fixa- 
tion. As reported in previous research (26), the protein distri- 
bution in stress fibers is not significantly altered by this 
procedure. The organization of myosin is particularly well 
preserved under these conditions. 

Electron Microscopy 

Controls. The method specificity of the indirect immunogold 
procedure has been demonstrated previously, using 1% nor- 
mal goat serum as negative and anti-tubulin staining as posi- 
tive control (26). As described in our earlier report, the 
background staining of indirect immunogold preparations 
reflecting the unspecific binding of goat anti-rabbit antibodies 
coupled to gold is negligible (26). Staining of anti-a-actinin- 

Figure 3. Control for double immunogold staining: fibroblast incu- 
bated with primary antibodies to smooth muscle c~-actinin and 
myosin and then with anti-a-actinin-10-nm gold and anti-myosin-5- 
nm gold. Note the morphological details of stress fibers preserved 
under these conditions. 

10-nm gold and anti-myosin-5-nm gold was largely reduced 
by blocking the antigenic sites with unlabeled primary anti- 
bodies to a-actinin and myosin (Fig. 3.). The remaining gold 
labeling may partly be due to specific staining (because a 
certain amount of primary antibodies may have dissociated 
from the antigen and allowed the antibody-gold complex to 
bind to that site) and partly reflect the unspecific binding of 
the anti-a-actinin and -myosin gold complexes. 

Indirect ImmunogoM Staining. By using antibodies to 
smooth muscle myosin, SFI, and L2o we could localize myosin 
in the form of regular bands interrupted by longer and shorter 
unlabeled regions. The localization of SF1, shown in Fig. 4 a 
illustrates the type of reaction obtained with these antibodies. 
Some of the stained regions are arranged into doublet bands. 

The permeabilization fixation procedure is identical to that 
used for light microscopy and has been shown to provide the 
optimal conditions for the preservation of ultrastructural de- 
tails and the penetration of antibodies and gold probes into 
densely packed microfilament bundles (26). 

Fig. 4 a illustrates that the organization of myosin and the 
general appearance of microfilament bundles is well preserved 
under these conditions. Due to the accumulation of primary 
and secondary antibodies, however, and the following postfix- 
ation and contrasting procedures, the labeled regions were 
greatly enhanced in contrast. The dense bodies of stress fibers 
seen in giutaraldehyde-fixed cells and controls for indirect 
immunogold staining could no longer be discerned from the 
dark anti-myosin bands. Consequently, the sites of a-actinin 
could not be identified by morphologic criteria. Simultaneous 
localization of a-actinin and myosin with primary antibodies 
followed by immunogold labeling resulted in an homogeneous 
distribution of gold particles occasionally interrupted by un- 
labeled regions (Fig. 4b). Although dense bodies could be 
detected in these preparations, this approach did not provide 
enough evidence for a possible antiperiodicity of myosin and 
a-actinin. 

Direct Double Immunogold Staining. The essential infor- 
mation on the distribution of myosin relative to a-actinin was 
obtained after double immunolabeling: simultaneous localiza- 
tion of a-actinin and myosin resulted in a periodic staining 
pattern of a-actinin (10-nm gold) flanked by two bands of 
myosin (5-nm gold) and unlabeled zones separating the con- 
fronting myosin regions (Fig. 5). This pattern was observed 
in all microfilament bundles of the cell body, including very 
fine rays of parallel actin filaments. Double immunolabeling 
with anti-L2o-5-nm gold and anti-a-actinin-10-nm gold re- 
vealed the same distribution pattern in fibroblasts and epithe- 
lial cells. A significantly different reaction was obtained by 
using anti-LMM-5-nm gold in combination with anti-a-ac- 
tinin. These antibodies labeled the middle bands, which were 
unstained in the previous experiments (see Figs. 6, and 7, c 
and f ) .  The two bands adjacent to a-actinin were largely 
unlabeled by the LMM antibodies. From these experiments 
and the results of indirect immunogold staining we conclude 
that the antibodies raised against total myosin and reactive 
with the whole molecule of smooth muscle myosin detect 
only the head regions of fibroblast and epithelial cell myosin. 
Myosin rods are located in the middle of stress fiber units and 
can only be identified with antibodies specific to smooth 
muscle LMM. This could indicate a basic difference between 
the rods of nonmuscle cell and smooth muscle myosin. 

