
Scalable, ultra‑fast, and low‑memory
construction of compacted de Bruijn graphs
with Cuttlefish 2
Jamshed Khan1,2 , Marek Kokot3* , Sebastian Deorowicz3 and Rob Patro1,2*

Background
Rapid developments in the throughput and affordability of modern sequencing tech-
nologies have made the generation of billions of short-read sequences from a panoply
of biological samples highly time- and cost-efficient. The National Center for Biotech-
nology Information (NCBI) has now moved the Sequence Read Archive (SRA) to the
cloud, and this repository stores more than 14 petabytes worth of sequencing data [1].
Yet, this is only a fraction of the total sequencing data that has been produced, which is
expected to reach exabyte-scale within the current decade [2]. In addition to the contin-
ued sequencing of an ever-expanding catalog of various types and states of tissues from
reference organisms, metagenomic sequencing of environmental [3] and microbiome [4]
samples is also expected to enjoy a similar immense growth.

Given the expansive repository of existing sequencing data and the rate of acquisition,
[5] argue that the ability of computational approaches to keep pace with data acquisition
has become one of the main bottlenecks in contemporary genomics. These needs have
spurred methods developers to produce ever more efficient and scalable computational

Abstract

The de Bruijn graph is a key data structure in modern computational genomics, and
construction of its compacted variant resides upstream of many genomic analyses. As
the quantity of genomic data grows rapidly, this often forms a computational bot-
tleneck. We present Cuttlefish 2, significantly advancing the state-of-the-art for this
problem. On a commodity server, it reduces the graph construction time for 661K bac-
terial genomes, of size 2.58Tbp, from 4.5 days to 17–23 h; and it constructs the graph
for 1.52Tbp white spruce reads in approximately 10 h, while the closest competitor
requires 54–58 h, using considerably more memory.

Keywords: de Bruijn graph, Compacted de Bruijn graph, Data structures, High-
throughput sequencing, Unitig, Path cover

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHOD

Khan et al. Genome Biology (2022) 23:190
https://doi.org/10.1186/s13059‑022‑02743‑6

Genome Biology

*Correspondence:
Marek.Kokot@polsl.pl;
rob@cs.umd.edu

1 Department of Computer
Science, University of Maryland,
College Park, USA
2 Center for Bioinformatics
and Computational Biology,
University of Maryland, College
Park, USA
3 Faculty of Automatic Control,
Electronics and Computer
Science, Silesian University
of Technology, Gliwice, Poland

http://orcid.org/0000-0002-5129-9749
http://orcid.org/0000-0002-6420-1587
http://orcid.org/0000-0002-9496-733X
http://orcid.org/0000-0001-8463-1675
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-022-02743-6&domain=pdf

Page 2 of 32Khan et al. Genome Biology (2022) 23:190

methods for a variety of genomics analysis tasks, from genome and transcriptome
assembly to pan-genome analysis. Against this backdrop, the de Bruijn graph, along
with its variants, has become a compact and efficient data representation of increasing
importance and utility across computational genomics.

The de Bruijn graph originated in combinatorics as a mathematical construct devised
to prove a conjecture about binary strings posed by Ir. K. Posthumus [6, 7]. In bioinfor-
matics, de Bruijn graphs were introduced in the context of genome assembly algorithms
for short-reads [8, 9], although the graph introduced in this context adopts a slightly dif-
ferent definition than in combinatorics. Subsequently, the de Bruijn graph has gradually
been used in an increasing variety of different contexts within computational biology,
including but not limited to: read correction [10, 11], genomic data compression [12],
genotyping [13], structural variant detection [14], read mapping [15, 16], sequence-sim-
ilarity search [17], metagenomic sequence analysis [18–20], transcriptome assembly [21,
22], transcript quantification [23], and long-read assembly [24–26].

In the context of fragment assembly—whether in forming contigs for whole-genome
assembly pipelines [27, 28], or in encapsulating the read set into a summary representa-
tive structure for a host of downstream analyses [29–32]—de Bruijn graphs continue to
be used extensively. The non-branching paths in de Bruijn graphs are uniquely-assem-
blable contiguous sequences (known as unitigs) from the sequencing reads. Thus, they
are certain to be present in any faithful genomic reconstruction from these reads, have
no ambiguities regarding repeats in the data, and are fully consistent with the input. As
such, maximal unitigs are excellent candidates to summarize the raw reads, capturing
their essential substance, and are usually the output of the initial phase of modern de
novo short-read assembly tools. Collapsing a set of reads into this compact set of frag-
ments that preserve their effective information can directly contribute to the efficiency
of many downstream analyses over the read set.

When constructed from reference genome sequences, the unitigs in the de Bruijn
graphs correspond to substrings in the references that are shared identically across sub-
sets of the genomes. Decomposing the reference collection into these fragments retains
much of its effective information, while typically requiring much less space and memory
to store, index, and analyze, than processing the collection of linear genomes directly.
The ability to compactly and efficiently represent shared sequences has led many mod-
ern sequence analysis tools to adopt the de Bruijn graph as a central representation,
including sequence indexers [33], read aligners [15, 16], homology mappers [34, 35], and
RNA-seq analysis tools [23, 36, 37]. Likewise, pan-genome analysis tools [38–43] fre-
quently make use of the maximal unitigs of the input references as the primary units
upon which their core data structures and algorithms are built.

The vast majority of the examples described above make use of the compacted de
Bruijn graph. A de Bruijn graph is compacted by collapsing each of its maximal, non-
branching paths (unitigs) into a single vertex. Many computational genomics workflows
employing the (compacted) de Bruijn graph are multi-phased, and typically, their most
resource-intensive step is the initial one: construction of the regular and/or the com-
pacted de Bruijn graph. The computational requirements for constructing the graph
are often considerably higher than the downstream steps—posing major bottlenecks
in many applications [13, 30]. As such, there has been a concerted effort over the past

Page 3 of 32Khan et al. Genome Biology (2022) 23:190

several years to develop resource-frugal methods capable of constructing the compacted
graph [44–51]. Critically, solving this problem efficiently and in a context independent
from any specific downstream application yields a modular tool [45, 47] that can be used
to enable a wide variety of subsequent computational pipelines.

To address the scalability challenges of constructing the compacted de Bruijn graph,
we recently proposed a novel algorithm, CUTTLEFISH [44], that exhibited faster per-
formance than pre-existing state-of-the-art tools, using (often multiple times) less mem-
ory. However, the presented algorithm is only applicable when constructing the graph
from existing reference sequences. It cannot be applied in a number of contexts, such as
fragment assembly or contig extraction from raw sequencing data. In this paper, we pre-
sent a fast and memory-frugal algorithm for constructing compacted de Bruijn graphs,
CUTTLEFISH 2, applicable both on raw sequencing short-reads and assembled refer-
ences, that can scale to very large datasets. It builds upon the novel idea of modeling de
Bruijn graph vertices as Deterministic Finite Automata (DFA) [52] from [44]. However,
the DFA model itself has been modified, and the algorithm has been generalized, so as
to accommodate all valid forms of input. At the same time, in the case of constructing
the graph from reference sequences, it is considerably faster than the previous approach,
while retaining its frugal memory profile. We evaluated CUTTLEFISH 2 on a collection
of datasets with diverse characteristics, and assess its performance compared to other
leading compacted de Bruijn graph construction methods. We observed that CUTTLE-
FISH 2 demonstrates superior performance in all the experiments we consider.

Additionally, we demonstrate the flexibility of our approach by presenting another
application of the algorithm. The compacted de Bruijn graph forms a vertex-decomposi-
tion of the graph, while preserving the graph topology [47]. However, for some applica-
tions, only the vertex-decomposition is sufficient, and preservation of the topology is
redundant. For example, for applications such as performing presence-absence queries
for k-mer or associating information to the constituent k-mer of the input [53, 54], any
set of strings that preserves the exact set of k-mer from the input sequences can be suf-
ficient. Relaxing the defining requirement of unitigs, that the paths be non-branching in
the underlying graph, and seeking instead a set of maximal non-overlapping paths cover-
ing the de Bruijn graph, results in a more compact representation of the input data. This
idea has recently been explored in the literature, with the representation being referred
to as a spectrum-preserving string set [55], and the paths themselves as simplitigs [56].
We demonstrate that CUTTLEFISH 2 can seamlessly extract such maximal path cov-
ers by simply constraining the algorithm to operate on some specific subgraph(s) of the
original graph. We compared it to the existing tools available in the literature [57] for
constructing this representation, and observed that it outperforms those in terms of
resource requirements.

Results
CUTTLEFISH 2 overview

We present a high-level overview of the CUTTLEFISH 2 algorithm here. A complete
treatment is provided in the “Algorithm” section.

CUTTLEFISH 2 takes as input a set R of strings that are either short-reads or whole-
genome references, a k-mer length k, and a frequency threshold f0≥1. As output, it

Page 4 of 32Khan et al. Genome Biology (2022) 23:190

produces the maximal unitigs of the de Bruijn graph G(R , k) . Figure 1 highlights the
major steps in the algorithm.

CUTTLEFISH 2 first enumerates the set E of edges of G(R , k) , the (k+1)-mers pre-
sent at least f0 times in R . This way the potential sequencing errors, present in case in
which read sets are given as input, are discarded. Then the set V of vertices of G(R , k) ,
which are the k-mer present in these (k+1)-mers, are extracted from E . Next, a Minimal

Fig. 1 An overview of the CUTTLEFISH 2 algorithm. It is capable of constructing the compacted de Bruijn
graph from a collection of either reference sequences or raw sequencing reads. The edges ((k+1)-mers)
of the underlying de Bruijn graph are enumerated from the input, and optionally filtered based on the
user-defined threshold. The edges are then used to enumerate the vertices (k-mer) they contain. An MPHF
is constructed over the set of vertices, to associate the DFA-state of each vertex to it. Then the edge set is
iterated over to determine the state of the DFA of each vertex in the graph, by transitioning the DFA through
appropriate states, based on the edges in which the vertex is observed. Then an iteration over the original
vertices to stitch together appropriate edges allows the extraction of the maximal unitigs

Page 5 of 32Khan et al. Genome Biology (2022) 23:190

Perfect Hash Function (MPHF) f over these vertices is constructed, that maps them
bijectively to [1, |V |] . This provides a space-efficient way to associate information to the
vertices through hashing. Modeling each vertex v ∈ V as a Deterministic Finite Autom-
aton (DFA), a piecewise traversal on G(R , k) is made using E , computing the state Sv of
the automaton of each v ∈ V—associated to v through f(v) . The DFA modeling scheme
ensures the retention of just enough information per vertex, such that the maximal unit-
igs are constructible afterwards from the automata states. Then, with another piecewise
traversal on G(R , k) using V and the states collection S, CUTTLEFISH 2 retrieves all
the non-branching edges of G(R , k)—retained by the earlier traversal—and stitches
them together in chains, constructing the maximal unitigs.

Experiments

We performed a number of experiments to characterize the various facets of the CUT-
TLEFISH 2 algorithm, its implementation, and some potential applications. We evalu-
ated its execution performance compared to other available implementations of leading
algorithms on de Bruijn graphs solving—(1) the compacted graph construction and (2)
the maximal path cover problems, applicable on shared-memory multi-core machines.
Although potentially feasible, CUTTLEFISH 2 is not designed as a method to leverage
the capability of being distributed on a cluster of compute-nodes. Therefore, we did not
consider relevant tools operating in that paradigm. We assessed its ability to construct
compacted graphs and path covers for both sequencing reads and large pan-genome col-
lections. By working on the (k+1)-mer spectrum, the new method performs a substan-
tial amount of data reduction on the input sequences, yielding considerable speedups
over the CUTTLEFISH algorithm [44] that, instead, requires multiple passes over the
input sequences.

Next, we assess some structural characteristics of the algorithm and its implemen-
tation. Given an input dataset and a fixed internal parameter γ, the time- and the
space-complexity of CUTTLEFISH 2 depend on k (see the “Asymptotics” section). We
evaluated the impact of k on its execution performance, and also assessed some struc-
tural properties of the compacted graph that change with the parameter k. Moreover, we
appraised the parallel scalability of the different steps of the algorithm, characterizing
the ones that scale particularly well with increasing processor-thread count, as well as
those that saturate more quickly.

A diverse collection of datasets has been used to conduct the experiments. We deline-
ate the pertinent datasets for the experiments in their corresponding sections. The com-
mands used for executing the different tools are available in Additional file 1: Sec. 1.10.

We compared the outputs of CUTTLEFISH 2 to those of several other tools used
throughout our experiments. A detailed discussion of this is present at Additional file 1:
Sec. 1.5.

Computation system for evaluation

All experiments were performed on a single server with two Intel Xeon E5-2699 v4
2.20 GHz CPUs having 44 cores in total and enabling up-to 88 threads, 512 GB of 2.40
GHz DDR4 RAM, and a number of 3.6 TB Toshiba MG03ACA4 ATA HDDs. The sys-
tem is run with Ubuntu 16.10 GNU/Linux 4.8.0-59-generic. The running times and the

Page 6 of 32Khan et al. Genome Biology (2022) 23:190

maximum memory usages were measured with the GNU time command, and the inter-
mediate disk-usages were measured using the Linux commands inotifywait and du.

Compacted graph construction for sequencing data

We evaluated the performance of CUTTLEFISH 2 in constructing compacted de Bruijn
graphs from short-read sequencing data compared to available implementations of other
leading compaction algorithms: (1) ABYSS-BLOOM-DBG, the maximal unitigs assem-
bler of the ABYSS 2.0 assembly-pipeline [27], (2) BIFROST [45], (3) DEGSM [46], and
(4) BCALM 2 [47].

