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ABSTRACT The development and continuous improvement of high-throughput se-
quencing platforms have stimulated interest in the study of complex microbial com-
munities. Currently, the most popular sequencing approach to study microbial com-
munity composition and dynamics is targeted 16S rRNA gene metabarcoding. To
prepare samples for sequencing, there are a variety of processing steps, each with
the potential to introduce bias at the data analysis stage. In this short review, key in-
formation from the literature pertaining to each processing step is described, and
consequently, general recommendations for future 16S rRNA gene metabarcod-
ing experiments are made.
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In recent years, the emergence of high-throughput sequencing platforms has revo-
lutionized the study of complex microbial communities. Most commonly, marker

genes (e.g., 16S rRNA and 18S rRNA genes) are amplified and sequenced, providing
both qualitative and quantitative (i.e., relative abundance) data. However, the variety of
methodologies which can be used to carry out marker gene analysis can be over-
whelming. Each methodological stage, from sampling to data analysis, can introduce
biases; such biases can skew data sets by introducing changes in the relative abun-
dances observed, and they can affect the perception of community diversity. This short
review includes key information from current literature on sample collection, sample
storage and processing, and sequencing and data analysis, specifically for the study of
bacterial communities using 16S rRNA gene metabarcoding. By collating fundamental
research from each of these areas, we aim to try to ensure that scientists entering this
field are better informed to make decisions on experimental design for 16S rRNA gene
sequencing studies.

SAMPLE COLLECTION

A sampling method is obviously dependent on sample type, and as such, the factors
which may introduce bias will also vary between different types of microbiome studies.
Clearly, study-specific concerns cannot be entirely covered in this review. However, the
overarching factors which should be taken into account will be briefly covered in this
section.

First, it is important to consider the proposed sampling site. Bacterial community
composition varies even within a specific environment, for example, at different sites
within the gastrointestinal tract (1) and the respiratory tract (2) and at different soil
depths (3, 4). Since the magnitude of interindividual variation is very much dependent
on sampling site (5), this can have implications for experimental design, specifically
with regard to the number of subjects and the number of samples to be taken.

Second, there are conflicting results in the literature with regard to the variation
introduced by different sample collection methodologies. For example, there have
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been attempts to replace invasive sampling with less invasive methods; however,
significant differences have been found in microbial populations in comparisons of
swab and biopsy samples from human intestines (6), breath condensate and lung
brushings (7), and rumen fluid samples obtained via oral stomach tubing and a fistula
(8). However, other works contradict these findings, with two studies showing no
statistically significant differences when studying the rumen microbiota in cattle using
a variety of sampling methods (9, 10). Additionally, no significant differences were
evident in microbial composition in comparisons of sinonasal swabs and biopsy
samples (11) and rectal swabs and stool samples (12). This kind of conflict in the
literature is not uncommon, which leads to a lack of consensus and standardization.

A final consideration is whether samples should be homogenized, which appears to
be most critical in studies on gut contents (8, 13) and on soil (14), since various
microbial compositions have been observed in different stool fractions and in soils with
various particle sizes. Although the literature is generally conflicting with regard to
sampling methodology, it is important to consider that comparisons of data obtained
using different approaches should be avoided.

SAMPLE STORAGE

There is conflicting evidence on whether different storage conditions alone can
have an impact on microbial community studies (15–18). It is often not practical to
extract DNA from fresh samples; therefore, samples are generally stored for various
durations prior to DNA extraction. Conventionally, it is assumed that rapid freezing to
�80°C is best practice (18, 19), but this is not feasible for all study designs, for example,
at remote sites where low-temperature storage is unavailable (20). Several studies have
been carried out to assess the effects of storage conditions on study findings, which will
be summarized in this section.