Higher magnifications of stress fiber units show the orga- 
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Figure 4. Thin section of microfilament bundles (stress fibers) labeled with (a) antibodies to myosin SF1 and goat anti-rabbit antibodies coupled 
to 5-nm gold (GAR-G5), and (b) antibodies to SFI, a-actinin, and GAR G5. Arrowheads in a indicate doublet bands. 

nization of  myosin in fibroblasts (Fig. 7, a-c) and epithelial 
cells (Fig. 7, d-f)  in more detail: dense bodies are identified 
with indirect a-actinin staining in Fig. 7, a and d and direct 
10-nm gold labeling in Fig, 7, b, c, e, a n d f  Morphological 
details of  the intervening regions such as two electron-dense 
bands containing cross-bridges and a more electron-translu- 
cent central region are seen in Fig. 7, a and d. Regions 
corresponding to the two dense bands of cross-bridges are 
labeled with 1_,2o antibodies (5°nm gold, Fig. 7, b and e) and 
the central zone with anti-LMM-5-nm gold (Fig. 7, c and f ) .  
The schematic drawing (Fig. 8) summarizes our results on the 

organization of actin, myosin, a-actinin, and filamin in stress 
fibers (see also reference 26): Actin filaments with opposite 
polarity emerge from a-actinin- and filamin-containing dense 
bodies. Filamin and myosin are localized in the intervening 
electron-lucid regions. Myosin is organized into bipolar fila- 
ments with a maximal length of  0.4 um. Since Triton X-100 
is used before fixation, the filaments could be slightly affected 
by the detergent. Therefore the exact diameter cannot be 
given. 

The organization of  myosin has mainly been described in 
fibroblasts. The thicker epithelial cells were less easily pene- 
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Figure 5. Double immunogold staining of a-actinin and myosin in a chick heart fibroblast: myosin, labeled with 5-nm gold (arrowheads) is 
confined to the regions between a-actinin (10-nm gold, arrows). Note the presence of doublet bands similar to those observed in SFI and L2o 
stained cells and the bare zones in between. 

trable for antibody-gold probes, and it was very difficult to beled areas, however, indicate that stress fibers of epithelial 
obtain large areas in which two antibodies showed an optimal cells are organized like those in fibroblasts. The unit  length 
label density. The antibody distribution patterns observed in however, may vary among different types of cells (see also 
immunofluorescence preparations and in the small welMa- reference 37). 
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Figure 6. Double immunogold staining of a-actinin and myosin rods 
in a chick heart fibroblast: antibodies to LMM coupled to 5-nm gold 
decorate the middle bands (arrows) between the a-actinin regions 
identified by 10-nm gold, 

Discussion 

Antibody Characterization 
The results document the specificity of all antibodies in both 
purified proteins and whole cell extracts. Anti-myosin, how- 
ever, shows a cross-reaction in epithelial cells (Fig. l c, lane 
C) presumably corresponding to a reaction with keratin fila- 
ments (or associated proteins) seen in immunofluorescence 
and immunogold-stained cells (results not shown). Fibroblast 
intermediate filaments did not cross-react with anti-myosin. 
The antibody was not used for the localization of myosin in 
epithelial cells. Antibodies to SFI strongly react with the 
myosin heavy chain ofch.g, myosin (in both purified myosin 
and reference proteins). Fibroblasts and epithelial cells, how- 
ever, show a reaction only with the lower molecular weight 
light chain (Ll7). The absence of immunoreactive 200-kD 
bands in both cell types suggests a significant difference be- 
tween cellular and smooth muscle myosin. Our cells do not 
react with antibodies to striated muscle myosin (results not 
shown). Hence, we conclude that the cells used in this study 
are true nonmuscle cells. 

lmmunogold Staining 
Whereas the light microscopic distribution of actin and asso- 
ciated proteins has been excellently documented by fluores- 
cent techniques, the electron microscopic investigations have 
been greatly hampered by technical problems. Using the 
indirect immunogold staining method we have been able to 
overcome some of the difficulties. The technique has been 
adapted to the localization of actin and associated proteins 
(a-actinin, fllamin) in either thin microfilament networks or 
bundles in cultured cells (26). 