The performances were tested on a number of short-read datasets with varied char-
acteristics: (1) Mammalian dataset: (i) a human read set (NIST HG004) from an Ashke-
nazi white female Homo Sapiens (paired-end 250 bp Illumina reads with 70× coverage,
SRA3440461–95, 148 GB compressed FASTQ), from [58], and (ii) an RNA sequencing
dataset (ENA PRJEB3365) of 465 human lymphoblastoid cell line samples from the 1000
Genomes project (single-end 36 bp small-RNA-seq Illumina reads, ERP001941, 140 GB
compressed FASTQ), from [59]; (2) Metagenomic datasets: (i) a gut microbiome read set
(ENA PRJEB33098) from nine individuals (paired-end 150 bp Illumina reads with high
coverage, ERP115863, 45 GB compressed FASTQ), from [60], and (ii) a soil metagenome
read set (Iowa Corn) from 100-years-cultivated Iowa agricultural corn soil (paired-end
76 bp and 114 bp Illumina reads with low coverage, SRX100357 and SRX099904–06, 152
GB compressed FASTQ), used by [61]; and (3) Large organism dataset: a white spruce
read set (NCBI PRJNA83435) from a Canadian Picea glauca tree (paired-end 150 bp and
100 bp Illumina reads with high coverage, SRA056234, 1.14 TB compressed FASTQ),
from [62]. Table 1 contains the summary results of the benchmarking.

The frequency threshold f0 of k-mers ((k+1)-mers in case of CUTTLEFISH 21) for
the algorithms was approximated using k-mer frequency distributions so as to roughly
minimize the misclassification rates of weak and solid k-mers2 in these experiments (See
Additional file 1: Sec. 1.1). In many practical scenarios, it might be preferable to skip
computing an (approximate) frequency distribution, setting f0 through some informed
choice based on the properties of the input data (e.g., the sequencing depth and proto-
col). This can incorporate more weak k-mer into the graph. We present the results for
such a scenario in Additional file 1: Table S2 on the human read set, setting f0 to just 2.

Across the different datasets and algorithms evaluated, several trends emerge, nota-
ble from Table 1. First, we observe that for every dataset considered, CUTTLEFISH 2
is the fastest tool to process the data, while simultaneously using the least amount of
memory. If we allow CUTTLEFISH 2 to match the memory used by the second most
memory-frugal method (which is always BCALM 2 here), then it often completes even
more quickly. We note that CUTTLEFISH 2 retains its performance lead over the alter-
native approaches across a wide range of different data input characteristics.

1 From our observations, the distributions of k-mer frequencies and of (k+1)-mer frequencies on real data tend to agree
closely, resulting in the same f0 for these experiments for both Cuttlefish 2 and the rest of the algorithms, as per the
setting-policy used.
2 k-mer occurring frequently enough in input NGS reads are said to be solid k-mer, and the other ones are said to be
weak [65].

Page 7 of 32Khan et al. Genome Biology (2022) 23:190

Ta
bl

e
1

Ti
m

e-
 a

nd
 m

em
or

y-
pe

rf
or

m
an

ce
 re

su
lts

 fo
r c

on
st

ru
ct

in
g

co
m

pa
ct

ed
 d

e
Br

ui
jn

 g
ra

ph
s

fro
m

 s
ho

rt
-r

ea
d

se
ts

Ea
ch

 c
el

l c
on

ta
in

s
th

e
ru

nn
in

g
tim

e
in

 w
al

l c
lo

ck
 fo

rm
at

, a
nd

 th
e

m
ax

im
um

 m
em

or
y

us
ag

e
in

 g
ig

ab
yt

es
, i

n
pa

re
nt

he
se

s.
Th

e
fr

eq
ue

nc
y

th
re

sh
ol

ds
 f 0 u

se
d

ar
e

as
 fo

llo
w

s:
 (i

) h
um

an
: 1

4
(k

 =
 2

7)
 a

nd
 9

 (k
 =

 5
5)

, (
ii)

 h
um

an

RN
A

‑s
eq

, g
ut

 m
ic

ro
bi

om
e

an
d

so
il:

 2
, a

nd
 (i

ii)
 w

hi
te

 s
pr

uc
e:

 1
1

(k
 =

 2
7)

 a
nd

 7
 (k

 =
 5

5)
. S

om
e

de
ta

ils
 o

n
ex

ec
ut

in
g

th
e

di
ffe

re
nt

 to
ol

 im
pl

em
en

ta
tio

ns
 a

re
 a

s
fo

llo
w

s:
 (1

) A
By

SS
-B

lo
o

m
-d

BG
 h

as
 tw

o
tu

na
bl

e
pa

ra
m

et
er

s
si

gn
ifi

ca
nt

ly
 a

ffe
ct

in
g

its
 p

er
fo

rm
an

ce
: a

 B
lo

om
 fi

lte
r [

63
] m

em
or

y
bu

dg
et

 a
nd

 th
e

nu
m

be
r o

f h
as

h
fu

nc
tio

ns
 fo

r t
he

 fi
lte

rs
. W

e
ex

ec
ut

ed
 it

 w
ith

 tw
o

co
nfi

gu
ra

tio
ns

: s
m

al
l‑m

em
or

y
(w

ith
 4

 h
as

he
s)

 a
nd

 la
rg

e‑
m

em
or

y
(w

ith

3
ha

sh
es

).
Th

e
m

em
or

y
bu

dg
et

s
us

ed
 in

 th
es

e
co

nfi
gu

ra
tio

ns
 a

re
 a

s
fo

llo
w

s:
 (i

) h
um

an
, h

um
an

 R
N

A
‑s

eq
, a

nd
 g

ut
 m

ic
ro

bi
om

e:
 3

2
G

B
an

d
64

 G
B;

 (i
i)

so
il:

 6
4

G
B

an
d

12
8

G
B;

 a
nd

 (i
ii)

 w
hi

te
 s

pr
uc

e:
 4

00
 G

B,
 a

nd
 n

o
la

rg
e‑

m
em

or
y

ex
ec

ut
io

n
du

e
to

 h
ar

dw
ar

e
lim

ita
tio

ns
. (

2)
 B

if
ro

St
 d

oe
s

no
t s

up
po

rt
 th

e
us

ag
e

of
 a

rb
itr

ar
y

f 0,
an

d
us

es
 a

 d
ef

au
lt

f 0=
2.

 F
or

 a
 u

ni
fo

rm
 c

om
pa

ris
on

 a
cr

os
s

th
e

to
ol

s
w

ith
 f 0=

2
on

 th
e

hu
m

an
 d

at
as

et
, s

ee
 A

dd
iti

on
al

fil

e
1:

 T
ab

le
 S

2.
 W

e
di

d
no

t e
xe

cu
te

 B
if

ro
St

 o
n

th
e

w
hi

te
 s

pr
uc

e
da

ta
se

t d
ue

 to
 th

is
 li

m
ita

tio
n—

w
hi

le
 o

n
th

e
hu

m
an

 d
at

as
et

 th
e

in
cr

ea
se

s
in

 th
e

ve
rt

ex
‑c

ou
nt

 fo
r B

if
ro

St
 a

re
 a

pp
ro

xi
m

at
el

y
26

%
 (k
=

27
) a

nd
 1

9%
 (k
=

55
),

th
es

e
ar

e
91

%
 a

nd
 4

5%
 re

sp
ec

tiv
el

y
on

 th
e

w
hi

te
 s

pr
uc

e
da

ta
se

t.
(3

) d
eG

Sm
 h

as
 a

 m
ax

im
um

‑m
em

or
y

pa
ra

m
et

er
, w

ith
 a

n
up

pe
r‑

lim
it

of
 1

28
 G

B.
 W

e
ob

se
rv

ed
 th

at
 it

s
in

te
rn

al
 k

‑m
er

 e
nu

m
er

at
io

n
st

ep
s

us
in

g
Je

ll
yf

iS
h

 [6
4]

 u
se

m

or
e

m
em

or
y

th
an

 th
is

 li
m

it
in

 a
ll

th
e

ex
pe

rim
en

ts
, a

nd
 th

er
ef

or
e

w
e

us
ed

 1
28

 G
B

fo
r d

eG
Sm

 in
 a

ll
its

 e
xe

cu
tio

ns
. (

4)
 B

CA
lm

 2
 a

ls
o

ha
s

a
m

ax
im

um
‑m

em
or

y
op

tio
n,

 w
hi

ch
 w

e
se

t t
o

th
e

be
st

 m
em

or
y

us
ag

e
ob

ta
in

ed
 fr

om

th
e

re
st

 o
f t

he
 a

lg
or

ith
m

s.
It

al
so

 h
as

 a
 m

ax
im

um
 d

is
k

us
ag

e
op

tio
n,

 w
hi

ch
 w

e
se

t t
o

th
e

en
tir

e
us

ab
le

 s
pa

ce
 (3

.4
 T

B)
 o

f t
he

 d
is

k
us

ed
 fo

r i
ts

 w
or

ki
ng

 d
ire

ct
or

y,
 fo

r m
ax

im
um

 e
ffi

ci
en

cy
. (

5)
 T

he
 C

u
tt

le
fi

Sh
 2

 im
pl

em
en

ta
tio

n
al

so
 s

up
po

rt
s

tu
na

bl
e

m
em

or
y

up
‑t

o
a

ce
rt

ai
n

ex
te

nt
, a

nd
 w

e
ex

ec
ut

ed
 it

 w
ith

 th
re

e
se

tt
in

gs
: (

i)
de

fa
ul

t m
em

or
y:

 u
si

ng
 th

e
de

fa
ul

t m
in

im
um

 m
em

or
y

of
 ≈

9.
7

bi
ts

/v
er

te
x

(s
ee

 th
e

Sp
ac

e
co

m
pl

ex
ity

 s
ec

tio
n)

, (
ii)

 m
at

ch

se
co

nd
‑b

es
t m

em
or

y:
 u

si
ng

 u
p‑

to
 th

e
m

em
or

y
am

ou
nt

 fo
un

d
be

st
 in

 e
xe

cu
tio

ns
 o

th
er

 th
an

 C
u

tt
le

fi
Sh

 2
 s

tr
ic

t‑
m

em
or

y
m

od
e,

 a
nd

 (i
ii)

 u
nr

es
tr

ic
te

d
m

em
or

y:
 u

si
ng

 n
o

st
ric

t u
pp

er
‑li

m
it

fo
r m

em
or

y.

Th
e

be
st

 p
er

fo
rm

an
ce

 w
ith

 re
sp

ec
t t

o
ea

ch
 m

et
ric

 in
 e

ac
h

ro
w

 is
 h

ig
hl

ig
ht

ed
, w

he
re

 o
nl

y
th

e
de

fa
ul

t‑
m

em
or

y
m

od
e

is
 c

on
si

de
re

d
fo

r C
u

tt
le

fi
Sh

 2
. T

he
 ∗

’s
an

d
th

e
†’

s
de

no
te

 th
at

 th
e

co
rr

es
po

nd
in

g
ex

ec
ut

io
ns

 c
ou

ld

no
t c

om
pl

et
e

du
e

to
 h

ar
dw

ar
e

sh
or

ta
ge

 o
f m

em
or

y
an

d
di

sk
‑s

pa
ce

, r
es

pe
ct

iv
el

y.
 T

he
 X

’s
de

no
te

 th
at

 th
e

co
rr

es
po

nd
in

g
ex

ec
ut

io
ns

 w
er

e
no

t r
un

 fo
r r

ea
so

ns
 n

ot
ed

 e
ar

lie
r.

Ad
di

tio
na

l fi
le

 1
: T

ab
le

 S
1

al
so

 in
cl

ud
es

 th
e

in
te

rm
ed

ia
te

 d
is

k‑
us

ag
es

 in
cu

rr
ed

 b
y

th
e

to
ol

s,
be

si
de

s
tim

e
an

d
m

em
or

y

A
By

SS
-B

lo
o

m
-d

BG
Bi

fr
o

St
d

eG
Sm

BC
A

lm
 2

CU
tt

le
fi

SH
 2

D
at

as
et

k
Th

re
ad

-c
ou

nt
Sm

al
l-m

em
or

y
La

rg
e-

m
em

or
y

D
ef

au
lt

m
em

or
y

M
at

ch
 s

ec
on

d-
be

st

m
em

or
y

U
nr

es
tr

ic
te

d
m

em
or

y

H
um

an
27

8
22

 h
 1

8
m

in
 (3

9.
3)

20
 h

 2
3

m
in

 (7
1.

3)
11

 h
 4

3
m

in
 (4

8.
5)

10
 h

 3
6

m
in

 (2
35

.8
)

04
 h

 2
3

m
in

 (6
.7

)
01

 h
 1

3
m

in
 (3

.2
)

01
 h

 1
0

m
in

 (6
.2

)
01

 h
 (1

1.
3)

16
11

 h
 3

8
m

in
 (3

9.
3)

11
 h

 0
2

m
in

 (7
1.

3)
09

 h
 3

9
m

in
 (4

8.
6)

07
 h

 0
8

m
in

 (2
35

.8
)

04
 h

 5
8

m
in

 (8
.9

)
56

 m
in

 (3
.3

)
56

 m
in

 (7
.6

)
51

 m
in

 (1
1.

3)

55
8

16
 h

 3
2

m
in

 (3
4.

0)
15

 h
 5

8
m

in
 (6

6.
0)

05
 h

 4
3

m
in

 (4
3.

8)
16

 h
 5

0
m

in
 (2

93
.2

)
04

 h
 0

1
m

in
 (7

.4
)

02
 h

 2
0

m
in

 (3
.5

)
01

 h
 0

8
m

in
 (7

.1
)

01
 h

 0
3

m
in

 (1
1.