FRESH VERSUS FROZEN SAMPLES

A couple of studies showed that freezing samples appeared to cause an increase in
the Firmicutes-to-Bacteroidetes ratio in comparison with fresh samples (15, 19). Con-
versely, in a study by Fouhy et al., the only bacterial groups differentially expressed
between fresh and snap-frozen fecal samples were the Faecalibacterium and Leucono-
stoc genera, with no significant differences being evident at the phylum or family level
(18). No significant effects on microbial composition or diversity were observed in fecal
samples refrigerated for 24 h (21) or 72 h (20) prior to DNA extraction.

The impact of storage duration has also been explored in various studies. Lauber et
al. stored soil, feces, and skin samples at various temperatures and found that storage
duration had no significant impact on overall bacterial community structure or diversity
(17). In samples which were stored at �80°C for 2 years, a small number of changes in
the microbial communities were observed, with increased abundances of lactobacilli
and bacilli and a reduction in the total number of operational taxonomic units (OTUs)
(for a definition of OTUs, please see Operational Taxonomic Unit Picking Methods,
below). Using the data presented in the literature, processing fresh samples is generally
the best approach, but when this is not possible, samples should be frozen for unequal
amounts of time and processed in one batch or frozen for an equal amount of time and
processed in multiple batches. The decision on how to proceed will be dependent on
the duration of the sample collection phase and on the study design, but regardless of
processing method, the storage duration and DNA extraction batch should be recorded
to enable this to be taken into account during analysis.

USE OF CRYOPROTECTANT

McKain et al. explored the effects of using a cryoprotectant (i.e., glycerol/phosphate-
buffered saline) to store ruminal digesta samples and found that freezing samples
without cryoprotectant caused a significant loss in Bacteroidetes when measured by 16S
rRNA gene copy number by quantitative PCR (15). The authors consequently suggested
that simply storing samples without a cryoprotectant and carrying out DNA extraction
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at a later date would impact downstream results with regard to archaeal and bacterial
community composition. Choo et al. explored the effects of using several common
preservative buffers (i.e., RNAlater, OMNIgene.GUT, and Tris-EDTA) relative to samples
stored dry at �80°C on fecal microbiota composition (20). Samples stored in the
OMNIgene.GUT buffer diverged the least from the samples stored dry at �80°C, and the
results obtained from the samples stored in Tris-EDTA diverged the most, with asso-
ciated changes in relative abundances of biologically important bacterial groups, such
as Escherichia-Shigella, Citrobacter, and Enterobacter. Additionally, RNAlater has previ-
ously been shown to be unsuitable for the storage of samples subject to microbial
community analysis, with samples stored in RNAlater being the least similar to fresh
samples and samples immediately frozen at �80°C (22, 23). Consequently, when
considering the use of a cryoprotectant for storage, it is important to ensure that all
samples are stored in the same manner.

DNA EXTRACTION

During DNA extraction, it is important to consider that some microbial cells may be
more resistant to lysis, such as bacterial endospores (24) and Gram-positive bacteria,
which will have an impact on DNA extraction efficiency. The presence of inhibitors has
also been found to directly impact DNA extraction efficiency (e.g., debris in environ-
mental samples and organic matter in soil and feces) and can affect the efficiency of
PCR downstream (reviewed in detail by Schrader et al. [25]). Common inhibitors include
inorganic material (e.g., calcium ions), with the majority of inhibitors being organic
matter, such as humic acid, bile salts, and polysaccharides. These issues will vary
according to sample type; therefore, matrix-specific DNA extraction protocols should be
optimized as part of a 16S rRNA gene metabarcoding experiment.

Besides phenol-chloroform DNA extraction methods, there are many commercial
extraction kits available which incorporate mechanical and/or chemical/enzymatic lysis
steps. Numerous authors have demonstrated that the abundances of specific bacterial
groups vary in comparisons of different DNA extraction methodologies (8, 26–31).
Specifically, variations in DNA yield and quality are obtained which can lead to different
results in downstream analyses (28).

