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Effects of Particulate Matter 10 Inhalation 
on Lung Tissue RNA expression in a Murine 
Model 
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Medicine, Seoul, Republic of Korea 

Background: Particulate matter 10 (PM10; airborne particles <10 μm) inhalation has been demonstrated to induce 
airway and lung diseases. In this study, we investigate the effects of PM10 inhalation on RNA expression in lung tissues 
using a murine model.
Methods: Female BALB/c mice were affected with PM10, ovalbumin (OVA), or both OVA and PM10. PM10 was 
administered intranasally while OVA was both intraperitoneally injected and intranasally administered. Treatments 
occurred 4 times over a 2-week period. Two days after the final challenges, mice were sacrificed. Full RNA sequencing 
using lung homogenates was conducted.
Results: While PM10 did not induce cell proliferation in bronchoalveolar fluid or lead to airway hyper-responsiveness, 
it did cause airway inflammation and lung fibrosis. Levels of interleukin 1β, tumor necrosis factor-α, and transforming 
growth factor-β in lung homogenates were significantly elevated in the PM10-treated group, compared to the control 
group. The PM10 group also showed increased RNA expression of Rn45a , Snord22 , Atp6v0c-ps2 , Snora28 , Snord15b , 
Snora70 , and Mmp12 . Generally, genes associated with RNA splicing, DNA repair, the inflammatory response, the 
immune response, cell death, and apoptotic processes were highly expressed in the PM10-treated group. The OVA/PM10 
treatment did not produce greater effects than OVA alone. However, the OVA/PM10-treated group did show increased 
RNA expression of Clca1 , Snord22 , Retnla , Prg2 , Tff2 , Atp6v0c-ps2 , and Fcgbp when compared to the control groups. 
These genes are associated with RNA splicing, DNA repair, the inflammatory response, and the immune response.
Conclusion: Inhalation of PM10 extensively altered RNA expression while also inducing cellular inflammation, fibrosis, 
and increased inflammatory cytokines in this murine mouse model.
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Introduction
Air pollution is an important problem worldwide, and it 

certainly has negative effects on general health1-3. Particulate 
matter 10 (<10 μm; PM10) is a one of the major components of 
air pollution. It includes high levels of elements such as silicon, 
barium, aluminum, zinc, copper, and lead4,5. PM10 enters the air-
way through the nose and mouth, and as a result it can poten-
tially cause injury to the respiratory tract, including the trachea, 
bronchus, alveoli, and even lung parenchyma. Studies have 
also indicated that chronic and intensive inhalation of PM10 can 
induce and enhance airway and lung diseases. For example, 
epidemiologic data have shown that asthma can be developed 
and aggravated by ambient pollutants like PM10

6-8, and chronic 
obstructive pulmonary disease (COPD) is also sensitive to 
PM10 exposure9-12.

Some indications of the mechanisms underlying these ef-
fects have been found13. For example, innate and adaptive 
immune responses in the airway and lung can be altered by 
extrinsic irritants in general14, and PM10 exposure can alter 
mechanical and immunological barriers in airway disease15. 
At the molecular level, evidence indicates that interleukin 
(IL)-1β, IL-6, NOD-like receptor pyrin domain-containning 
protein 3, and chemokine (C-C motif) ligand 20 may be key 

mediators of the effects of PM10 on airway and lung tissue16-18. 
However, PM10 particles are extremely small and consist of 
variable elements. We therefore hypothesized that PM10 can 
alter RNA expression in extensive range, potentially leading 
to visible inflammation and other side effects. Elucidating the 
patterns of RNA expression changes in response to PM10 in a 
murine model may be helpful for predicting its effects on hu-
man health.