3)

16
09

 h
 2

8
m

in
 (3

4.
1)

08
 h

 3
7

m
in

 (6
6.

1)
04

 h
 1

6
m

in
 (4

3.
9)

15
 h

 5
4

m
in

 (2
93

.3
)

04
 h

 2
6

m
in

 (1
0.

5)
02

 h
 0

2
m

in
 (3

.7
)

01
 h

 1
1

m
in

 (9
.5

)
51

 m
in

 (1
1.

3)

H
um

an
 R

N
A

-s
eq

27
8

11
 h

 4
7

m
in

 (3
3.

7)
11

 h
 2

2
m

in
 (6

5.
7)

06
 h

 0
4

m
in

 (7
.2

)
01

 h
 3

5
m

in
 (8

7.
1)

02
 h

 5
8

m
in

 (3
.8

)
30

 m
in

 (2
.9

)
–

18
 m

in
 (8

0.
1)

16
11

 h
 3

8
m

in
 (3

9.
3)

07
 h

 3
8

m
in

 (6
5.

7)
07

 h
 2

4
m

in
 (7

.2
)

01
 h

 3
7

m
in

 (8
7.

2)
02

 h
 4

6
m

in
 (3

.9
)

20
 m

in
 (3

.0
)

–
12

 m
in

 (8
0.

1)

G
ut

 m
ic

ro
bi

om
e

27
16

18
 h

 4
7

m
in

 (4
2.

0)
20

 h
 1

2
m

in
 (7

4.
0)

03
 h

 5
4

m
in

 (3
8.

1)
02

 h
 2

8
m

in
 (1

57
.2

)
02

 h
 3

4
m

in
 (7

.7
)

26
 m

in
 (3

.5
)

23
 m

in
 (6

.7
)

20
 m

in
 (2

6.
8)

55
1

da
y

17
 h

 4
3

m
in

(3

5.
9)

1
da

y
08

 h
 0

9
m

in

(6
7.

8)
02

 h
 4

4
m

in
 (4

6.
7)

06
 h

 5
3

m
in

 (2
93

.3
)

03
 h

 0
2

m
in

 (1
2.

5)
44

 m
in

 (4
.0

)
25

 m
in

 (1
1.

3)
20

 m
in

 (6
9.

9)

So
il

27
16

1
d

18
 h

 3
5

m
in

(1

50
.4

)
14

 h
 2

4
m

in
 (2

75
.0

)
15

 h
 2

8
m

in
 (2

74
.1

)
1

da
y

14
 h

 2
9

m
in

(2

35
.8

)
19

 h
 3

9
m

in
 (5

2.
0)

02
 h

 0
1

m
in

 (1
9.

2)
)

02
 h

 1
8

m
in

 (4
0.

9)
01

 h
 3

5
m

in
 (4

0.
9)

55
07

 h
 5

7
m

in
 (1

28
.9

)
06

 h
 3

6
m

in
 (2

56
.8

)
05

 h
 4

9
m

in
 (1

57
.0

)
1

da
y

11
 h

 0
5

m
in

(2

93
.3

)
08

 h
 3

0
m

in
 (2

7.
5)

03
 h

 0
2

m
in

 (1
1.

1)
02

 h
 4

3
m

in
 (2

3.
3)

01
 h

 3
8

m
in

 (2
3.

3)

W
hi

te
 s

pr
uc

e
27

16
∗

X
X

†
2

da
ys

 0
6

h
12

 m
in

(3

6.
8)

10
 h

 0
5

m
in

 (1
4.

0)
07

 h
 4

7
m

in
 (3

5.
2)

07
 h

 1
3

m
in

 (2
04

.2
)

55
∗

X
X

†
2

da
ys

 0
9

h
59

 m
in

(3

1.
6)

10
 h

 1
2

m
in

 (2
3.

8)
10

 h
 0

8
m

in
 (3

1.
1)

07
 h

 2
4

m
in

 (2
79

.3
)

Page 8 of 32Khan et al. Genome Biology (2022) 23:190

Among all the methods tested, CUTTLEFISH 2 and BCALM 2 were the only tools
able to process all the datasets to completion under the different configurations tested,
within the memory and disk-space constraints of the testing system. The rest of the
methods generally required substantially more memory, sometimes over an order of
magnitude more, depending on the dataset.

Of particular interest is CUTTLEFISH 2’s performance compared against BCALM 2.
Relative to BCALM 2, CUTTLEFISH 2 is 1.7–5.3× faster on the human read set, while
using 2.1–2.8× less memory. On the RNA-seq dataset, it is 8.3–5.9× faster, with 1.3×
less memory. For the metagenomic datasets, it is 4.1–5.9× faster and uses 2.2–3.1× less
memory on the gut microbiome data, and is 2.8–8.5× faster using 2.5–2.7× less mem-
ory on the soil data. On the largest sequencing dataset here, the white spruce read set,
CUTTLEFISH 2 is 5.4–5.7× faster and is 1.3–2.6× memory-frugal—taking about 10 h,
compared to at least 54 h for BCALM 2.

The timing-profile of BCALM 2 and CUTTLEFISH 2 excluding their similar initial
stage: k-mer and (k+1)-mer enumeration, respectively, are shown in Additional file 1:
Table S4. We also note some statistics of the de Bruijn graphs and their compacted forms
for these datasets in Additional file 1: Table S5.

Compacted graph construction for reference collections

We assessed the execution performance of CUTTLEFISH 2 in constructing compacted
de Bruijn graphs from whole-genome sequence collections in comparison to the avail-
able implementations of the following leading algorithms: (1) BIFROST [45], (2) DEGSM
[46], and (3) BCALM 2 [47]. TWOPACO [48] is another notable algorithm applicable
in this scenario, but we did not include it in the benchmarking as its output step lacks
a parallelized implementation, and we consider very large sequence collections in this
experiment.

We evaluated the performances on a number of datasets with varying attributes:
(1) Metagenomic collection: 30,691 representative sequences from the most preva-
lent human gut prokaryotic genomes, gathered by [66] (≈ 61B bp, 18 GB compressed
FASTA); (2) Mammalian collection: 100 human genomes—7 real sequences from [49]
and 93 sequences simulated by [48] (≈ 294B bp, 305 GB uncompressed FASTA); and
(3) Bacterial archive: 661,405 bacterial genomes, collected by [67] from the European
Nucleotide Archive (≈ 2.58T bp, 752 GB compressed FASTA). Table 2 conveys the sum-
mary results of the benchmarking.

Evaluating the performance of the different tools over these pan-genomic datasets, we
observe similar trends to what was observed in Table 1, but with even more extreme dif-
ferences than before. For a majority of the experiment configurations here, only BCALM
2 and CUTTLEFISH 2 were able to finish processing within time- and machine-con-
straints. Again, CUTTLEFISH 2 exhibits the fastest runtime on all datasets, and the low-
est memory usage on all datasets except the human gut genomes (where it consumes
1–2 GB more memory than BCALM 2, though taking 6–7 fewer hours to complete).

CUTTLEFISH 2 is 2.4–8.9× faster on the 30K human gut genomes compared to the
closest competitors, using similar memory. On the 100 human reference sequences,
CUTTLEFISH 2 is 4.3–4.7× faster, using 5.4–8.4× less memory. The only other tools
able to construct this compacted graph successfully are DEGSM for k=27 (taking 4.3×

Page 9 of 32Khan et al. Genome Biology (2022) 23:190

as long and requiring 8.4× as much memory as CUTTLEFISH 2) and BCALM 2 for
k=55 (taking over 4.7× as long and 5.4× as much memory as CUTTLEFISH 2). Finally,
when constructing the compacted graph on the 661,405 bacterial genomes, CUTTLE-
FISH 2 is the only tested tool able to construct the graph for k=27. For k=55, BCALM 2
also completed, taking about 4.5 days, while CUTTLEFISH 2 finished under a day, with
similar memory-profile. Overall, we observe that for large pan-genome datasets, CUT-
TLEFISH 2 is not only considerably faster and more memory-frugal than alternative
approaches, but is the only tool able to reliably construct the compacted de Bruijn graph
under all the different configurations tested, within the constraints of the experimental
system.

Table S4 notes the timing-profiles for BCALM 2 and CUTTLEFISH 2 without their
first step of k-mer and (k+1)-mer enumerations, and Table S5 shows some characteris-
tics of the (compacted) de Bruijn graphs for these pan-genome datasets.

Table 2 Time- and memory-performance results for constructing compacted de Bruijn graphs from
whole-genome reference collections

Each cell contains the running time in wall clock format, and the maximum memory usage in gigabytes, in parentheses.
All the inputs being genomic sequences, the frequency threshold f0 is used as 1 with all the tools. The relevant execution
details, i.e., setting policy of the maximum memory usage (and maximum disk usage, if applicable) for deGSm, BCAlm 2, and
CuttlefiSh 2 are the same as described in Table 1.

The best performance with respect to each metric in each row is highlighted, and only the default‑memory mode is
considered for CuttlefiSh 2 for such. The ∗’s and the †e’s denote that the corresponding executions failed to complete
due to hardware shortage of memory and disk‑space, respectively. The ‡’s in the BCAlm 2 executions denote abnormal
terminations, reporting an encountered logic‑error. The Δ in the deGSm cells for the human gut genomes dataset indicate
that the deGSm executions were stuck in an intermediate stage indefinitely, and they were allowed to run for at least 2 days
before being explicitly terminated. For the bacterial archive, we did not execute BifroSt and deGSm (denoted with the X’s) as
it is anticipated that insufficient resources would be available for the executions, given their resource‑usages on the smaller
datasets. Additional file 1: Table S3 also includes the intermediate disk‑usages incurred by the tools, besides time and
memory

BifroSt deGSm BCAlm 2 CUttlefiSH 2

Dataset
(genome
count)

k Thread-
count

Default
memory

Unrestricted
memory

Human gut
(30K)

27 8 06 h (155.1) Δ 10 h 06 min
(21.5)

01 h 39 min
(15.2)

01 h 39 min
(32.5)

16 05 h 30 min
(155.1)

09 h 05 min
(22.0)

01 h 01 min
(15.5)

59 min (32.5)

55 8 08 h 47 min
(279.2)

11 h 49 min
(18.6)

04 h 14 min
(20.6)

03 h 42 min
(44.4)

16 08 h 20 min
(279.2)

09 h 45 min
(19.2)

03 h 50 min
(20.9)

03 h 10 min
(44.3)

Human (100) 27 8 35 h 45 min
(355.9)

19 h 23 min
(235.8)

‡ 04 h 32 min
(27.7)

04 h 09 min
(59.7)

16 32 h 14 min
(355.9)

14 h 07 min
(235.8)

‡ 03 h 19 min
(28.1)

02 h 49 min
(59.7)

55 8 ∗ † 2 days 23
h 31 min
(302.9)

15 h 08 min
(56.0)

13 h 47 min
(121.8)

16 ∗ † ∗ 12 h (56.2) 11 h 33 min
(121.8)

Bacterial
archive
(661K)

27 16 X X ‡ 16 h 38 min
(48.7)

16 h 24 min
(104.9)

55 4 days 10 h
11 min (63.3)

22 h 44 min
(59.9)

22 h 20 min
(129.5)

Page 10 of 32Khan et al. Genome Biology (2022) 23:190

Maximal path cover construction

The execution performance of CUTTLEFISH 2 in decomposing de Bruijn graphs into
maximal vertex-disjoint paths was assessed compared to the only two available tool
implementations in literature [57] for this task: (1) PROPHASM [56] and (2) UST [55].

For sequencing data, we used (1) a roundworm read set (ENA DRR008444) from a
Caenorhabditis elegans nematode (paired-end 300 bp Illumina reads, 5.6 GB com-
pressed FASTQ); (2) the gut microbiome read set (ENA PRJEB33098) noted earlier; and
(3) the human read set (NIST HG004) noted earlier. For whole-genome data, we used
sequences from (1) a roundworm reference (Caenorhabditis elegans, VC2010) [68]; (2) a
human reference (Homo sapiens, GRCh38); and (3) 7 real humans, collected from [49].
Table 3 presents the summary results of the benchmarking.

We note that CUTTLEFISH 2 outperforms the alternative tools for constructing max-
imal path covers in terms of the time and memory required. In the context of this task,
CUTTLEFISH 2 also offers several qualitative benefits over these tools. For example,
PROPHASM exposes only a single-threaded implementation. Further, it is restricted to
values of k≤32 and only accepts genomic sequences as input (and thus is not applicable
for read sets). UST first makes use of BCALM 2 for maximal unitigs extraction—which
we observed to be outperformed by CUTTLEFISH 2 in the earlier experiments—and
then employs a sequential graph traversal on the compacted graph to extract a maximal
path cover. For this problem, CUTTLEFISH 2 bypasses the compacted graph construc-
tion, and directly extracts a maximal cover.

We observe that compared to the tools, CUTTLEFISH 2 is competitive on single-
threaded executions. While on moderate-sized datasets using multiple threads, it was
2–3.8× faster than UST using 2.2–12.6× less memory on sequencing data, and for refer-
ence sequences it was 2.8–6.1× faster than UST using 2.9–6.3× less memory.

We also provide a comparison of the maximal unitig-based and the maximal path
cover-based representations of de Bruijn graphs in Additional file 1: Table S6. We
observe that, for the human read set, the path cover representation requires 19–24% less
space than the unitigs. For the human genome reference and 7 humans pan-genome ref-
erences, these reductions are 14–22%, and 20–25%, respectively. From the statistics of
both the representations on the gut microbiome read set, it is evident that the corre-
sponding de Bruijn graphs are highly branching, as might be expected for metagenomic
data. The space reductions with path cover in these graphs are 33–36%.