One key DNA extraction step which can introduce bias is the presence or absence
of a mechanical lysis step. The inclusion of a bead-beating step has been linked to a
higher DNA yield (8, 29, 32), higher bacterial diversity (29, 32), and more efficient
extraction of DNA from Gram-positive and spore-forming bacteria (29, 33, 34). Conse-
quently, some authors suggest that samples subjected to different DNA extraction
methods are not comparable (8, 28, 35). Ultimately, the best approach is to utilize a
method which extracts the highest yield and quality of DNA as possible without
biasing the method toward particular bacterial taxa. To achieve this, the inclusion
of a bead-beating step and prior optimization of the DNA extraction method to
ensure optimal DNA yield and quality is recommended prior to carrying out 16S
rRNA gene sequencing.

SEQUENCING STRATEGY
Library preparation. Since the entire 16S rRNA gene cannot be sequenced using

short-read second-generation sequencing platforms, a short region of the gene must
be selected for PCR amplification and sequencing. There is currently no consensus on
the most appropriate hypervariable region(s), and several studies have been carried out
to determine the advantages and disadvantages of each. Importantly, the choice of
hypervariable region(s) and the design of “universal” PCR primers have an effect on
phylogenetic resolution (36–40). Indeed, no primer set is truly universal, with some
commonly used 16S rRNA gene primers proving ineffective at amplifying biologically
relevant bacteria (34, 41). Fouhy et al. explored the effects of primer choice (as well as
DNA extraction and sequencing platform) on microbial composition data using a mock
bacterial community and three primer sets (42), with differences in relative abundances
and richness being observed.
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Further biases can be introduced during PCR amplification due to the presence of
PCR inhibitors (described in DNA Extraction, above), with the number of PCR cycles and
the use of a high-fidelity polymerase (43) also having an impact on results. The
formation of chimeras occurs in later PCR cycles when the highest concentration of
incompletely extended primers compete with the original primers. Consequently, the
potential for chimera formation can be reduced by lowering the number of PCR cycles
(44). Previous work found that bacterial richness increased as the PCR cycle number
increased (45, 46), but that cycle number had no significant effect on community
structure (46). A lower number of PCR artifacts was found when using a high-fidelity
polymerase than with a standard polymerase (43). The use of different polymerases has
also been found to significantly affect PCR efficiencies for particular bacterial groups
and overall bacterial community structure (46). Finally, the quantity of input DNA into
a PCR has also been found to have a significant effect on observed bacterial community
structure (31). In summary, there is not a “gold standard” hypervariable region for 16S
sequencing, but it is important to consider that PCR reagents and PCR conditions
should be optimized and kept consistent across a study.

Sequencing platforms. D’Amore et al. have studied the choice of sequencing
platform most recently (47), and we refer the reader to that paper for a more-in-depth
analysis. Illumina technology (primarily the MiSeq system) has become the most
common sequencing platform for 16S rRNA gene metabarcoding. This is because the
MiSeq system, in general, produces the most accurate longest reads and has a much
higher throughput than the other platforms, which enables more samples to be
sequenced at higher depth or lower cost. Indeed, while D’Amore et al. caution that the
choice of sequencer depends on the question being asked, they note that the MiSeq
system is likely to be the platform of choice in most cases. The Roche 454 sequencer
was, for a long time, the platform most used for 16S studies. The potential longer reads
of this technology have some advantages; however, it is now no longer available, as
Roche retired the product in 2013. The 454 sequencer unfortunately suffered from an
elevated error rate due to miscalling of homopolymers. The Ion Torrent and Ion Proton
platforms are often available at low capital cost and produce data more quickly than
the MiSeq system. However, the lower throughput and higher error rates mean that
many researchers prefer to select the MiSeq system. While Illumina MiSeq offers the
highest quality data, there are some reported problems with the platform. Illumina
MiSeq error rates are often thought to be around 0.01%; however Kozich et al. showed
that the actual error rates can be as high as 10% and recommend a complete overlap
of 250-bp reads to correct for this (48). D’Amore et al. similarly showed library-
dependent error rates in either read 1 or read 2 (but not the overlap) in MiSeq data,
albeit at a lower rate (2 to 3%) (47). An improvement has been suggested to this, which
involves a heterogeneity spacer that improves sequence diversity in the library (49).