However, the conclusions obtained by the indirect method 
are always restricted to the one protein studied. An investi- 
gation of the distribution of two proteins with antibodies of 
the same species requires the use of antibodies directly coupled 
to different sizes of gold. Cells stained with these antibody- 
gold complexes revealed a somewhat higher background than 
usual. This may be caused by the rather high concentrations 
of gold probes that had to be used to obtain a significant label 
density. The use of homologous high affinity antibodies (es- 
pecially anti-myosins) will probably overcome that problem. 
However, the double labeling approach using antibodies that 
cross-react relatively weakly with nonmuscle cell myosin has 
allowed us to gain more insight into stress fiber organization. 

Microfilament Bundles: Architecture and Composition 
Electron microscope images of microfilament bundles or 
stress fibers establish the existence of a substructure of alter- 
nating electron-dense and electron-lucid regions (20, 42). This 
arrangement is believed to reflect the periodic distribution of 
actin-associated proteins such as a-actinin, myosin, tropo- 
myosin, and others. 

Although double immunofluorescence and simultaneous 
localization studies of a-actinin and myosin (21, 48) have 
made it quite clear that these two proteins are not co-localized 
and arranged alternately along stress fibers, it has been more 
difficult to determine precisely their electron microscopic 
localization and correlate it with the typical fine structure of 
microfilaments. Both a-actinin (26, 37) and myosin (23, 48) 
have been found in electron-dense bands. This apparent con- 
tradiction can in part be explained by an artifact due to 
antibody staining and contrasting procedures: When a-actinin 
present in electron-denSe material usually visible in glutaral- 
dehyde-fixed preparations (20, 26, 42) is detected by gold- 
labeled antibodies and subsequently submitted to contrasting 
procedures, the general morphology of microfilament bundles 
is not altered but enhanced in its typical appearance (26). 
However, when myosin is localized by antibodies coupled to 
colloidal gold (see Fig. 4a) or ferritin (23) or by protein A- 
gold complexes (25), additional proteins are accumulated and 
subsequently contrasted, resulting in structures often as dense 
or denser than the a-actinin containing dense bodies. 

On the other hand, we have shown here that the intervening 
electron-lucid regions are subdivided into two zones of slightly 
increased electron-density that contain cross-bridges and a 
central, more electron-translucent, band. The use of our ex- 
traction procedure followed by tannic acid fixation and heavy 
metal contrasting allowed the visualization of structures for- 
merly not seen in glutaraldehyde-fixed cells. Immunogold 
labeling with antibodies specific to either head or tail regions 
of myosin molecules has shown that the electron-dense bands 
adjacent to a-actinin correspond to myosin heads and the 
central more electron-translucent bands to myosin tails. The 
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Figure 7. Analysis of stress fiber units in fibroblasts (a-c) and epithelial cells (d-f). Dense bodies are identified with anti-a-actinin and GAR- 
G5 in a and d and anti-c~-actinin coupled to 10-nm gold in b, c, e, and f. (a and d) Fine structural details of the electron-lucid bands: two 
electron-dense regions containing cross-bridges (arrowheads) are adjacent to a bare, more electron-translucent zone in the middle. (b and e) 
Decoration of the two bands of cross-bridges by antibodies to LEO coupled to 5-rim gold (arrowheads). (c and f )  Identification of the bare zones 
by antibodies to LMM bound to 5-nm gold (arrows). 
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Figure 8. Schematic diagram illustrating our results on the organiza- 
tion ofactin, a-actinin, filamin, and myosin in stress fibers. Maximal 
length of myosin filaments, 0.4 #m. Diameter not significantly wider 
than that of F-actin. 

Based on the double label experiments with antibodies 
specific to either the head or tail regions of myosin molecules 
(anti-myosin, anti-LEo, and ant i -LMM respectively), we con- 
clude that myosin in stress fibers is present in the form of 
bipolar filaments. They could be dimers or organized into 
oligomers with a maximal length of  0.4 ~m and a diameter 
not significantly wider than that of  F-actin ( - 7  to 8 nm). 
Similar filaments 13 to 15 nm in diameter have been found 
in N-ethylmaleimide-treated negatively stained human glioma 
cells (25). 