Materials and Methods
1. Animal model designs

Female BALB/c mice, between 5 and 6 weeks old (Orient, 
Daejeon, Korea), were maintained at conventional animal 
facilities under pathogen-free conditions, and five mice were 
assigned in each group. To establish the PM10-induced murine 
model (PM10 model), PM10 (ERMCZ-120 certified reference 
material; Sigma-Aldrich, St. Louis, MO, USA; 100 μg [PM100] 
or 200 μg [PM200]) suspended in 20 μL normal saline was in-
tranasally administered four times over 2 weeks. To establish 
the ovalbumin (OVA)-induced asthma murine model (OVA 
model), mice were sensitized with 20 μg OVA (Sigma-Aldrich) 
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Figure 1. (A) Weight change did not significantly differ among 
groups. (B) Airway hyper-responsiveness as determined by metha-
choline challenge showed no significant difference among groups. 
(C) There were no significant differences in the BALF cell counts 
between groups. BALF: bronchoalveolar lavage fluid; PM: particu-
late matter; TC: total cell; MC: macrophage; Lym: lymphocyte; Eos: 
eosinophil; Neu: neutrophil. 
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suspended in 1% aluminum hydroxide (Resorptar; Indergen, 
New York, NY, USA) by intraperitoneal injection on days 1 
and 14. On days 21, 22, and 23, the OVA-sensitized mice were 
challenged intranasally with 30 μL of OVA (1 mg/mL) in sa-
line solution. An OVA/PM10-treated model was established 
by the above two treatments simultaneously. All mice were 
sacrificed 2 days after their last treatment (Supplementary 
Figure S1). All experimental procedures of mice studies were 
approved by the Institutional Animal Care and Use Commit-
tee, Animal Research Ethics Board of Yonsei University (Seoul, 
Korea) (IACUC approval number, 2020-0087) and were per-
formed in accordance with the Committee’s guidelines and 
regulations for animal care.

2. Measurement of airway hyper-responsiveness 

Airway hyper-responsiveness (AHR) to inhaled aerosolized 
methacholine (MCh; Sigma-Aldrich) was measured using a 
forced oscillation technique (FlexiVent; SCIREQ, Montreal, 
QC, Canada) on the sacrifice day, as described in a previous 
study19-21. Aerosolized phosphate-buffered saline or MCh at 
varying concentrations (3.125 mg/mL, 6.25 mg/mL, 12.5 mg/
mL, 25.0 mg/mL, or 50.0 mg/mL), was administered to mice 
for 10 s via a nebulizer connected to a ventilator. Then, AHR 
was assessed by measurements of airway resistance.

3. Inflammatory cell counting in bronchoalveolar 
lavage fluid 

To collect bronchoalveolar lavage fluid (BALF), we per-

formed lung lavage, using 1 mL of Hank’s balanced salt solu-
tion (HBSS) through a tracheal tube. The recovered BALF was 
centrifuged and resuspended in 300 μL HBSS. Total cell num-
bers were determined using a hemocytometer and trypan 
blue staining. BALF cells were centrifuged by cytocentrifuga-
tion (Cytospin 3; Thermo Fisher Scientific, Waltham, MA, 
USA) and were pelleted to cytospin slides. The slides were 
stained with hematoxylin and eosin (H&E Hemacolor; Merck, 
Darmstadt, Germany) and a differential count of inflamma-
tory cells was performed (200 cells per slide). 

4. Histological analysis

The lung that was not used for BALF collection was fixed in 
4% formalin and embedded in paraffin. Lung sections were 
cut into 3–4-μm-thick slices and stained with H&E, periodic 
acid-Schiff, and Masson trichrome (M&T) for histological 
analysis. The slides were observed under a light microscope 
(×200 magnification). Fibrosis area was measured by estimat-
ing the color-pixel count over the pre-set threshold color on 
M&T-stained slides at ×200 magnification using MetaMorph 
program (Molecular Devices, Sunnyvale, CA, USA).