Structural characteristics

Given an input dataset R and a fixed frequency threshold f0 for the edges (i.e., (k+1)-
mers), the structure of the de Bruijn graph G(R , k) is completely determined by the
k-mer-size—the edge- and the vertex-counts depend on k, and the asymptotic character-
istics of the algorithm are dictated only by the k-mer size k and the hash function space-
time tradeoff factor γ (see the “Asymptotics” section). We evaluated how CUTTLEFISH
2 is affected practically by changes in the k-value. The human read set (NIST HG004)
noted earlier was used for these evaluations.

For a range of increasing k-values (and a constant γ), we measured the execution
performance of CUTTLEFISH 2, and the following metrics of the maximal unitigs it

Page 11 of 32Khan et al. Genome Biology (2022) 23:190

Ta
bl

e
3

Ti
m

e-
 a

nd
 m

em
or

y-
pe

rf
or

m
an

ce
 re

su
lts

 fo
r d

ec
om

po
si

ng
 d

e
Br

ui
jn

 g
ra

ph
s

in
to

 m
ax

im
al

 v
er

te
x-

di
sj

oi
nt

 p
at

hs

Ea
ch

 c
el

l c
on

ta
in

s
th

e
ru

nn
in

g
tim

e
in

 w
al

l c
lo

ck
 fo

rm
at

, a
nd

 th
e

m
ax

im
um

 m
em

or
y

us
ag

e
in

 g
ig

ab
yt

es
, i

n
pa

re
nt

he
se

s.
Th

e
fr

eq
ue

nc
y

th
re

sh
ol

ds
 f 0 u

se
d

fo
r t

he
 re

ad
 s

et
s

ar
e

as
 fo

llo
w

s:
 (i

) r
ou

nd
w

or
m

: 1
2

(k
 =

 2
7)

 a
nd

 8
 (k

=

 5
5)

; (
ii)

 g
ut

 m
ic

ro
bi

om
e:

 2
; a

nd
 (i

ii)
 h

um
an

: 1
4

(k
 =

 2
7)

 a
nd

 9
 (k

 =
 5

5)
. F

or
 th

e
re

fe
re

nc
e

se
qu

en
ce

s,
f 0 i

s
1.

Th
e

be
st

 p
er

fo
rm

an
ce

 w
ith

 re
sp

ec
t t

o
ea

ch
 m

et
ric

 in
 e

ac
h

ro
w

 is
 h

ig
hl

ig
ht

ed
, w

he
re

 fo
r C

u
tt

le
fi

Sh
 2

 o
nl

y
its

 d
ef

au
lt‑

m
em

or
y

m
od

e
is

 c
on

si
de

re
d.

 T
he

 ∗
 d

en
ot

es
 th

at
 th

e
co

rr
es

po
nd

in
g

Pr
o

Ph
A

Sm
 e

xe
cu

tio
n

co
ul

d
no

t
co

m
pl

et
e

du
e

to
 h

ar
dw

ar
e

m
em

or
y

sh
or

ta
ge

.

Sh
or

t-
re

ad
 s

et
s

W
ho

le
-g

en
om

e
re

fe
re

nc
es

U
St

CU
tt

le
fi

SH
 2

Pr
o

PH
A

Sm
U

St
CU

tt
le

fi
SH

 2

D
at

as
et

k
Th

re
ad

- c
ou

nt
D

ef
au

lt
m

em
or

y
U

nr
es

tr
ic

te
d

m
em

or
y

D
at

as
et

k
Th

re
ad

-c
ou

nt
D

ef
au

lt
m

em
or

y
U

nr
es

tr
ic

te
d

m
em

or
y

Ro
un

d-
w

or
m

27
1

22
 m

in
 (3

.7
)

11
 m

in
 (2

.9
)

09
 m

in
 (1

1.
2)

Ro
un

d-
w

or
m

27
1

03
 m

in
 (3

.9
)

08
 m

in
 (5

.6
)

03
 m

in
 (2

.0
)

03
 m

in
 (3

.1
)

8
07

 m
in

 (3
.6

)
02

 m
in

 (2
.9

)
02

 m
in

 (1
1.

1)
8

--
02

 m
in

 (0
.8

)
01

 m
in

 (2
.0

)
01

 m
in

 (2
.0

)

55
1

24
 m

in
 (3

.2
)

19
 m

in
 (2

.9
)

15
 m

in
 (1

1.
2)

55
1

10
 m

in
 (7

.3
)

04
 m

in
 (2

.8
)

04
 m

in
 (3

.9
)

8
08

 m
in

 (3
.3

)
02

 m
in

 (2
.9

)
02

 m
in

 (1
1.

2)
8

02
 m

in
 (1

.2
)

01
 m

in
 (2

.8
)

01
 m

in
 (3

.4
)

G
ut

 m
ic

ro
-

bi
om

e
27

1
09

 h
 0

2
m

in

(3
9.

2)
04

 h
 3

0
m

in

(3
.1

)
04

 h
 0

2
m

in

(2
6.

8)
H

um
an

27
1

01
 h

 5
4

m
in

(9

1.
8)

03
h

59
m

 (3
8.

6)
01

 h
 2

8
m

in

(3
.1

)
01

 h
 2

9
m

in

(1
1.

2)

8
03

 h
 1

0
m

in

(3
9.

2)
53

 m
in

 (3
.3

)
37

 m
in

 (2
6.

9)
8

--
01

 h
 0

9
m

in

(1
0.

3)
14

 m
in

 (3
.2

)
12

 m
in

 (1
1.

3)

55
1

10
 h

 3
6

m
in

(3

4.
8)

06
 h

 5
9

m
in

(3

.6
)

05
 h

 5
1

m
in

(6

9.
9)

55
1

04
 h

 5
5

m
in

(3

0.
2)

02
 h

 1
6

m
in

(3

.2
)

02
 h

 0
7

m
in

(1

1.
3)

8
03

 h
 2

4
m

in

(3
4.

8)
01

 h
 1

3
m

in

(3
.8

)
49

 m
in

 (6
9.

9)
8

01
 h

 0
2

m
in

(1

0.
0)

22
 m

in
 (3

.4
)

19
 m

in
 (1

1.
2)

H
um

an
27

8
04

 h
 5

6
m

in

(1
3.

1)
01

 h
 1

8
m

in

(3
.2

)
01

 h
 0

1
m

in

(1
1.

3)

55
04

 h
 5

6
m

in

(7
.7

)
02

 h
 2

9
m

in

(3
.5

)
01

 h
 1

1
m

in

(1
1.

3)
7-

hu
m

an
s

27
1

∗
04

 h
 3

8
m

in

(2
0.

7)
01

 h
 5

8
m

in

(3
.1

)
01

 h
 4

6
m

in

(1
1.

2)

8
--

01
 h

 4
9

m
in

(2

0.
2)

18
 m

in
 (3

.2
)

15
 m

in
 (1

1.
2)

55
1

05
 h

 5
5

m
in

(2

0.
7)

02
 h

 4
8

m
in

(3

.4
)

02
 h

 2
8

m
in

(1

1.
2)

8
01

 h
 3

8
m

in

(2
0.

2)
27

 m
in

 (3
.6

)
21

 m
in

 (1
1.

2)

Page 12 of 32Khan et al. Genome Biology (2022) 23:190

produced: the number of unitigs, the average and the maximum unitig lengths, along
with the N503 and the NGA504 scores for contig-contiguity. Across the varying k’s,
Table 4 reports the performance- and the unitig-metrics.

The unitig-metrics on this data convey what one might expect—as k increases, so do
the average and the maximum lengths of the maximal unitigs, and the N50 and NGA50
metrics, since the underlying de Bruijn graph typically gets less tangled as the k-mer
size exceeds repeat lengths [70]. It is worth noting that, since we consider here just the
extraction of unitigs, and no graph cleaning or filtering steps (e.g., bubble popping and
tip clipping), we expect the N50 to be fairly short.

Perhaps the more interesting observation to be gleaned from the results is the scaling
behavior of CUTTLEFISH 2 in terms of k. While the smallest k-value leads to the fast-
est overall graph construction, with increase in the machine-word count to encode the
k-mer, the increase in runtime is rather moderate with respect to k, which follows the
expected asymptotics (see the “Time complexity” section). On the other hand, we observe
that this increase can be offset by allowing CUTTLEFISH 2 to execute with more mem-
ory (which helps in the bottleneck step, (k+1)-mer enumeration). We also note that, while
the timing-profile exhibits reasonably good scalability over the parameter k, the effect on

Table 4 Time- and memory-performance of CUTTLEFISH 2 for constructing the compacted de
Bruijn graph from the human read set NIST HG004, and some corresponding metrics of the output
maximal unitigs, over a range of k-mer sizes

In performance‑metrics, the running times are in wall clock format, and the maximum memory usages are in gigabytes,
in parentheses. The frequency threshold f0 for the (k+1)‑mers is kept fixed at 5. The number of threads used in all the
executions is 8. The setting policy of the execution modes (i.e., default‑memory and unrestricted‑memory) for CuttlefiSh
2 is as described in Table 1. NGA50 is calculated using the tool abyss-samtobreak, having aligned the output contigs to
the genome reference GRCh38 using BWA-mem [69]

Performance-metrics Unitig-metrics

k k-mer count Default
memory

Unrestricted
memory

Count Avg.
length
(bp)

Max.
length
(bp)

N50 (bp) NGA50 (bp)

27 2,547,479,119 1 h 12 min
(3.19)

54 min (11.29) 80,465,421 58 20,648 62 425

41 2,771,918,177 2 h 19 min
(3.48)

1 h 05 min
(11.26)

44,768,246 102 29,381 186 769

55 2,900,387,834 2h 12 min
(3.54)

1 h 04 min
(11.28)

28,510,532 156 32,725 386 1030

69 2,978,629,926 2 h 42 min
(3.66)

1 h 11 min
(19.49)

20,361,009 214 45,495 552 1256

83 3,029,739,673 2 h 39 min
(3.68)

1 h 04 min
(22.34)

16,220,627 269 45,359 645 1435

97 3,066,350,056 3 h 05 min
(3.78)

1 h 06 min
(30.57)

13,938,567 316 57,338 675 1543

111 3,093,353,953 2 h 53 min
(3.75)

1 h 08 min
(32.18)

12,683,849 354 57,402 660 1596

125 3,111,450,986 3 h 01 min
(3.80)

1 h 16 min
(42.18)

11,855,026 386 57,416 634 1617

3 Length ℓ of the longest contig such that all the contigs having lengths ≥ℓ sum in size to at least 50% of the sum size of
the contigs.
4 Analogous to N50, except for: (1) breaking the contigs into their constituent blocks that can be aligned to an associ-
ated reference sequence, and (2) replacing the sum size of contigs with the reference length.

Page 13 of 32Khan et al. Genome Biology (2022) 23:190

the required memory is rather small—it is not directly determined by the k-value, rather
is completely dictated by the distinct k-mer count (see the “Space complexity” section).

Parallel scaling

We assessed the scalability of CUTTLEFISH 2 across a varying number of processor-
threads. For this experiment, we downsampled the human read set NIST HG004 from
70× to 20× coverage and used this as input. We set k to 27 and 55, and executed CUT-
TLEFISH 2 with thread-counts ranging in 1–32. For k=27, Fig. 2a shows the time
incurred by each step of the algorithm, and Fig. 2b demonstrates their speedups (i.e.,
factor of improvement in the speed of execution with different number of processor-
threads). Additional file 1: Fig. S2 shows these metrics for k=55.

On the computation system used, we observe that all steps of CUTTLEFISH 2 scale
well until about 8 threads. Beyond 8 threads, most steps but the minimal perfect hash
construction continue to scale. Figure 2a shows that the most time-intensive step in the
algorithm is the initial edge set enumeration. This step, along with vertex enumeration
and DFA states computation, continue to show reasonably good scaling behavior until
about 20 threads, then gradually saturating. The final step of unitigs extraction seems to
scale well up to the maximum thread-count we tested with (32 in this case).

It is worth reiterating that all experiments were performed on standard hard drives, and
that the most resource-intensive step of edge enumeration can be quite input-output (IO)
bound, while the rest of the steps also iterate through the in-disk set of edges or vertices—
bound by disk-read speed. So one might expect different (and quite possibly better) scaling
behavior for the IO-heavy operations when executing on faster external storage, e.g., in
the form of SSD or NVMe drives [71]. This is further evidenced by [72], who show that
KMC 3, the method used for the edge and the vertex enumeration steps in CUTTLEFISH
2, could have considerable gains in speed on large datasets when executed on SATA SSDs.

Conclusion
In this paper, we present CUTTLEFISH 2, a new algorithm for constructing the com-
pacted de Bruijn graph, which is very fast and memory-frugal, and highly-scalable in
terms of the extent of the input data it can handle. CUTTLEFISH 2 builds upon the
work of [44], which already advanced the state-of-the-art in reference-based com-
pacted de Bruijn graph construction. CUTTLEFISH 2 simultaneously addresses the

Fig. 2 Parallel-scaling metrics for CUTTLEFISH 2 across 1–32 processor threads, using k=27 on the
(downsampled) human read set NIST HG004, with the frequency threshold f0=4

Page 14 of 32Khan et al. Genome Biology (2022) 23:190

limitation and the bottleneck of CUTTLEFISH, by substantially generalizing the work
to allow graph construction from both raw sequencing reads and reference genome
sequences, while offering a more efficient performance profile. It achieves this, in large
part, through bypassing the need to make multiple passes over the original input for very
large datasets.