The ability of stress fibers to undergo either isotonic or 
isometric contractions has been a matter of  discussion (5, 7). 
At present, it is not clear if myosin mainly serves as a cross- 
linker or mediates a sliding actomyosin movement.  If stress 
fibers indeed undergo a contraction in vivo, the changes in 
unit length might  be too small to be seen under the light 
microscope. Thus, new experimental conditions (e.g., the use 
of  compounds favoring cell relaxation or contraction) and 
improved preparation techniques for immunocytochemistry 
are needed to document  by electron microscopy these possible 
changes. 

double-label experiments have established that a-actinin and 
myosin are not co-localized: a-actinin is concentrated in the 
electron-dense bands or dense bodies, and myosin is confined 
to the intervening (electron-lucid) regions. In summary, the 
questions regarding the localization of myosin in electron- 
dense bands can be answered as follows: A part of the myosin 
molecule, more specifically the myosin heads, is localized in 
bands of slightly increased electron density but  not in the 
dense bodies that contain a-actinin. Due to their pronounced 
electron-opaque nature the latter are seen more clearly and 
much more frequently in fixed and thin-sectioned cells. 

We are indebted to Dr. R. A. Cross (Department of Physics, Institute 
of Molecular Biology, Austrian Academy of Sciences, Salzburg) for 
his generous gift of purified myosin rod and LMM fragments; Lam- 
bert Leijssen, Guy Jacobs, and Hans Henderickx for their excellent 
photographic assistance, and C. Verellen for typing the manuscript. 

These studies were supported by grants from the Belgian 
I.W.O.N.L. (Institut ter bevordering voor het Wetenschappelijke On- 
derzoek in Nijverheid en Landbouw) fund Brussels, the Austrian 
Research Council, and the Muscular Dystrophy Association, Inc. 

Received for publication 18 June 1985, and in revised form 27 
September 1985. 

The Journal of Cell Biology, Volume 102, 1986 208 



References 

1. Aoki, M., and M. Tavassoli. 1981. Identification of microfilaments in 
marrow sinus endothelial cells: their possible role in cell egress. J. Ultrastruct. 
Res. 74:255-258. 

2. Begg, D. A., R. Rodewald, and L. I. Rebhun. 1978. The visualization of 
actin filament polarity in thin sections: evidence for the uniform polarity of 
membrane-associated filaments. J. Cell Biol. 79:846-852. 

3, Blattler, D. P., F. Garner, K. Van Slyke, and A. Bradley. 1972. Quanti- 
tative electrophoresis in polyacrylamide gels of 2-40%. £ Chromatogr. 64:147- 
155. 

4, Buckley, J. K., and K. R. Porter. 1967. Cytoplasmic fibrils in living 
cultured cells. A light and electron microscope study. Protoplasma. 64: 349- 
380. 

5. Burridge, K. 1981. Are stressfiberscontractile?Nature(Lond.). 294:691- 
692. 

6. Byers, H. R., and K. Fujiwara. 1982. Stress fibers in cells in situ: 
immunofluorescence visualization with antiactin, antimyosin, and anti-alpha- 
actinin. J. Cell Biol. 93:804-811. 

7. Byers, H. R., G. E. White, and K. Fujiwara. 1984. Organization and 
function of stress fibers in cells in vitro and in situ. In Cell and Muscle Motility. 
Vol. 5. J. W. Shay, editor. Plenum Publishing Corp, 83-137. 

8. Chang, C.-M., and R. D. Goldman. 1973. The localization of actin-like 
fibers in cultured neuroblastoma cells as revealed by heavy meromyosin bind- 
ing. £ Cell BioL 57:867-874. 

9. Cross, R. A., R. G. Bardsley, D. A. Ledward, J. V. Small, and A. 
Sobieszek. 1984. Conformational stability of the myosin rod. Eur. J. Biochem. 
145:305-310. 

10. De Bruyn, P. P. H., and Y. Cho. 1974. Contractile structures in endo- 
thelial cells of splenic sinusoids. J. l;Ttrastruct. Res. 49:24-33. 

11. De Lanerolle, P., R. S. Adelstein, J. R. Feramisco, and K. Burridge. 
1981. Characterization of antibodies to smooth muscle myosin kinase and their 
use in localizing myosin kinase in nonmuscle cells. Proc. NatL Acad Sei. USA. 
78:4738-4742. 