PacBio and Oxford Nanopore technologies are able to sequence the full length of
the 16S gene, which is of course very powerful. However, again error rates are an issue,
in the range of 5 to 15% for both technologies, which can cause subsequent errors in
downstream analysis. Despite the high error rate of long-read single-molecule sequenc-
ing systems (50–52), studies are beginning to appear to show their utility for 16S rRNA
gene sequencing (53–56). For example, Schloss et al. were able to reduce the observed
error rate for the V1 to V9 region from 0.69 to 0.027% for PacBio data, which is
comparable to those for the Illumina, 454 and Ion Torrent systems (54). One of the
drawbacks of the PacBio technology is its throughput, i.e., the number of samples that
can be run on the platform simultaneously and at a reasonable cost is much lower than
with the MiSeq system.

When planning a 16S sequencing study, three key considerations are the quality of
sequence data, the cost of sequencing, and the length of generated reads, as detailed
already in this section. A final factor is the number of samples which can be analyzed
per sequencing run. When utilizing Illumina platforms, it is possible to use multiplexing
strategies by implementation of unique single-indexed (57) or dual-indexed (48) (or
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barcoded) primers for library preparation. If the number of samples per run is increased,
this is associated with a lower coverage (or number of sequences generated) per
sample. If the coverage per sample is too low, the diversity of the microbial community
being studied is likely to be underrepresented, as rarer members of the community are
less likely to be detected. Therefore, guidance on the number of samples to be included
per run should be obtained from small pilot studies (and observation of the resultant
rarefaction curves) or published literature. In larger studies, more than one sequencing
run may be required, and Caporaso et al. showed that the data were highly reproduc-
ible across sequencing lanes (57). The appropriate sequencing platform should be
selected based upon the aims of the experiment and the error rates associated with the
available platforms. Another key consideration is sequencing coverage and its relation
to the number of samples to be run. When studying core members of a microbial
community, lowering the amount of coverage by increasing the number of samples in
a sequencing run may be an effective way to decrease costs. However, if rarer members
of a community are of interest, lower sample numbers leading to increased coverage
may be more appropriate.

MOCK BACTERIAL COMMUNITIES

As part of 16S microbiome studies, it is useful to include a mock community control
composed of predetermined ratios of DNA from a mixture of bacterial species. This not
only allows the quantification of sequencing error (58) but also allows bias introduced
during the sampling and library preparation processes to be identified (42, 47, 59, 60).
For example, a mock community containing bacterial taxonomies which are of specific
interest to the research group can be used to calculate whether these taxonomies are
likely to be over- or underrepresented in samples. Similar to mock communities,
spike-in standards can also be used to analyze bias and the reproducibility of meth-
odologies (61). However, unlike mock communities, these standards are added directly
to samples; therefore, quality control can be performed on a per-sample basis. How-
ever, there is a risk of crossover between the 16S rRNA gene sequences contained in the
standards and those which may be found in samples. Consequently, care must be taken
to select bacteria which are highly unlikely to occur in the samples of interest (62, 63)
or which have been designed in silico and are dissimilar to sequences found in 16S
databases (61).

There are a variety of sources which provide mock bacterial communities for use in
research; however, some researchers choose to create their own mock communities
in-house which more accurately reflect bacteria of interest and scientific importance.
Preprepared bacterial communities are available in two different formats: DNA mock
communities and whole-cell mock communities. The whole-cell mock communities are
useful for establishing the efficiency of the DNA extraction step, whereas DNA mock
communities will only assess the efficiency of PCR, clean-up, sequencing, and analysis
steps. At the time of this writing, mock communities are available from the American
Type Culture Collection (ATCC) and Zymo Research. When planning a 16S study, the
inclusion of a mock community is strongly encouraged.