As a result, CUTTLEFISH 2 is able to construct compacted de Bruijn graphs much
more quickly, while using less memory—both often multiple times—than the numer-
ous other methods evaluated. Since the construction of the graph resides upstream of
many computational genomics analysis pipelines, and as it is typically one of the most
resource-intensive steps in these approaches, CUTTLEFISH 2 could help remove com-
putational barriers to using the de Bruijn graph in analyzing the ever-larger corpora of
genomic data.

In addition to the advances it represents in the compacted graph construction, we also
demonstrate the ability of the algorithm to compute another spectrum-preserving string
set of the input sequences—maximal path covers that have recently been adopted in a
growing variety of applications in the literature [57]. A simple restriction on the con-
sidered graph structure allows CUTTLEFISH 2 to build this construct much more effi-
ciently than the existing methods.

Though a thorough exploration of the potential benefits of improved compacted de
Bruijn graph construction to the manifold downstream analyses is outside the scope of
the current work, we present a proof of concept application (Additional file 1: Sec. 1.9),
demonstrating the benefits of our improved algorithm to the task of constructing an
associative k-mer index.

As the scale of the data on which the de Bruijn graph and its variants must be con-
structed increases, and as the de Bruijn graph itself continues to find ever-more wide-
spread uses in genomics, we anticipate that CUTTLEFISH 2 will enable its use in
manifold downstream applications that may not have been possible earlier due to com-
putational challenges, paving the way for an even more widespread role for the de Bruijn
graph in high-throughput computational genomics.

CUTTLEFISH 2 is implemented in C++17, and is available open-source at https://
github. com/ COMBI NE- lab/ cuttl efish.

Methods
Related work

Here, we briefly discuss the other compacted de Bruijn graph construction algorithms
included in the experiments against which we compare CUTTLEFISH 2.

The BCALM algorithm [50] partitions the k-mer from the input that pass fre-
quency filtering into a collection of disk-buckets according to their minimizers [73],
and processes each bucket sequentially as per the minimizer-ordering—loading all
the strings of the bucket into memory, joining (or, compacting) them maximally
while keeping the resulting paths non-branching in the underlying de Bruijn graph,
and distributing each resultant string into some other yet-to-be-processed bucket
for potential further compaction, or to the final output. As is, BCALM is inherently
sequential. BCALM 2 [47] builds upon this use of minimizers to partition the graph,
but it modifies the k-mer partitioning strategy so that multiple disk-buckets can be

https://github.com/COMBINE-lab/cuttlefish
https://github.com/COMBINE-lab/cuttlefish

Page 15 of 32Khan et al. Genome Biology (2022) 23:190

compacted correctly in parallel, and then glues the further compactable strings from
the compacted buckets.

ABYSS-BLOOM-DBG is the maximal unitigs assembler of the ABYSS 2.0 assem-
bly tool [27]. It first saves all the k-mer from the input reads into a cascading Bloom
filter [63] to discard the likely-erroneous k-mer. Then it identifies the reads that
consist entirely of retained k-mer, and extends them in both directions within the
de Bruijn graph through identifying neighbors using the Bloom filter, while discard-
ing the potentially false-positive paths based on their spans—producing the maximal
unitigs.

DEGSM first enumerates all the (k+2)-mers of the input that pass frequency fil-
tering. Then using a parallel external sorting over partitions of this set, it groups
together the (k+2)-mers with the same middle k-mer, enabling it to identify the
branching vertices in the de Bruijn graph. Then it merges the k-mer from the sorted
buckets in a strategy so as to produce a Burrows-Wheeler Transform [74] of the
maximal unitigs.

BIFROST [45] constructs an approximate compacted de Bruijn graph first by saving
the k-mer from the input in a Bloom filter [63], and then for each potential non-errone-
ous k-mer, it extracts the maximal unitig containing it by extending the k-mer in both
directions using the Bloom filter. Then using a k-mer counting based strategy, it refines
the graph by removing the false edges induced by the Bloom filter.

Definitions

A strings is an ordered sequence of symbols drawn from an alphabet � . For the purposes
of this paper, we assume all strings to be over the alphabet Σ={A,C,G,T}, the DNA alpha-
bet where each symbol has a reciprocal complement—the complementary pairs being
{A,T} and {C,G}. For a symbol c∈Σ, c denotes its complement. |s| denotes the length of s.
A k-mer is a string with length k. si denotes the ith symbol in s (with 1-based indexing). A
substring of s is a string entirely contained in s, and si..j denotes the substring of s located
from its ith to the jth indices, inclusive. preℓ(s) and sufℓ(s) denote the prefix and the suffix
of s with length ℓ respectively, i.e., preℓ(s)=s1..ℓ and sufℓ(s)=s|s|−ℓ+1..|s|, for some 0<ℓ≤|s|.
For two strings x and y with sufℓ(x)=preℓ(y), the ℓ-length glue operation ⊙ℓ is defined as
x⊙ℓy=x·yℓ+1..|y|, where · denotes the append operation.

For a string s, its reverse complement s is the string obtained through revers-
ing the order of the symbols in s, and replacing each symbol with its complement,
i.e., s = s|s| · . . . · s2 · s1 . The canonical forms of s is defined as the string ŝ = min(s, s) ,
according to some consistent ordering of the strings in Σ|s|. In this paper, we adopt the
lexicographic ordering of the strings.

Given a set S of strings and an integer k>0, let K and K+1 be respectively the sets
of k-mer and (k+1)-mers present as substrings in some s ∈ S . The (directed) node-
centric de Bruijn graphG1(S , k) = (V1,E1) is a directed graph where the vertex set
is V1 = K , and the edge set E1 is induced by V1 : a directed edge e = (u, v) ∈ E1 iff
sufk−1(u)=prek−1(v). The (directed) edge-centric de Bruijn graphG2(S , k) = (V2,E2) is a

Page 16 of 32Khan et al. Genome Biology (2022) 23:190

directed graph where the edge set is E2 = K+1 : each e ∈ K+1 constitutes a directed edge
(v1,v2) where v1=prek(e) and v2=sufk(e), and the vertex set V2 is thus induced by E2

5.
In this work, we adopt the edge-centric definition of de Bruijn graphs. Hence, we use

the terms k-mer and vertex and the terms (k+1)-mer and edge interchangeably. We
introduce both variants of the graph here as we compare (in the “Results” section) our
algorithm with some other methods that employ the node-centric definition.

We use the bidirected variant of de Bruijn graphs in the proposed algorithm,
and redefine K+1 to be the set of canonical (k+1)-mers ẑ such that z or z appears
as substring in some s ∈ S

6. For a bidirected edge-centric de Bruijn graph
G(S , k) = (V ,E) — (i) the vertex set V is the set of canonical forms of the k-mer
present as substrings in some e ∈ K+1 , and (ii) the edge set is E = K+1 , where
an e ∈ E connects the vertices p̂rek(e) and ̂suf k(e) . A vertex v has exactly two sides,
referred to as the front side and the back side.

For a (k+1)-mer z such that ẑ ∈ K+1 , let u = p̂rek(z) and v = ̂suf k(z) . z induces an
edge from the vertex u to the vertex v, and it is said to exitu and enterv. z connects to u’s
back iff prek(z) is in its canonical form, i.e., prek(z)=u, and otherwise it connects to u’s
front. Conversely, z connects to v’s front iff sufk(z)=v, and otherwise to v’s back. Con-
cisely put, z exits through u’s back iff z’s prefix k-mer is canonical, and enters through
v’s front iff z’s suffix k-mer is canonical. The edge corresponding to z can be expressed as
((u,ψu),(v,ψv)): it connects from the side ψu of the vertex u to the side ψv of the vertex v.

We prove in Lemma 1 (see Additional file 1: Sec. 3) that the two (k+1)-mers z
and z correspond to the same edge, but in reversed directions: z induces the edge
((v,ψv),(u,ψu))—opposite from that of z. The two edges for z and z constitute a bidirected
edge e={(u,ψu),(v,ψv)}, corresponding to ẑ ∈ E . While crossing e during a graph tra-
versal, we say that espells the (k+1)-mer z when the traversal is from (u,ψu) to (v,ψv), and
it spells z in the opposite direction.

A walkw=(v0,e1,v1,…,vn−1,en,vn) is an alternating sequence of vertices and edges in
G(S , k) , where the vertices vi and vi+1 are connected with the edge ei+1, and ei and ei+1
are incident to different sides of vi. |w| denotes its length in vertices, i.e., |w|=n+1. v0
and vn are its endpoints, and the vi for 0<i<n are its internal vertices. The walks (v0,e1,…
,en,vn) and (vn,en,…,e1,v0) denote the same walk but in opposite orientations. If the edge ei
spells the (k+1)-mer li, then w spells l1⊙kl2⊙k…⊙kln. If |w|=1, then it spells v0. A path is
a walk without any repeated vertex.

A unitig is a path p=(v0,e1,v1,…,en,vn) such that either |p|=1, or in G(S , k):

1. each internal vertex vi has exactly one incident edge at each of its sides, the edges
being ei and ei+1

2. and v0 has only e1 and vn has only en incident to their sides to which e1 and en are inci-
dent to, respectively.

5 As per this definition, V2 = K . We describe in the Algorithm section a practical consideration that implies that V2
need not necessarily be the same as K when some filtering is applied on the input S to generate K+1.
6 This is to account for the DNA being double-stranded, and a genomic string may come from either of these oppo-
sitely-oriented complementary strands.

Page 17 of 32Khan et al. Genome Biology (2022) 23:190

A maximal unitig is a unitig p=(v0,e1,v1,…,en,vn) such that it cannot be extended any-
more while retaining itself a unitig: there exists no x,y,e0, or en+1 such that (x,e0,v0,…
,en,vn) or (v0,e1,…,vn,en+1,y) is a unitig.

Figure 3a illustrates an example of the de Bruijn graph and the relevant constructs
defined.

A compacted de Bruijn graph Gc(S , k) is obtained through collapsing each maximal
unitig of the de Bruijn graph G(S , k) into a single vertex, through contracting its con-
stituent edges [75]. Figure 3b shows the compacted form of the graph in Fig. 3a. Given
a set S of strings and an integer k>0, the problem of constructing the compacted de
Bruijn graph Gc(S , k) is to compute the maximal unitigs of G(S , k)7.

A vertex-disjoint path coverP of G(S , k) = (V ,E) is a set of paths such that each
vertex v ∈ V is present in exactly one path p ∈ P . Unless stated otherwise, we refer to
this construct simply as path cover. A maximal path cover is a path cover P such that no
two paths in P can be joined into one single path, i.e., there exists no p1, p2 ∈ P such
that p1=(v0,e1,…,en,x), p2=(y,e1′,…,en′,vn′), and there is some edge

{
(x, sx), (y, sy)

}
∈ E

connecting the sides of x and y that are not incident to en and e′n , respectively. Figure 3a
provides examples of such.

Algorithm

Given a set R , either of short-reads sequenced from some biological sample, or of refer-
ence sequences, the construction of the compacted de Bruijn graph Gc(R , k) for some
k>0 is a data reduction problem in computational genomics. A simple algorithm to
construct the compacted graph Gc involves constructing the ordinary de Bruijn graph

Fig. 3 A (bidirected) edge-centric de Bruijn graph G(S , k) for a set S = {CTAAGAT , CGATGCA, TAAGAGG} of
strings and k-mer size k=3 in a, and its compacted form Gc(S , k) in b. In the graphs, the vertices are denoted
with pentagons—the flat and the cusped ends depict the front and the back sides respectively, and each
edge corresponds to some 4-mer(s) in s ∈ S . In a, the vertices are the canonical forms of the k-mer in s ∈ S .
The canonical string t̂ associated to each vertex v is labeled inside v, to be spelled in the direction from
v’s front to its back. Using t̂ , we also refer to v. The label beneath v is t̂ , and is to be spelled in the opposite
direction (i.e., back to front). For example, consider the 4-mer CGAT , an edge e in G(S , 3) . e connects the
3-mers x=pre3(e)=CGA and y=suf3(e)=GAT, the vertices being u = x̂ = CGA and v = ŷ = ATC respectively.
x is canonical and thus e exits through u’s back; whereas y is non-canonical and hence e enters through v’s
back. (CTA,TAA,AAG) is a walk, a path, and also a unitig (edges not listed). (CGA,ATC,ATG) is a walk and a path,
but not a unitig—the internal vertex ATC has multiple incident edges at its back. The unitig (CTA,TAA,AAG)
is not maximal, as it can be extended farther through AAG ’s back. Then it becomes maximal and spells CTA
AGA . There are four such maximal unitigs in G(S , 3) , and contracting each into a single vertex produces
Gc(S , 3) , in b. There are two different maximal path covers of G(S , 3) : spelling {CTAAGATGC,CGA,CCTC} and
{CCTCTTAG,CGATGC}

7 Discarding orientations: the two unitigs (v0,…,vn) and (vn,…,v0) are topologically the same.

Page 18 of 32Khan et al. Genome Biology (2022) 23:190

G(R , k) at first, and then applying a graph traversal algorithm [76] to extract all the
maximal non-branching paths in G. However, this approach requires constructing the
ordinary graph and retaining it in memory for traversal (or organizing it in a way that it
can be paged into memory for efficient traversal). Both of these tasks can be infeasible
for large enough input samples. This prompts the requirement of methods to construct
Gc directly from R , bypassing G. CUTTLEFISH 2 is an asymptotically and practically
efficient algorithm performing this task.