12. De Mey, J. 1983. Raising and testing antibodies for immunocytochem- 
istry. In lmmunocytochemistry: Practical Application in Pathology and Biol- 
ogy. J. M. Polak and S. Van Noorden, editors. John Wright PSG Inc. Boston. 
43-52. 

13. De Mey, J. 1983. Colloidal gold probes in immunocytochemistry. In 
lmmunocytochemistry: Practical Applications in Pathology and Biology. J. M. 
Polak and S. Van Noorden, editors. John Wright PSG Inc., Boston. 82-112. 

14. De Mey, J., M. Moeremans, G. Geuens, R. Nuydens, and M. De 
Brabander. 1981. High resolution light and electron microscopic localization 
of tubulin with the IGS (immuno gold staining) method. Cell Biol. Int. Rep. 

• 5:889-899. 
15. Feramisco, J. R. 1979. Microinjection of fluorescently labeled a-actinin 

into living fibroblasts. Proc. NatL Acad. Sci. USA. 76:3967-3971. 
16. Fujiwara, K., and T. D. Pollard. 1976. Huorescent antibody localization 

of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human 
cells. J. Cell BioL 71:848-875. 

17. Gabbiani, G., F. Gabbiani, D. Lombardi, and S. M. Schwartz. 1983. 
Organization of actin cytoskeleton in normal and regenerating arterial endo- 
thelial cells. Proc. Natl. Acad. Sci. USA. 80:2361-2364. 

18. Geiger, B. 1979. A 130 K protein from chicken gizzard: its localization 
at the termini of microfilament bundles in cultured chicken cells. Cell. 18:193- 
205. 

19. Gershoni, J. M., and G. E. Palade. 1982. Electrophoretic transfer of 
proteins from sodium dodecyl sulfate-polyacrylamide gels to a positively 
charged membrane filter. Anal Biochem. 124:396-405. 

20. Goldman, R. D., B. Chojnacki, and M.-J. Yerna. 1979. Ultrastructure 
of microfilament-bundles in baby hamster kidney (BHK-21) cells. J. Cell Biol. 
80:759-766. 

21. Gordon, W. E. 1978. lmmunofluorescent and ultrastructural studies of 
"sarcomeric" units in stress fibers of cultured non-muscle cells. Exp. Cell Res. 
117:253-260. 

22. Gordon, S. R., E. Essner, and H. Rothstein. 1982. In situ demonstration 
of actin in normal and injured ocular tissues using 7-nitrobenz-2-oxa-l,3- 
diazole phallacidin. Cell MotiL 4:343-354. 

23. Herman, I. M., and T. D. Pollard. 1981. Electron microscopic localiza- 
tion of cytoplasmic myosin with ferritin-labeled antibodies. J. Cell BioL 88:346- 
351. 

24. Ishikawa, H., R. Bischoff, and H. Holtzer. 1969. Formation of arrowhead 

complexes with heavy meromyosin in a variety of cell types. J. Cell Biol. 
43:312-328. 

25. Karlsson, R., and U. Lindberg. 1985. Changes in the organization of 
actin and myosin in non-muscle cells induced by N-ethylmaleimide. Exp. Cell 
Res. 157:95-115. 

26. Langanger, G., J. De Mey, M. Moeremans, G. Daneels, M. De Braban- 
der, and J. V. Small. 1984. Ultrastructural localization of a-actinin and filamin 
in cultured cells with the immunogold staining (IGS) method. J. Cell BioL 
99:1324-1334. 

27. Langanger, G., J. De Mey, M. Moeremans, G. Daneels, and M. De 
Brabander. 1985. Ultrastructural localization of cytoskeletal proteins in cul- 
tured cells. Eur. J. Cell BioL 36:39. (Abstr.) 

28. Langanger, G., J. De Mey, M. Moeremans, G. Daneels, A. Sobieszek, 
and M. De Brabander. 1984. Ultrastructural localization of c~-actinin and 
myosin in cultured cells with indirect and direct immunogold staining. J. Cell 
Biol. 99(4, Pt. 2):351a. (Abstr.) 

29. Lazarides, E. 1975. Tropomyosin antibody: the specific localization of 
tropomyosin in nonmuscle cells. J. Cell BioL 65:549-561. 