5. Lung homogenate

After collecting BALF, remaining lung tissue was resected 
and homogenized using a tissue homogenizer (Biospec Prod-
ucts, Bartlesville, OK, USA) in lysis buffer and protease inhibi-
tor solution (Sigma-Aldrich). After incubation and centrifu-
gation, supernatants were harvested and passed through a 
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Figure 2. Pathological analysis revealed 
PM10 treatment led to airway inflamma-
tion and lung fibrosis (H&E, PAS, and 
M&T; ×200). H&E: hematoxylin and 
eosin; PAS: periodic acid-Schiff; PM: par-
ticulate matter; M&T: Masson trichrome. 
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0.45-micron filter (Gelman Science, Ann Arbor, MI, USA). The 
final preparations were stored at –20°C for cytokine analysis 
as described previously19.

6. Analysis of cytokines 

Concentrations of interleukin (IL)-1β, tumor necrosis 
factor-α (TNF-α), IL-13, and transforming growth factor-β 
(TGF-β) in lung homogenates were assessed by enzyme-
linked immunosorbent assay (R&D Systems, San Diego, CA, 
USA) according to the manufacturer’s instructions. All sam-
ples were assessed in duplicate. 

7. Full RNA sequencing

Total RNA was extracted from lung tissue using Trizol re-
agent (Invitrogen, Carlsbad, CA, USA). The isolated mRNAs 
were used for cDNA synthesis. Libraries were prepared using 
the NEBNext Ultra II Directional RNA Seq Kit (New England 
BioLabs, Inc., Hitchin, UK). Indexing was performed using the 
Illumina indexes 1–12. The enrichment step was carried out 
using polymerase chain reaction (PCR). Subsequently, librar-
ies were checked using the Agilent 2100 bioanalyzer (Agilent 
Technologies, Amstelveen, The Netherlands), to evaluate the 
mean fragment size. Quantification was performed using the 
library quantification kit with an ND 2000 Spectrophotom-
eter (Thermo Fisher Scientific) and StepOne Real Time PCR 
System (Life Technologies, Inc., Carlsbad, CA, USA). High-
throughput sequencing was performed as paired end 100 se-
quencing using NovaSeq 6000 (Illumina, Inc., San Diego, CA, 
USA). 

Quality control of raw sequencing data was performed 
using FastQC (Simon, 2010). The results of fast QC are pre-
sented in Supplementary Figure S2. Adapter and low-quality 
reads (<Q20) were removed using FASTX_Trimmer (Hannon 

Lab, 2014) and BBMap (Bushnell, 2014). Then, the trimmed 
reads were mapped to the reference genome using TopHat22. 
Gene expression levels were estimated by calculating frag-
ments per kb per million reads (FPKM) using Cufflinks23. The 
FPKM values were normalized based on a quantile normal-
ization method using EdgeR within R (R development Core 
Team, 2016). Data mining and graphic visualization including 
define upregulated or downregulated gene expression were 
performed using ExDEGA (E-Biogen, Inc., Seoul, Korea).

8. Statistical analysis

All results are expressed as the mean±standard error. The 
AHR data were analyzed using repeated-measure analysis of 
variance (ANOVA), followed by a post-hoc  Bonferroni test. 
One-way ANOVA was performed to assess the significance 
of differences in BALF cell count, cytokine levels, and quan-
titative fibrosis among groups. All statistical analyses were 
performed with IBM SPSS version 18.0 (SPSS Inc., Chicago, IL, 
USA). p-values <0.05 were considered statistically significant.