Another practical aspect of the problem is that the sequenced reads typically contain
errors [77]. This is offset through increasing the sequencing depth—even if a read r ∈ R
contains some erroneous symbol at index i of the underlying sequence being sampled,
a high enough sequencing depth should ensure that some other reads in R contain the
correct nucleotide present at index i. Thus, in practice, these erroneous symbols need
to be identified—usually heuristically—and the vertices and the edges of the graph cor-
responding to them need to be taken into account. CUTTLEFISH 2 discards the edges,
i.e., (k+1)-mers, that each occur less than some threshold parameter f0, and only oper-
ates with the edges having frequencies ≥f0.

Implicit traversals over G(R , k)

When the input is a set S of references, the CUTTLEFISH algorithm [44] makes a com-
plete graph traversal on the reference de Bruijn graph8G(S , k) through a linear scan
over each s ∈ S . Also, the concept of sentinels9 in G(S , k) ensures that a unitig can not
span multiple input sequences. In one complete traversal, the branching vertices are
characterized through obtaining a particular set of neighborhood relations; and then
using another traversal, the maximal unitigs are extracted.

For a set R of short-reads, however, a linear scan over a read r ∈ R may not provide
a walk in G(R , k) , since r may contain errors, which break a contiguous walk. Addi-
tionally, the concept of sentinels is not applicable for reads. Therefore, unitigs may span
multiple reads. For a unitig u spanning the reads r1 and r2 consecutively, it is not read-
ily inferrable that r2 is to be scanned after r1 (or the reverse, for an oppositely-oriented
traversal) while attempting to extract u directly from R , as the reads are not linked in
the input for this purpose. Hence, contrary to the reference-input algorithm [44] where
complete graph traversal is possible with just |R | different walks when R consists of ref-
erence sequences, CUTTLEFISH 2 resorts to making implicit piecewise-traversals over
G(R , k).

For the purpose of determining the branching vertices, the piecewise-traversal is com-
pletely coarse—each walk traverses just one edge. Making such walks, CUTTLEFISH 2
retains just enough adjacency information for the vertices (i.e., only the internal edges of
the unitigs) so that the unitigs can then be piecewise-constructed without the input R .
Avoiding the erroneous vertices is done through traversing only the solid edges ((k+1)-
mers occurring ≥f0 times in R , where f0 is a heuristically-set input parameter).

8 Introduced by [44], based on the input to the de Bruijn graph constructions being either reference sequences or
sequencing reads, the graphs are distinguished as either reference or read de Bruijn graphs.
9 A vertex v is a sentinel if the first or the last k-mer x of an input string corresponds to v. Let v’s empty side in x be sv.
The graph G(S , k) is modified such that sv connects to a special branching vertex Υ—preventing unitigs containing v to
span farther through sv.

Page 19 of 32Khan et al. Genome Biology (2022) 23:190

Stitching together the pieces of a unitig is accomplished by making another piecewise-
traversal over G(R , k) , not by extracting those directly from the input sequences (opposed
to CUTTLEFISH [44]). Each walk comprises the extent of a maximal unitig—the edges
retained by the earlier traversal are used to make the walk and to stitch together the unitig.

In fact, the graph traversal strategy of CUTTLEFISH for reference inputs S is a spe-
cific case of this generalized traversal, where a complete graph traversal is possible
through a linear scan over the input, as each s ∈ S constitutes a complete walk over
G({s},k). Besides, the maximal unitigs are tiled linearly in the sequences s ∈ S , and
determining their terminal vertices is the core problem in that case; as extraction of the
unitigs can then be performed through walking between the terminal vertices by scan-
ning the s ∈ S.

A deterministic finite automaton model for vertices

While traversing the de Bruijn graph G(R , k) = (V ,E) for the purpose of determining
the maximal unitigs, it is sufficient to only keep track of information for each side sv of
each vertex v ∈ V that can categorize it into one of the following classes:

1. no edge has been observed to be incident to sv yet
2. sv has multiple distinct incident edges
3. sv has exactly one distinct incident edge, for which there are |Σ|=4 possibilities (see

Lemma 2, Additional file 1: Sec. 3).

Thus there are six classes to which each sv may belong, and since v has two sides, it can be
in one of 6×6=36 distinct configurations. Each such configuration is referred to as a state.

CUTTLEFISH 2 treats each vertex v∈V as a Deterministic Finite Automaton (DFA)
Mv = (Q ,�′, δ, q0,Q

′):

States Q is the set of the possible 36 states for the automaton. Letting the number of dis-
tinct edges at the front with f and at the back with b for a vertex v with a state q, and based
on the incidence characteristics of v, the states q ∈ Q can be partitioned into four disjoint
state-classes: (1) fuzzy-front fuzzy-back (f≠1,b≠1), (2) fuzzy-front unique-back (f≠1,b=1),
(3) unique-front fuzzy-back, (f=1,b≠1), and (4) unique-front unique-back (f=1,b=1).

Input symbols Σ′={(s,c):s∈{front,back}, c∈Σ} is the set of the input symbols for the
automaton. Each incident edge e of a vertex u is provided as input to u’s automaton. For u,
an incident edge e={(u,su),(v,sv)} can be succinctly encoded by its incidence side su and a
symbol c∈Σ—the (k+1)-mer ẑ for e is one of the following, depending on su and whether
ẑ is exiting or entering u: u·c, u · c , c·u, or c · u.

Transition function δ : Q ×�′ → Q \ {q0} is the function controlling the state-
transitions of the automaton. Figure 4 illustrates the state-transition diagram for an
automaton as per δ.

Initial state q0 ∈ Q is the initial state of the automaton. This state corresponds to the
configuration of the associated vertex at which no edge has been observed to be incident
to either of its sides.

Page 20 of 32Khan et al. Genome Biology (2022) 23:190

Accept states Q
′ = Q \ {q0} is the set of the states corresponding to vertex-configura-

tions having at least one edge10.

Algorithm overview

We provide here a high-level overview of the CUTTLEFISH 2(R , k , f0) algorithm. The
input to the algorithm is a set R of strings, an odd integer k>0, and an abundance thresh-
old f0>0; the output is the set of strings spelled by the maximal unitigs of the de Bruijn
graph G(R , k).

Fig. 4 The state-transition diagram for an automaton Mv = (Q ,�′ , δ, q0,Q
′) . Each node in the diagram

represents a collection of states q ∈ Q , and q0 is the initial state of Mv. A node may represent multiple states
collectively. For example, the node at the center of the figure with the symbols x and y at its flat and cusped
ends respectively represents 16 states (all the ones from the state-class unique-front unique-back). Thus each
node Qk represents a disjoint subset of Q . The pictorial shape of Qk is similar to that of a de Bruijn graph vertex
(see Fig. 3), and denotes the incidence characteristics of the vertices having their automata in states in Qk :
for a vertex v with its automaton in state qk ∈ Qk , a unique symbol at side s of Qk means that v has a distinct
edge at side s, ellipsis means multiple unique edges, and absence of any symbol means no edge has been
observed incident to that side. A directed edge (Qi ,Qj) labeled with (s,c) denotes transitions from a state
qi ∈ Qi to a state qj ∈ Qj , and (s,c) symbolizes the corresponding input fed to an automaton at state qi for that
transition to happen. That is, δ(qi,(s,c))=qj. Thus these edges pictorially encode the transition function δ. For
the automaton Mv of a vertex v, an input (s,c) means that an edge e is being added to its side s∈{f,b}; along
with s and v, the character c∈Σ succinctly encodes e. f and b are shorthands for front and back, respectively.
Self-transition is possible for each state q ∈ Q

′ , and are not shown here for brevity

10 Formally, Q ′ is the set of states reachable from q0 through transitions as per some definite patterns of input symbols.
For our purposes, recognizing specific input patterns is not a concern—rendering this parameter redundant—we define
it as the set of the final states an automaton can be in having fed all its inputs.

Page 21 of 32Khan et al. Genome Biology (2022) 23:190

CUTTLEFISH 2(R , k , f0) executes in five high-level stages, and Fig. 1 illustrates these
steps. Firstly, it enumerates the set E of edges, i.e., (k+1)-mers that appear at least f0
times in R . Then the set V of vertices, i.e., k-mer are extracted from E . Having the dis-
tinct k-mer, it constructs a minimal perfect hash function h over V . At this point, a hash
table structure is set up for the automata—the hash function being h, and each hash
bucket having enough bits to store a state encoding. Then, making a piecewise traversal
over G(R , k) using E , CUTTLEFISH 2 observes all the adjacency relations in the graph,
making appropriate state transitions along the way for the automata of the vertices u and
v for each edge { (u,su),(v,sv) }. After all the edges in E are processed, each automaton Mv
resides in its correct state. Due to the design characteristic of the state-space Q of Mv,
the internal vertices of the unitigs in G(R , k) , as well as the non-branching sides of the
branching vertices have their incident edges encoded in their states. CUTTLEFISH 2
retrieves these unitig-internal edges and stitches them together in chains until branching
vertices are encountered, thus extracting the maximal unitigs implicitly through another
piecewise traversal, with each walk spanning a maximal unitig.

These major steps in the algorithm are detailed in the following subsections. Then we
analyze the asymptotic characteristics of the algorithm in the “Asymptotics” section.
Finally, we provide a proof of its correctness in Theorem 1 (see Additional file 1: Sec. 3).

Edge set construction

The initial enumeration of the edges, i.e., (k+1)-mers from the input set R is performed
with the KMC 3 algorithm [72]. KMC 3 enumerates the ℓ-mers of its input in two major
steps. Firstly, it partitions the ℓ-mers based on signatures—a restrictive variant of mini-
mizers11. Maximal substrings from the input strings with all their ℓ-mers having the
same signature (referred to as super ℓ-mers) are partitioned into bins corresponding to
the signatures. Typically the number of bins is much smaller than the number of pos-
sible signatures, and hence each bin may contain strings from multiple signatures (set
heuristically to balance the bins). In the second phase, for each partition, its strings are
split into substrings called (ℓ,x)-mers—an extension of ℓ-mers. These substrings are then
sorted using a most-significant-digit radix sort [78] to unify the repeated ℓ-mers in the
partition. For ℓ=k+1, the collection of these deduplicated partitions constitute the edge
set E.

Vertex set extraction

CUTTLEFISH 2 extracts the distinct canonical k-mer—vertices of G(R , k)—from E
through an extension of KMC 3 [72] (See Additional file 1: Sec. 2.1). For such, taking E
as input, KMC 3 treats each (k+1)-mer e ∈ E as an input string, and enumerates their
constituent k-mer applying its original algorithm. Using E instead of R as input reduces
the amount of work performed in this phase through utilizing the work done in the ear-
lier phase—skipping another pass over the entire input set R , which can be computa-
tionally substantial.

11 For a given j<ℓ, a j-minimizer of an ℓ-mer x is the smallest j-mer substring of x according to some specified function.

Page 22 of 32Khan et al. Genome Biology (2022) 23:190

Hash table structure setup

An associative data structure is required to store the transitioning states of the automata
of the vertices of G(R , k) . That is, association of some encoding of the states to each
canonical k-mer is required. Some off-the-shelf hash table can be employed for this pur-
pose. Due to hash collisions, general-purpose hash tables typically need to store the keys
along with their associated data—the key set V may end up taking k log2|Σ|=2k bits/k-
mer in the hash table12. In designing a more efficient hash table structure, CUTTLEFISH
2 makes use of the facts that (i) the set V of keys is static—no alien keys will be encoun-
tered while traversing the edges in E , since V is constructed from E , and (ii) V has been
enumerated at this point.

A Minimal Perfect Hash Function (MPHF) is applicable in this setting. Given a
set K of keys, a perfect hash function over K is an injective function h : K → Z ,
i.e., ∀ k1, k2 ∈ K, k1 �= k2 ⇔ h(k1) �= h(k2) . h is minimal when its image is [0, |K|) , i.e.,
an MPHF is an injective function h : K → [0, |K|) . By definition, an MPHF does not
incur collisions. Therefore when used as the hash function for a hash table, it obviates
the requirement to store the keys with the table structure. Instead, some encoding of the
MPHF needs to be stored in the structure.

To associate the automata to their states, CUTTLEFISH 2 uses a hash table with an
MPHF as the hash function. An MPHF h over the vertex set V is constructed with the
BBHASH algorithm [79]. For the key set V0 = V , BBHASH constructs h through a
number of iterations. It maps each key v ∈ V0 to [1, γ |V0|] with a classical hash func-
tion h0, for a provided parameter γ>0. The collision-free hashes in the hash codomain
[1, γ |V0|] are marked in a bit-array A0 of length γ |V0| . The colliding keys are collected
into a set V1 , and the algorithm is iteratively applied on V1 . The iterations are repeated
until either some Vn is found empty, or a maximum level is reached. The bit-arrays Ai for
the iterations are concatenated into an array A, which along with some other metadata,
encode h. A has an expected size of γ e1/γ |V | bits [79]. γ trades off the encoding size of h
with its computation time. γ=2 provides a reasonable trade-off, with the size of h being
≈3.7 bits/vertex13. Note that, the size is independent of k, i.e., the size of the keys.

For the collection of hash buckets, CUTTLEFISH 2 uses a linear array [81] of size |V | .
Since each bucket is to contain some state q ∈ Q , ⌈log2 |Q |⌉ = ⌈log2 36⌉ = 6 bits are
necessary (and also sufficient) to encode q. Therefore CUTTLEFISH 2 uses 6 bits for
each bucket. The hash table structure is thus composed of an MPHF h and a linear array
S: for a vertex v, its (transitioning) state qv is encoded at the index h(v) of S, and in total
the structure uses ≈9.7 bits/vertex.