30. Lazarides, E., and K. Burridge. 1975. a-actinin: immunofluorescent 
localization of a muscle structural protein in nonmuscle cells. Cell. 6:289-298. 

31. Lewis, W. H., and M. R. Lewis. 1924. Behavior of cells in tissue cultures. 
In General Cytology. E. V. Cowdry, editor. The University of Chicago Press, 
Chicago. 385-447. 

32. Majno, G., S. M. Shea, and M. Leventhal. 1969. Endothelial contraction 
induced by histamine-type mediators. An electron microscopic study. J. Cell 
Biol. 42:647-672. 

33. Moeremans, M., G. Daneels, A. Van Dijck, G. Langanger, and J. De 
Mey. 1984. Sensitive visualization of antigen-antibody reactions in dot and 
blot immune overlay assays with immunogold and immunogold/silver staining. 
,L lmmunoL Methods 74:353-360. 

34. Owada, M. K., A. Hakura, K. lida, I. Yahara, K. Sobue, and S. Kakiuchi. 
1984. Occurrence of caldesmon (a calmodulin-binding protein) in cultured 
cells: comparison of normal and transformed cells. Proc. NatL AcacL Sci. USA. 
81:3133-3137. 

35. Porter, K. R., A. Claude, and E. F. Fullam. 1945. A study of tissue 
culture cells by electron microscopy. J. Exp. Med. 81:233-244. 

36. Rrhlich, P., and I. Olah. 1967. Cross-striated fibrils in the endothelium 
of rat myometral arterioles. £ Ultrastruct. Res. 18:667-676. 

37. Sanger, J. W., J. M. Sanger, and B. M. Jockusch. 1983. Differences in 
stress fibers between fibroblasts and epithelial cells. J. Cell BioL 96:961-969. 

38. Slot, J. W., and H. J. Geuze. 1984. Gold markers for single and double 
immunolabelling of ultrathin cryosections. In Immunolabelling for Electron 
Microscopy. J. M. Polak and I. M. Varndell, editors. Elsevier Science Publishers 
B. V., Amsterdam. 129-142. 

39. Sobieszek, A., and B. Barylko. 1985. Enzymes regulating myosin phos- 
phorylation in vertebrate smooth muscle. In Smooth Muscle Contraction. N. 
L. Stephens, editor. Marcel Dekker Inc., New York. 283-316. 

40. Sobieszek, A., and J. V. Small. 1976. Myosin-linked calcium regulation 
in vertebrate smooth muscle. J. MoL Biol. 102:75-92. 

41. Spooner, B. S., J. F. Ash, J. T. Wrenn, R. B. Frater, and N. K. Wessells. 
1973. Heavy meromyosin binding to microfilaments involved in cell and 
morphogenic movements. Tissue & CelL 5:37--46. 

42. Spooner, B. S., K. M. Yamada, and N. K. Wessells. 1971. Microfilaments 
and cell locomotion. J. Cell BioL 49:595-613. 

43. Wang, K., J. F. Ash, and S. J. Singer. 1975. Filamin, a new high- 
molecular-weight protein found in smooth muscle and non-muscle cells. Proc. 
NatL AcacL Sci. USA. 72:4483-4486. 

44. White, G. E., M. A. Gimbrone, and K. Fujiwara. 1983. Factors influ- 
encing the expression of stress fibers in vascular endothelial cells in situ. J. Cell 
BioL 97:416-424. 

45. Weber, K., and U. Groeschel-Stewart. 1974. Antibody to myosin: the 
specific visualization of myosin-containing filaments in non-muscle cells. Proc. 
Natl. Acad Sci. USA. 71:4561-4564. 

46. Wehland, J., and K. Weber. 1980. Distribution of fluorescently labeled 
actin and tropomyosin after microinjection in living tissue culture cells as 
observed with TV image intensification. Exp. CellRes. 127:397-408. 

47. Wong, A. J., T. D. Pollard, and I. M. Herman. 1983. Actin filament 
stress fibers in vascular endothelial cells in vivo. Science ( Wash. DC). 219:867- 
869. 

48. Zigmond, S. H., J. J. Otto, and J. Bryan. 1979. Organization of myosin 
in a submembranous sheath in well-spread human fibroblasts. Exp. Cell Res. 
119:205-219. 

209 Langanger et al. Organization of Myosin in Stress Fibers 