Results
1. Comparison of weight changes, AHR, and BALF 

between control and PM10-treated groups 

All mice increased in weight over the course of the experi-
ment. There was a non-significant trend for the PM10-treated 
group (PM100 and PM200) to gain less weight (Figure 1A). 
AHR obtained by MCh challenge showed no significant 
changes among the three groups (Figure 1B). BALF cell 
counts were also not significantly different among groups 
(Figure 1C).
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Figure 3. IL-1β (A), TNF-α (B), and TGF-β (C) levels in lung homogenates were significantly higher in the PM100-treated group compared to 
the control group. Quantitative fibrosis was significant and severe in the PM10-treated group compared to the control group (D). IL-1β: inter-
leukin 1β; PM: particulate matter; TNF-α: tumor necrosis factor-α; TGF-β: transforming growth factor-β. *p<0.05. 
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Figure 4. (A) Genes showing the larg-
est difference between the control and 
PM10-treated groups. (B) RNA expression 
of genes associated with RNA splicing, 
DNA repair, the inflammatory response, 
the immune response, cell death, and 
apoptotic process were increased in the 
PM10-treated group compared to the 
control group. The number of genes with 
significant change are presented at the 
top of bar. PM: particulate matter.
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2. Comparison of pathologic findings between control 
and PM10-treated groups 

Compared to the control group, the PM10-treated group 
(PM100 and PM200) showed cellular infiltration in the air-
way and lung parenchyme. Airway wall thickness, goblet cell 
hyperplasia, and inflammatory cellular proliferation were ob-
served predominantly in the PM10-treated group. In addition, 
fibrosis in lung parenchyme and peribronchial tissues were 
also predominant in the PM10-treated group, compared to the 
control group (Figure 2).

3. Comparison of cytokine levels in lung homogenates 
and quantitative fibrosis between the control and 
PM10-treated groups 

The levels of IL-1β, TNF-α, and TGF-β in lung homogenates 
were higher in the PM10-treated group than in the control 
group, but statistical significance was observed only for the 
PM100 group (Figure 3A–C). As evidence by the results of the 
fibrosis-area analysis, PM10 induced significant lung fibrosis 
(Figure 3D).

4. Comparison of RNA expression between the control 
and PM10-treated groups

The PM10 model showed increased RNA expression of 
Rn45a, Snord22 (small nucleolar RNA), Atp6v0c-ps2 (ATPase, 
H+ transporting, lysosomal V0 subunit C, pseudogene 2), 
Snora28 , Snord15b , Snora70 , and Mmp12 compared to 
control group (Figure 4A). Generally, genes associated with 
RNA splicing, DNA repair, inflammatory response, immune 
response, cell death, and the apoptotic process were highly ex-
pressed in the PM10 model compared to control group (Figure 
4B). 

5. Comparison of weight changes, airway hyper-
responsiveness, and BALF cell count between the 
control, OVA, and OVA/PM10-treated groups

All mice increased in weight over the course of the experi-
ment. Among all the groups, the final weight of the control 
group was the heaviest (Figure 5A). AHR obtained by MCh 
challenge in both OVA-treated groups (OVA and OVA/PM10) 
was predominant compared to the control group. However, 
it was not significantly different between the OVA and OVA/
PM10-treated groups (Figure 5B). Total cell, macrophage, and 
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Figure 5. (A) Weight change was not significantly different among 
groups. (B) Airway hyper-responsiveness as determined by metha-
choline challenge were increased in the OVA and/or PM10-treated 
group. (C) BALF cell counts revealed significantly increased total 
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eosinophil counts in BALF were highly elevated in all OVA-
treated groups compared with the control group. However, 
they were not significantly different between the OVA and 
OVA/PM10-treated groups (Figure 5C). 

6. Comparison of pathologic findings between control, 
OVA, and OVA/PM10-treated group

All OVA-treated groups showed prominent inflammatory 
cell proliferation and fibrosis in airway, peribronchial tissue, 
and lung parenchyme, compared to control group. However, 
treatment of OVA/PM10 did not have additive effect on OVA 
alone (Figure 6).

7. Comparison of cytokine levels in lung homogenates 
and quantitative fibrosis between in control, OVA, 
and OVA/PM10-treated group

The levels of IL-1β, TNF-α, IL-13, and TGF-β in lung homog-
enates were increased in the OVA-treated group. However, the 
effects of OVA/PM10 treatment were not greater than those 
of OVA alone (Figure 7A–D). Both OVA and OVA/PM10 treat-
ment induced significant lung fibrosis as evident in fibrosis-
are analysis; however, OVA/PM10 treatment were not greater 
than those of OVA alone (Figure 7E).