ANALYSIS STRATEGY
Comparing pipelines. The analysis of large and complex 16S rRNA gene sequenc-

ing data sets requires the use of bioinformatic tools. There are many pipelines available
to process and analyze 16S rRNA gene sequencing data, including the commonly used
QIIME (64), MG-RAST (65), UPARSE (66) (https://www.drive5.com/usearch/manual/
uparse_pipeline.html), and mothur (67). These packages contain sets of tools which
facilitate the complete analysis of 16S rRNA gene data, from quality control to opera-
tional taxonomic unit (OTU) clustering. Where they differ is predominantly in their
accessibility to those with limited computational knowledge and in the availability of
documentation.

Nilakanta et al. compared seven different packages (mothur, QIIME, WATERS, RD-
Pipeline, VAMPS, Genboree, and SnoWMan) and concluded that while all of these
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packages provide effective pipelines for 16S rRNA gene analysis, the extensive docu-
mentation which accompanies mothur and QIIME provides them with an advantage
over the other packages (68). Plummer et al. analyzed a single data set using QIIME,
mothur, and MG-RAST and found that there were few differences in the results with
regard to taxonomic classification and diversity (69). However, there were differences in
the ease of use of each of these packages and the time required for analysis, with QIIME
being the quickest analysis package (approximately 1 h) and MG-RAST being the
slowest (approximately 2 days, due to the need for manual quality control to remove
multiple annotations of reads). The authors do state that although MG-RAST is the
slowest analysis method, it is perhaps the most suitable package for users with no
command line experience. Ultimately, the choice of analysis package will be made on
the basis of the user’s level of experience in bioinformatics and on the available
resources at the user’s host institution.

Quality control, alignment, and taxonomic assignment. It is essential to carry out

quality filtering to remove DNA sequences which are of unexpected length, have long
homopolymers, contain ambiguous bases, or do not align to the correct 16S rRNA gene
region. Critically, sequences should then be screened for chimeras, as the presence of
chimeric sequences can affect the interpretation of the final data set and could, for
example, overinflate the perception of community diversity (70). A variety of tools have
been developed to remove chimeric sequences, such as UCHIME (66) and Chimera
Slayer (70). By including a mock bacterial community in a sequencing run, since the true
sequences in these are known, the number of chimeric sequences can be calculated
(58).

Sequences should then be aligned to a reference alignment or assigned to a suitable
reference using a sequence classifier, such as the RDP Classifier, which uses a naive
Bayesian approach based on 8-mers (71). Schloss showed that alignment quality can
significantly impact diversity and can artificially inflate the number of bacterial OTUs,
and advised against using alignments which do not take into account the secondary
structure of the 16S gene (72). Of the three most commonly used alignments which are
guided by secondary structure (i.e., Greengenes [73], RDP [74], and SILVA [75]), the
Greengenes alignment was observed to be of poor quality, leading to significantly
greater richness and diversity estimates.

Postalignment, sequences and OTUs are assigned taxonomies based upon their
similarity to training sets, which are most commonly constructed from the Greengenes,
RDP, and SILVA databases. Errors within these databases, caused by sequencing/PCR
errors (76) or by the incorrect labeling of sequences (77), may lead to the misidentifi-
cation of sequences. Another issue when relying on databases for taxonomic assign-
ment is their bias toward bacteria which are clinically relevant in humans, meaning that
researchers investigating nonhuman hosts or environmental samples may struggle to
assign taxonomy to their sequences. For example, in a study of the honey bee gut
microbiota, disagreement was found between the three databases listed above upon
carrying out taxonomic assignments (78). At the genus level, the three databases
concurred in their assignments for only 13% of sequences. The classification of se-
quences was improved by including bee-specific full-length 16S rRNA gene sequences
in the training set, highlighting the need to include more representative sequences
from a greater number of habitats.