Automaton states computation

Given the set E of edges of a de Bruijn graph G(R , k) and an MPHF h over its vertex set
V , the COMPUTE-AUTOMATON-STATES(E , h) algorithm computes the state of the
automaton Mv of each v ∈ V.

12 This can be improved by having 4p different hash tables for V , for a fixed prefix length p≤k. Each hash table then
accounts for keys of length (k−p).
13 It can be as low as ≈3 bits/vertex with γ=1, at the expense of slower hashing. The theoretical lower limit for MPHFs
is ≈1.44 bits/key [80].

Page 23 of 32Khan et al. Genome Biology (2022) 23:190

It initializes each automaton Mw with q0—the initial state corresponding to no inci-
dent edges. Then for each edge e = { (û, su), (v̂, sv) } ∈ E , connecting the vertex û via its
side su to the vertex v̂ via its side sv, it makes appropriate state transitions for Mu and
Mv, the automata of û and v̂ respectively. For each endpoint ŵ of e, (sw,cw) is fed to Mw,
where cw∈Σ. Together with ŵ , sw and cw encode e. The setting policy for cw is described in
the following. Technicalities relating to loops are accounted for in the CUTTLEFISH 2
implementation, but are omitted from discussion for simplicity.

e has two associated (k+1)-mers: z and z . Say that z=u⊙k−1v. Based on whether u = û
holds or not, e is incident to either û ’s back or front. As defined (see the “Definitions” sec-
tion), if it is incident to the back, then z = û · c ; otherwise, z = û · c , where c=ek+1. In
these cases respectively, z = c · û , and z = c · û . For consistency, CUTTLEFISH 2 always
uses a fixed form of e for û—either z or z—to provide it as input to Mu: the one contain-
ing the k-mer u in its canonical form. So if e is at û ’s back, the û · c form is used for e, and
(back,c) is fed to Mu; otherwise, e is expressed as c · û and (front, c) is the input for Mu.
The encoding (sv,c′) of e for v̂ is set similarly.

Maximal unitigs extraction

Given the set V of vertices of a de Bruijn graph G(R , k) , an MPHF h over V , and the
states-table S for the automata of v ∈ V , the EXTRACT-MAXIMAL-UNITIGS(V , h, S)
algorithm assembles all the maximal unitigs of G(R , k).

The algorithm iterates over the vertices in V . For some vertex v̂ ∈ V , let p be the max-
imal unitig containing v̂ . p can be broken into two subpaths: pb and pf, overlapping only
at v̂ . The EXTRACT-MAXIMAL-UNITIGS(V , h, S) algorithm extracts these subpaths
separately, and joins them at v̂ to construct p. Then p’s constituent vertices are marked
by transitioning their automata to some special states (not shown in Fig. 4), so that p is
extracted only once.

The subpaths pb and pf are extracted by initiating two walks: one from each of v̂ ’s
sides back and front, using the WALK-MAXIMAL-UNITIG(v̂, sv) algorithm. Each walk

Page 24 of 32Khan et al. Genome Biology (2022) 23:190

continues on until a flanking vertexx̂ is encountered. For a vertex x̂ , let qx denote the
state of x̂ ’s automaton and Cx denote qx’s state-class. Then x̂ is noted to be a flanking
vertex iff:

1) either Cx is not unique-front unique-back;
2) or x̂ connects to the side sy of a vertex ŷ such that:

(a) Cy is fuzzy-front fuzzy-back; or
(b) sy=front and Cy is fuzzy-front unique-back; or
(c) sy=back and Cy is unique-front fuzzy-back.

Lemma 3 (see Additional file 1: Sec. 3) shows that the flanking vertices in G(R , k) are
precisely the endpoints of its maximal unitigs.

The WALK-MAXIMAL-UNITIG(v̂, sv) algorithm initiates a walk w from v̂ , exit-
ing through its side sv. It fetches v̂ ’s state qv from the hash table. If qv is found to be
not belonging to the state-class unique-front unique-back due to sv having ≠1 incident
edges, then v̂ is a flanking vertex of its containing maximal unitig p, and p has no edges

Page 25 of 32Khan et al. Genome Biology (2022) 23:190

at sv. Hence w terminates at v̂ . Otherwise, sv has exactly one incident edge. The walk
algorithm makes use of the fact that, the vertex-sides su that are internal to the maximal
unitigs in G(R , k) contain their adjacency information encoded in the states qu of their
vertices û ’s automata, once the COMPUTE-AUTOMATON-STATES(E , h) algorithm is
executed. Thus, it decodes qv to get the unique edge e = {(û, su), (v̂, sv)} incident to sv.
Through e, w reaches the neighboring vertex û , at its side su. û ’s state qu is fetched, and
if qu is found not to be in the class unique-front unique-back due to su having >1 inci-
dent edges, then both û and v̂ are flanking vertices (for different maximal unitigs), and
w retracts to and stops at v̂ . Otherwise, e is internal to p, and w switches to the other
side of û , proceeding on similarly. It continues through vertices v̂i in this manner until a
flanking vertex of p is reached, stitching together the edges along the way to construct a
subpath of p.

A few constant-time supplementary procedures are used throughout the algorithm.
IS-FUZZY-SIDE(q,s) determines whether a vertex with the state q has 0 or >1 edges at
its side s. EDGE-EXTENSION(q,s) returns an encoding of the edge incident to the side
s of a vertex with state q. ENTRANCE-SIDE(v̂, v) (and EXIT-SIDE(v̂, v)) returns the side
used to enter (and exit) the vertex v̂ when its k-mer form v is observed.

Maximal path‑cover extraction

We discuss here how CUTTLEFISH 2 might be modified so that it can extract a maximal
path cover of a de Bruijn graph G(R , k) . For such, only the COMPUTE-AUTOMATON-
STATES step needs to be modified, and the rest of the algorithm remains the same. Given
the edge set E of the graph G(R , k) and an MPHF h over its vertex set V , COMPUTE-
AUTOMATON-STATES-PATH-COVER presents the modified DFA states computation
algorithm.

The maximal path cover extraction variant of CUTTLEFISH 2 works as follows. It
starts with a trivial path cover P0 of G(R , k) : each v ∈ V constitutes a single path, span-
ning the subgraph G′(V , ∅) . Then it iterates over the edges e ∈ E (with

∣∣E
∣∣ = m) in arbi-

trary order. We will use Pi to refer to the path cover after having visited i edges. At any
given point of the execution, the algorithm maintains the invariant that Pi is a maximal
path cover of the graph G′(V ,E ′) , where E ′ ⊆ E (with

∣∣E ′
∣∣ = i) is the set of the edges

examined until that point. When examining the (i+1)’th edge e={(u,su),(v,sv)}, it checks
whether e connects two different paths in Pi into one single path: this is possible iff the
sides su and sv do not have any incident edges already in E ′ , i.e., the sides are empty in
G′(V ,E ′) . If this is the case, the paths are joined in Pi+1 into a single path containing
the new edge e. Otherwise, the path cover remains unchanged so that Pi+1 = Pi . By defi-
nition, Pi+1 is a path cover of G′(V ,E ′ ∪ {e}) , as e could only affect the paths (at most
two) in Pi containing u and v, while the rest are unaffected and retain maximality—thus
the invariant is maintained. By induction, Pm is a path cover of G(V ,E) once all the
edges have been examined, i.e., when E ′ = E.

By making state transitions for the automata only for the edges present internal to the
paths p ∈ Pm , the COMPUTE-AUTOMATON-STATES-PATH-COVER(E , h) algo-
rithm seamlessly captures the subgraph GPm

 of G(R , k) that is induced by the path cover
Pm . GPm

 consists of a collection of disconnected maximal paths, and thus there exists
no branching in GPm

 . Consequently, each of these maximal paths is a maximal unitig

Page 26 of 32Khan et al. Genome Biology (2022) 23:190

of GPm
 . The subsequent EXTRACT-MAXIMAL-UNITIGS algorithm operates using the

DFA states collection S computed at this step, and therefore it extracts precisely these
maximal paths.

Parallelization

CUTTLEFISH 2 is highly parallelizable on a shared-memory multi-core machine. The
ENUMERATE-EDGES and the EXTRACT-VERTICES steps, using KMC 3 [72], are par-
allelized in their constituent phases via parallel distribution of the input (k+1)-mers (and
k-mer) into partitions, and sorting multiple partitions in parallel.

The COMPUTE-MINIMAL-PERFECT-HASH step using BBHASH [79] parallelizes
the construction through distributing disjoint subsets Vi of the vertices to the proces-
sor-threads, and the threads process the Vi ’s in parallel.

The next two steps, COMPUTE-AUTOMATON-STATES and EXTRACT-MAX-
IMAL-UNITIGS, both (piecewise) traverse the graph through iterating over E and V
respectively. The processor-threads are provided disjoint subsets of E and V to pro-
cess in parallel. Although the threads process different edges in COMPUTE-AUTOM-
ATON-STATES, multiple threads may access the same automaton into the hash table
simultaneously, due to edges sharing endpoints. Similarly in EXTRACT-MAXIMAL-
UNITIGS, though the threads examine disjoint vertex sets, multiple threads simultane-
ously constructing the same maximal unitig from its different constituent vertices can
access the same automaton concurrently, at the walks’ meeting vertex. CUTTLEFISH 2
maintains exclusive access to a vertex to one thread at a time through a sparse set L of
locks. Each lock l ∈ L guards a disjoint set Vi of vertices, roughly of equal size. With p
processor-threads and assuming all p threads accessing the hash table at the same time,
the probability of two threads concurrently probing the same lock at the same turn is (
1− (1− 1/|L |)

(p2)
)
—this is minuscule with an adequate |L |14.

Asymptotics

In this section, we analyze the computational complexity of the CUTTLEFISH 2(R , k , f0)
algorithm when executed on a set R of strings, given a k value, and a threshold factor f0
for the edges in G(R , k) . E is the set of the (k+1)-mers occurring ≥f0 times in R , and V
is the set of the k-mer in E . Let ℓ be the total length of the strings r ∈ R , n be the vertex-
count |V | , and m be the edge-count |E |.

14 The optimal (in regard to probability) value |L | = |V | is not used due to the locks’ memory usage.

Page 27 of 32Khan et al. Genome Biology (2022) 23:190

Time complexity

CUTTLEFISH 2 represents j-mers with 64-bit machine-words—packing 32 symbols
into a single word. Let wj denote the number of words in a j-mer, i.e., wj = ⌈

j
32⌉.

Note that the number of (k+1)-mers in R is upper-bounded by ℓ. The ENUMER-
ATE-EDGES step uses the KMC 3 [72] algorithm. At first, it partitions the (k+1)-mers
into buckets based on their signatures. With a rolling computation, determining the
signature of a (k+1)-mer takes an amortized constant time. Assigning a (k+1)-mer to
its bucket then takes time O(wk+1) , and the complete distribution takes O(wk+1ℓ)

15.
As each (k+1)-mer consists of wk+1 words, radix-sorting a bucket of size Bi takes time
O(Biwk+1) . So in the second step, for a total of b buckets for R , the cumulative sorting
time is

∑b
i=1O(Biwk+1) = O(wk+1

∑b
i=1 Bi) = O(wk+1ℓ) . Thus ENUMERATE-EDGES

takes time O(ℓwk+1).
The EXTRACT-VERTICES step applies KMC 3 [72] with E as input, and hence we per-

form a similar analysis as earlier. Each e ∈ E comprises two k-mer. So partitioning the k-
mer takes time O(2mwk) , and radix-sorting the buckets takes O(wk

∑
Bi) = O(2mwk) .

Therefore EXTRACT-VERTICES takes time O(mwk).
The CONSTRUCT-MINIMAL-PERFECT-HASH step applies the BBHASH [79] algo-

rithm to construct an MPHF h over V . It is a multi-pass algorithm—each pass i tries
to assign final hash values to a subset Ki of keys. Making a bounded number of passes
over sets Ki of keys—shrinking in size—it applies some classical hash hi on the x ∈ Ki
in each pass. For some x ∈ Ki , iff hi(x) is free of hash collisions, then x is not propa-
gated to Ki+1 . Provided that the hi’s are uniform and random, each key v ∈ V is hashed
with the hi’s an expected O(e1/γ) times [79], an exponentially decaying function on
the γ parameter. Given that hi’s are constant time on machine-words, computing hi(v)
takes time O(wk) . Then the expected time to assign its final hash value to a v ∈ V is
H(k) = O

(
wke

1/γ
)
 . Therefore CONSTRUCT-MINIMAL-PERFECT-HASH takes an

expected time O
(
nH(k)

)
 . Note that, querying h, i.e., computing h(v) also takes time

H(k), as the query algorithm is multi-pass and similar to the construction.
The COMPUTE-AUTOMATON-STATES step initializes the n automata with the

state q0, taking time O(n) . Then for each edge e ∈ E , it fetches its two endpoints’ states
from the hash table in time 2H(k), updating them if required. In total there are 2m hash
accesses, and thus COMPUTE-AUTOMATON-STATES takes time O(n+mH(k)).

The EXTRACT-MAXIMAL-UNITIGS step scans through each vertex v ∈ V , and walks
the entire maximal unitig p containing v. The state of each vertex in p is decoded to complete
the walk—requiring |p| hash table accesses, taking time |p|H(k). If the flanking vertices of p
are non-branching, then the walk also visits their neighboring vertices that are absent in p, at
most once per each endpoint. Once extracted, all the vertices in p are marked so that p is not
extracted again later on—this takes time |p|H(k), and can actually be done in time O(|p|) by
saving the hash values of the path vertices while constructing p. Thus traversing all the ui’s in
the maximal unitigs set U takes time

(
H(k)

∑
ui∈U

(|ui| + 2)+
∑

ui∈U

|ui|
)
= nH(k) .