8. Comparison of RNA expression between the control 
and OVA/PM10-treated groups

The OVA/PM10-treated model showed increased RNA ex-
pression of Clca1  (chloride channel accessory 1), Snord22 , 
Retnla (resistin like alpha), Prg2 (proteoglycan 2, bone mar-
row), Tff2 (trefoil factor 2), Atp6v0c-ps2, and Fcgbp (Fc frag-
ment of IgG binding protein) compared to the control (Figure 
8A). Overall, this model showed increased RNA expression of 
genes associated with RNA splicing, DNA repair, inflamma-
tory response, and immune response compared to control 
group (Figure 8B).

Discussion
This study confirmed that PM10 can alter immune and 

inflammatory processes of the lung at the gene, protein, and 
cellular levels, using a murine model. In a substantial advance 
on previous work, we showed that exposure to PM10 can ex-
tensively alter RNA expression in lung homogenates. PM10 
induced increased RNA expression associated with RNA 
splicing, DNA repair, cell death, apoptotic processes, the in-
flammatory response, and the immune response. The above 
processes are associated with the cell cycle, cell viability, and 
cellular proliferation. Potential consequences of such widely 
altered RNA expression profiles include necrosis, malignancy, 
and other diseases. Referring to the results of our RNA expres-
sion analysis, we can potentially predict various clinical effects 

Control OVA OVA/PM100 OVA/PM200OVA/PM50

Figure 6. Pathological findings revealed that both the OVA and OVA/PM10 treatments led to airway inflammation and lung fibrosis (H&E, PAS, 
and M&T; all ×200). H&E: hematoxylin and eosin; OVA: ovalbumin; PAS: periodic acid-Schiff; PM: particulate matter; M&T: Masson trichrome. 
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of PM10, and conduct further studies concerning mechanisms 
underlying these effects. 

Inhalation of PM10 induced proliferation of inflammatory 
cells and fibrosis in peri-bronchial and lung tissue. We specu-
lated that abundant helper T cell type I (Th1) type inflamma-
tory cytokines increased in lung homogenates might lead to 
these changes. Some previous studies have shown similar 
results: Th1 type inflammatory cytokines increased in PM10 
treated model24,25. Other studies also showed PM10 is associ-
ated with inflammation26 or fibrosis27 of lung. Based on this 
study and previous in vitro and in vivo studies, PM10 is defi-
nitely toxic material to airway and lung parenchyme. Many 
human studies also support that PM10 has negative effects on 
lung and airway diseases28. 

It is notable that we observed extremely high expression of 
Rn45s (8,058-fold change), Snord22 (676-fold change), and 
Atp6v0c-ps2 (196-fold change) in the PM10 treated group, 
compared to the control group. Rn45s is known to be asso-

ciated with RNA toxicity, but its function has not been fully 
elucidated29. Snord22 is small nucleolar RNA. Atp6v0c-ps2 
is associated with ATPase, H+ transporting, and lysosomal 
V0 subunit C. This plays a central role in H(+) transport 
across cellular membranes30. In addition, Snora28, Snord15b, 
Snora70, Mmp12, Rprl3, BC1, Snora17, AA467197, Snora26, 
Ccl17, Rpph1, and Clec4d were also highly expressed in the 
PM10-treated group compared to the control group. These 
genes are associated with small nucleolar RNA, brain cyto-
plasmic RNA, or specific chemokines31,32. In the OVA/PM10-
treated group, the genes Clca1 , Snord22 , Retnla , Prg2 , Tff2 , 
Atp6v0c-ps2, Fcgbp, Muc5ac, Itln1, Ngp (neutrophilic granule 
protein), Fxyd4 (FXYD domain-containing ion transport regu-
lator 4), Mzb1 (marginal zone B and B1 cell-specific protein 
1), Mmp12 (matric metallopeptidase 12), Camp (cathelicidin 
antimicrobial peptide), and Tff1 were upregulated compared 
to control group.