This improvement in classification of sequences has been highlighted by Werner
et al., who advised using the largest and most diverse database possible (79). This
group also found that trimming the reference sequences to the primer region of
interest improved classification depth. However, in a more extensively studied envi-
ronment, such as the human intestine, Ritari et al. found that making a personalized
reference database containing only bacterial species which were known to inhabit that
niche led to an increase in lower-taxonomic-level assignments, probably due to less
competition among sequences than with large databases (80).
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OPERATIONAL TAXONOMIC UNIT PICKING METHODS

Operational taxonomic units (OTUs) are the common currency of 16S or marker
gene studies of microbiomes. The term was originally coined by Sokal and Sneath (81)
and in its more general usage refers simply to groups of organisms that are closely
related. There are two major methods for defining OTUs: reference-based and de novo.
In reference-based clustering, sequences from a community are clustered against a
known reference database, and in de novo clustering, the sequences are clustered
according to pairwise distance measures. Reference-based OTUs are sometimes re-
ferred to as phylotypes (82). As with many areas of microbiome analysis, the evidence
is mixed as to which of the two approaches is best. It has been found that de novo
methods perform better in terms of the quality of OTU assignments (83), with another
study showing that de novo OTUs were unstable (84). However, Westcott and Schloss
(83) argued that OTUs can be stable yet still incorrect, and in particular, they showed
that some reference-based techniques were sensitive to the order of sequences in the
database. Sul et al. found that reference-based techniques produced results similar to
those with de novo methods, with the added benefit of low computational overheads
and the ability to compare data sets from different variable regions (85). Indeed,
perhaps the major difference between reference- and de novo-based methods is that de
novo-based methods have a significantly greater computational overhead, with the
need to compare every sequence to every other sequence in its most naive form.

Even within clustering tools, the choice of parameters has been shown to have a
critical impact on the results. While a threshold of 97% has become standard, Patin et
al. have shown that 16S rRNA gene sequences as similar as 99% can represent
functionally distinct microorganisms, which means that functionally diverse species
would be clustered at the 97% threshold (86). However, that may rely on accurate
sequences, and if those do not exist, the 97% threshold can help avoid an overesti-
mation of biodiversity (87). Susceptibility to differing parameters may also be pipeline
dependent (88). Given the controversy and potential biases of clustering sequences,
some have suggested methods and models for using individual sequences to represent
OTUs (i.e., remove the clustering step entirely) (89–92).

CORRECTING FOR GENE COPY NUMBER

Different bacterial species also have various copy numbers of the 16S rRNA gene (93,
94), which can lead to misinterpretations in comparisons of the abundance of bacterial
OTUs or attempts to construct a “true” description of the microbial community within
a sample (95). It is unusual in 16S rRNA gene studies to have an accurate knowledge of
the copy numbers for all identified OTUs. Therefore, tools have been developed which
seek to correct for copy number variation using sequence databases and phylogenetic
information to give a more accurate picture of the relative abundances of these OTUs.
These include Copyrighter (96), rrNDB (93), functions in the picante R package and
pplacer (97), and part of the PICRUSt package (98).

As these techniques are reliant on databases, the same problems are present as for
taxonomic identification. Principally, lesser-studied bacterial taxonomies are less likely
to be represented. It is also important to note that in comparisons of OTUs between
samples rather than within a sample (e.g., in comparisons of treatment effects), the
impact of copy number variation is reduced, as the under- or overrepresentation of
OTUs would be consistent across samples as long as the same methodology had been
used.

CONTAMINATION ISSUES

Microbial DNA contamination arising from DNA extraction kits, PCR reagents, and
the lab environment may have a particularly large effect when studying low-microbial-
biomass samples. Salter et al. found that contamination in DNA extraction kits not only
varied by manufacturer but by individual lot, and samples processed in separate
laboratories contained different types of contaminating DNA (99). This lack of predict-
ability led the authors to suggest that “negative” (or reagent-only) controls should be
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run alongside samples in all 16S rRNA gene metabarcoding studies. If reagent-only
controls are not included, this can lead to a misinterpretation of results. When Salter et
al. analyzed a data set comparing nasopharyngeal microbiota samples from children at
two time points, they found that while the time points appeared to cluster separately,
this effect was mainly due to bias caused by contamination from the extraction kits
used. Randomization of samples prior to processing may help avoid the introduction of
this type of bias. Contamination could also lead to the false identification of microbial
communities where they do not in fact exist (100) and could affect our understanding
of which bacteria are relevant in clinical samples (101).