Some genes were extremely suppressed in the PM10-treated 
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Figure 8. (A) Genes showing the largest 
difference between the control and OVA/
PM10-treated groups. (B) RNA expression 
of genes associated with RNA splicing, 
DNA repair, the inflammatory response, 
and the immune response were in-
creased in the PM10-treated group com-
pared to the control group. The number 
of genes with significant change are pre-
sented at the top of bar. OVA: ovalbumin; 
PM: particulate matter. 
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group, compared to the control group: Chil4 , Krt13 , Krtdap 
(keratinocyte differentiation associated protein), Sprr2a3 
(small proline-rich protein 2A3), Krt4 , Tnnc2 (troponin C2, 
fast), Acta1 (actin, alpha 1, skeletal muscle), Mt4, Serpinb3c 
(serine peptidase inhibitor, clade B, member 3C), Lgals7 (lec-
tin, galactose binding, soluble 7), Crct1 (cysteine-rich C-termi-
nal 1), Serpinb12 (serine peptidase inhibitor, clade B, member 
12), Tnnt3 (troponin T3, skeletal, fast), Mylpf (myosin light 
chain, phosphorylatable, fast skeletal muscle), and Lce3a (late 
cornified envelope 3A). In the OVA/PM10-treated group, the 
genes Krt6b, serpinb12, Crct1, Mylpf, Lce3b (late cornified en-
velope 3B), Defb4 (defensin beta 4), Lce3a, Lgals7, Serpinb3c, 
Mt4, Krt4, Acta1, Tnnc2, Krtdap, and Krt13 were substantially 
downregulated compared to the control group.

PM10 altered RNA expression in extensive range. It also in-
creased production of inflammatory cytokines. Inflammation 
and fibrosis were also induced. However, its effects were only 
slightly greater than those of OVA. We used an acute-OVA 
model with intraperitoneal OVA sensitization and intranasal 
OVA challenge. This model also showed extensive changes of 
RNA expression and abundant inflammation. Because of the 
magnitude of the changes caused by OVA, additional effects 
of PM10 were not well revealed. In clinics, severe asthma often 
leads to hide the clinical effects of other underlying disease, 
like stable COPD33. However, Gold et al.34 showed that PM me-
diates and augments allergic sensitization and cellular prolif-
eration using a murine model, and Clifford et al.35 showed that 
PM10 exposure exacerbates various responses to respiratory 
viral infection, e.g., increased inflammation and impaired lung 
function. Then, we are not sure whether addictive or synergic 
effects of PM10 in mild or chronic asthma model36. In order to 
further clarify whether PM10 has additive or synergic effects on 
an allergy model, a further-modified OVA model which does 
not hide the effects of PM10, is needed.

PM10 is a major air pollutant, and thus ends up in the hu-
man respiratory system where it can facilitate and aggravate 
allergic sensitization and airway inflammation17,37. This also 
alters defense mechanisms, including innate immunity in the 
lungs38. Thus, respiratory diseases can be developed and ag-
gravated by exposure to PM10. However, studies elucidating 
the effects of PM10 using murine models are rare, and changes 
of RNA expression induced by PM10 have not been well stud-
ied. This study used standardized PM10 in a murine model, 
and showed extensive RNA expression changes. Our results 
can be used to inform future work using PM10-treated murine 
models, including further investigation of mechanisms under-
lying the damaging effects of PM10 on the airway and lung. Fi-
nally, this study will be helpful to search for therapeutic agents 
in PM10-exposured human airway and lung diseases.

We showed that inhalation of PM10 changed RNA expres-
sion in extensive range in a murine model. PM10 also induced 
increased production of inflammatory cytokines, cellular 
proliferation, and fibrosis. In an acute-OVA model, additional 

effects of PM10 were not observed. Our findings suggest PM10 
can affect various airway and lung diseases.
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