The amplification of background contaminants from PCR reagents could perhaps be
avoided via the use of primer-extension PCR (102), but this would have no effect on
contamination originating from other sources. Several methods have been suggested
to remove contaminating DNA from reagents and the lab environment, including UV
and gamma radiation (103–107); DNA intercalation by 8-methoxypsoralen, ethidium
monoazide, and propidium monoazide (104, 106–108); enzymatic treatments (105–107,
109–111); silica-based membrane filtration (112); CsCl2 density gradient centrifugation
(111); and bleach/copper-bis-(phenanthroline)-sulfate/H2O2 (CoPA) solution treatment
(105). These methods have shown varied effects on contamination levels and PCR
sensitivity, and the inclusion of reagent-only controls alongside these decontamination
measures is still recommended.

What should be done with sequencing data from reagent-only controls is still under
debate. It is often not appropriate to simply remove all of the bacterial OTUs found in
controls, as these may overlap OTUs which can genuinely be found in samples (108).
Other methods have been suggested which take into account the abundance of OTUs
to predict the likelihood of sequence reads having originated from contamination.
These include adapting the neutral community model (12) and combining quantitative
PCR data with OTU relative abundance data to compare the absolute abundances of
contaminating OTUs in controls and samples (113). However, the field is rapidly
reaching consensus that, due to contamination issues, not including reagent-only
controls can negatively impact the quality control of sequence data. When planning
a 16S study, the inclusion of reagent-only controls (i.e., DNA extraction kit and PCR
controls) is advised.

CONCLUSIONS

The study of complex microbial communities using high-throughput sequencing
platforms has allowed a better understanding of a variety of biological systems and the
impact of various conditions (e.g., disease states) on the host microbiome. Looking at
the literature, it is clear that bias can be introduced into microbiota studies at all
methodological stages from sampling to bioinformatic analysis. While the variety of
different 16S rRNA gene metabarcoding methodologies might seem overwhelming, the
main factor to keep in mind when designing a microbiota study is consistency. It is
paramount to use consistent methodology throughout a study to minimize potential
biases which could lead to spurious results.

The volume of studies attempting to define best practice for various stages of the
microbiome experimental process is large, and we cover only some of the literature in
this review. Unfortunately, as can be seen, there is little consensus, and further studies
are unlikely to find any. The reality is that many of the biases described in this review
are context and environment specific, and while individual studies may be true within
their context, their conclusions may not be transferable to other studies. Clearly, with
biases possible at every step, a good experimental design is essential. Recording and
publication of all experimental metadata are essential for understanding microbiome
studies, and unfortunately, many currently published studies lack these data.

Trying to find consensus in the literature is challenging, with many studies produc-
ing conflicting evidence about the effects of various steps in the experimental process.
It is therefore essential that consistency is maintained within a study, and there must
be an acceptance that comparisons between studies may not be possible.
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In summary, we recommend extracting DNA from fresh samples if possible; if not,
samples should be stored in a consistent manner (i.e., at the same temperature, for the
same duration, and with or without cryoprotectant) with appropriate metadata being
recorded. The use of a mechanical lysis step is recommended to minimize potential
biases due to some microbial cells being more resistant to lysis. The selection of
appropriate primers should be made after careful consideration of the literature, but it
is important to note that even universal primers will not amplify all bacteria in a given
sample. Sequencing both mock bacterial communities and “negative”/reagent-only
controls is important for determining background contamination and sequencing error
rate, and it should be included at least for each sequencing run and, even better, for
every batch of commercial reagents/kits. To reduce the chance of OTU inflation caused
by sequencing errors, consider complete overlap of MiSeq reads, which translates as
targeting a single hypervariable region. Finally, and to reiterate, record every aspect of
your experiment and report it in the methods section, and remember that the critical
consideration is consistency in methodology at each stage.
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