∑
ui∈U

|ui| equates to n because the set of the maximal unitigs U forms a vertex decomposi-
tion of G(R , k) [47]. Thus EXTRACT-MAXIMAL-UNITIGS takes time O

(
nH(k)

)
.

15 This bound is not tight, as KMC 3 actually distributes sequences longer than (k+1)-mers—reducing computation
(see the Edge set construction section).

Page 28 of 32Khan et al. Genome Biology (2022) 23:190

In the brief analysis for the last three steps, we do not include the time to read the
edges

(
O(mwk+1)

)
 and the vertices

(
O(nwk)

)
 into memory, as they are subsumed by

other terms.
Thus, CUTTLEFISH 2(R , k , f0) has an expected running time

O
(
ℓwk+1 +mwk + (n+m)H(k)

)
 , where wj = ⌈

j
32⌉ , H(k) = O(wke

1/γ) , and γ>0 is a
constant. It is evident that the bottleneck is the initial ENUMERATE-EDGES step, and it
asymptotically subsumes the running time.

Space complexity

Here, we analyze the working memory (i.e., RAM) required by the CUTTLEFISH 2 algo-
rithm. The ENUMERATE-EDGES step with KMC 3 [72] can work within a bounded
memory space. Its partitioning phase distributes input k-mer into disk bins, and the
k-mer are kept in working memory within a total space limit S, before flushes to disk.
Radix-sorting the bins are done through loading bins into memory with sizes within
S, and larger bins are broken into sub-bins to facilitate bounded-memory sort. As we
discuss below, the graph traversal steps require a fixed amount of memory, determined
linearly by n. As n is not computed until the completion of EXTRACT-VERTICES, we
approximate it within the KMC 3 algorithm (see Additional file 1: Sec. 2.1), and then
bound the memory for the KMC 3 execution appropriately. The next step of EXTRACT-
VERTICES is also performed similarly within the same memory-bound.

The CONSTRUCT-MINIMAL-PERFECT-HASH step with BBHASH [79] processes
the key set V in fixed-sized chunks. Each pass i with key set Vi has a bit-array Ai to
mark hi(v) for all the v ∈ Vi , along with an additional bit-array Ci to detect the hash
collisions. Both Ai and Ci have the size γ |Vi| . The finally concatenated Ai’s is the output
data structure A for the algorithm, and some Ci is present only during the pass i. A has
an expected size of γe1/γn bits [79]. |C0| = γ |V0| = γn , and this is the largest collision
array in the algorithm’s lifetime. Thus, an expected loose upper-bound of the memory
usage in this step is O

(
|A| + |C0|

)
= O

(
(e1/γ + 1)γn

)
 bits.

At this point in the algorithm, a hash table structure is set up for the automata.
Together, the hash function h and the hash buckets collection S take an expected space
of
(
γ e1/γ n+ n⌈log2 |Q |⌉

)
= (γ e1/γ + 6)n bits.

The COMPUTE-AUTOMATON-STATES step scans the edges in E in fixed-sized
chunks. For each e ∈ E , it queries and updates the hash table for the endpoints of e
as required. Similarly, the EXTRACT-MAXIMAL-UNITIGS step scans the vertices
in V in fixed-sized chunks, and spells the containing maximal unitig of some v ∈ V
through successively querying the hash table for the path vertices. The spelled paths are
dumped to disk at a certain cumulative threshold size. Thus the only non-trivial memory
usage by these steps is from the hash table. Therefore these graph traversal steps use (
(γ e1/γ + 6)n+O(1)

)
 bits.

When γ≤6, the hash table (i.e., the hash function and the bucket collection) is the
dominant factor in the algorithm’s memory usage, and CUTTLEFISH 2(R , k , f0) con-
sumes expected space O

(
(γ e1/γ + 6)n

)
 . If γ>6 is set, then it could be possible for the

hash function construction memory to dominate. In practice, we adopt γ=2, and the
observed memory usage is ≈9.7n bits, translating to ≈1.2 bytes per distinct k-mer.

Page 29 of 32Khan et al. Genome Biology (2022) 23:190

Supplementary Information
The online version contains supplementary material available at (https:// doi. org/ 10. 1186/ s13059- 022- 02743-6).

Additional file 1. Supplementary material for “Scalable, ultra-fast, and low-memory construction of compacted de
Bruijn graphs with Cuttlefish 2”. References [84–88] are cited in order in the supplementary material.

Additional file 2. Review history.

Acknowledgements
Not applicable.

Peer review information
Andrew Cosgrove was the primary editor of this article and managed its editorial process and peer review in collabora-
tion with the rest of the editorial team.

Review history
The review history is available as Additional file 2.

Authors’ contributions
JK, MK, SD, and RP designed the method. JK, MK, and RP implemented the method. JK designed and conducted the
experiments. All authors contributed to and approved the final manuscript.

Authors’ Twitter handles
Twitter handles: @scarecrow00007 (Jamshed Khan); @marekkoki (Marek Kokot); @sdeorowicz (Sebastian Deorowicz); @
nomad421 (Rob Patro)

Funding
This work has been supported by the US National Institutes of Health (R01 HG009937) (RP), US National Science Founda-
tion (CCF-1750472, and CNS-1763680) (RP), Poland National Science Centre (project DEC-2019/33/B/ST6/02040) (SD),
and Faculty of Automatic Control, Electronics and Computer Science at Silesian University of Technology (statutory
research project 02/080/BKM_21/0020) (MK). The funders had no role in the design of the method, data analysis, deci-
sion to publish, or preparation of the manuscript.

Availability of data and materials
All data generated or analyzed during this study are included in this published article (and its supplementary informa-
tion files). The data supporting the findings of this study are publicly available, and the data sources are noted in the
appropriate sections in the manuscript (see the “Results” section).
CUTTLEFISH 2 is implemented in C++17, and is released under the BSD 3-Clause “New” or “Revised” License. The latest
source code is available at the GitHub repository: https:// github. com/ COMBI NE- lab/ cuttl efish [82]. The source code ver-
sion as used in preparing the manuscript is available at https:// doi. org/ 10. 5281/ zenodo. 68970 66 [83].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
RP is a co-founder of Ocean Genomics, inc. The other authors declare that they have no competing interests.

Received: 17 January 2022 Accepted: 1 August 2022

References
 1.. US National Library of Medicine. NCBI insights: the entire corpus of the sequence read archive (SRA) now live on

two cloud platforms! Natl Cent Biotechnol Inf. 2020. https:// ncbii nsigh ts. ncbi. nlm. nih. gov/ 2020/ 02/ 24/ sra- cloud/.
Accessed 8 Nov 2021.

 2. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer R, Schatz MC, Sinha S, Robinson GE. Big data:
Astronomical or genomical?PLoS Biol. 2015; 13(7):1–11. https:// doi. org/ 10. 1371/ journ al. pbio. 10021 95.

 3. Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, Wu D, Paez-Espino D, Chen I-M, Huntemann M, Pala-
niappan K, Ladau J, et al.A genomic catalog of earth’s microbiomes. Nat Biotechnol. 2021; 39(4):499–509. https:// doi.
org/ 10. 1038/ s41587- 020- 0718-6.

 4. Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW, Nelson KE, White O, Methé BA, Huttenhower C. The
human microbiome project: A community resource for the healthy human microbiome. PLOS Biol. 2012; 10(8):1–5.
https:// doi. org/ 10. 1371/ journ al. pbio. 10013 77.

https://doi.org/10.1186/s13059-022-02743-6
https://github.com/COMBINE-lab/cuttlefish
https://doi.org/10.5281/zenodo.6897066
https://ncbiinsights.ncbi.nlm.nih.gov/2020/02/24/sra-cloud/
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1038/s41587-020-0718-6
https://doi.org/10.1038/s41587-020-0718-6
https://doi.org/10.1371/journal.pbio.1001377

Page 30 of 32Khan et al. Genome Biology (2022) 23:190

 5. Muir P, Li S, Lou S, Wang D, Spakowicz DJ, Salichos L, Zhang J, Weinstock GM, Isaacs F, Rozowsky J, et al. The real cost
of sequencing: scaling computation to keep pace with data generation. Genome Biol. 2016; 17(1):1–9.

 6. de Bruijn NG. A combinatorial problem. Nederl Akad Wetensch Proc. 1946; 49:758–64.
 7. Good IJ. Normal recurring decimals. J Lond Math Soc. 1946; s1-21(3):167–9. https:// doi. org/ 10. 1112/ jlms/ s1- 21.3. 167.
 8. Simpson JT, Pop M. The theory and practice of genome sequence assembly. Annu Rev Genomics Hum Genet. 2015;

16(1):153–72. https:// doi. org/ 10. 1146/ annur ev- genom- 090314- 050032.
 9. Pevzner PA, Tang H, Waterman MS. An eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci. 2001;

98(17):9748–53. https:// doi. org/ 10. 1073/ pnas. 17128 5098.
 10. Limasset A, Flot J-F, Peterlongo P. Toward perfect reads: self-correction of short reads via mapping on de bruijn

graphs. Bioinformatics. 2019; 36(5):1374–81. https:// doi. org/ 10. 1093/ bioin forma tics/ btz102.
 11. Salmela L, Rivals E. LoRDEC: accurate and efficient long read error correction. Bioinformatics. 2014; 30(24):3506–14.

https:// doi. org/ 10. 1093/ bioin forma tics/ btu538.
 12. Benoit G, Lemaitre C, Lavenier D, Drezen E, Dayris T, Uricaru R, Rizk G. Reference-free compression of high through-

put sequencing data with a probabilistic de Bruijn graph. BMC Bioinformatics. 2015; 16(1):288. https:// doi. org/ 10.
1186/ s12859- 015- 0709-7.

 13. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly and genotyping of variants using colored de
Bruijn graphs. Nat Genet. 2012; 44(2):226–32. https:// doi. org/ 10. 1038/ ng. 1028.

 14. Cameron DL, Schröder J, Penington JS, Do H, Molania R, Dobrovic A, Speed TP, Papenfuss AT. GRIDSS: sensitive
and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res. 2017;
27(12):2050–60. https:// doi. org/ 10. 1101/ gr. 222109. 117.

 15. Almodaresi F, Zakeri M, Patro R. PuffAligner: a fast, efficient and accurate aligner based on the pufferfish index.
Bioinformatics. 2021. https:// doi. org/ 10. 1093/ bioin forma tics/ btab4 08.

 16. Liu B, Guo H, Brudno M, Wang Y. deBGA: read alignment with de bruijn graph-based seed and extension. Bioinfor-
matics. 2016; 32(21):3224–32. https:// doi. org/ 10. 1093/ bioin forma tics/ btw371.

 17. Almodaresi F, Khan J, Madaminov S, Pandey P, Ferdman M, Johnson R, Patro R. An incrementally updatable and
scalable system for large-scale sequence search using LSM trees. BioRxiv. 2021. https:// doi. org/ 10. 1101/ 2021. 02. 05.
429839.

 18. Ye Y, Tang H. Utilizing de bruijn graph of metagenome assembly for metatranscriptome analysis. Bioinformatics.
2015; 32(7):1001–8. https:// doi. org/ 10. 1093/ bioin forma tics/ btv510.

 19. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P,
Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith
EG, Buck D, McVean G, Walker AS, Peto TEA, Crook DW, Iqbal Z. Rapid antibiotic-resistance predictions from genome
sequence data for staphylococcus aureus and mycobacterium tuberculosis. Nat Commun. 2015; 6(1):10063. https://
doi. org/ 10. 1038/ ncomm s10063.

 20. Wang M, Ye Y, Tang H. A de Bruijn graph approach to the quantification of closely-related genomes in a microbial
community. J Comput Biol. 2012; 19(6):814–25. https:// doi. org/ 10. 1089/ cmb. 2012. 0058.

 21. Peng Y, Leung HCM, Yiu S-M, Lv M-J, Zhu X-G, Chin FYL. IDBA-tran: a more robust de novo de bruijn graph assembler
for transcriptomes with uneven expression levels. Bioinformatics. 2013; 29(13):326–34. https:// doi. org/ 10. 1093/ bioin
forma tics/ btt219.

 22. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen
Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev
A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;
29(7):644–52. https:// doi. org/ 10. 1038/ nbt. 1883.

 23. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;
34(5):525–7. https:// doi. org/ 10. 1038/ nbt. 3519.

 24. Ekim B, Berger B, Chikhi R. Minimizer-space de Bruijn graphs: Whole-genome assembly of long reads in minutes on
a personal computer. Cell Syst. 2021; 12(10):958–9686. https:// doi. org/ 10. 1016/j. cels. 2021. 08. 009.

 25. Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat Methods. 2020; 17(2):155–8. https:// doi. org/ 10.
1038/ s41592- 019- 0669-3.

 26. Lin Y, Yuan J, Kolmogorov M, Shen MW, Chaisson M, Pevzner PA. Assembly of long error-prone reads using de Bruijn
graphs. Proc Natl Acad Sci. 2016; 113(52):8396–405. https:// doi. org/ 10. 1073/ pnas. 16045 60113.

 27. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, Jahesh G, Khan H, Coombe L, Warren RL, Birol
I. ABySS 2.0: resource-efficient assembly of large genomes using a bloom filter. Genome Res. 2017; 27(5):768–77.
https:// doi. org/ 10. 1101/ gr. 214346. 116.

 28. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex
metagenomics assembly via succinct de bruijn graph. Bioinformatics. 2015; 31(10):1674–6. https:// doi. org/ 10. 1093/
bioin forma tics/ btv033.

 29. Li X, Shi Q, Shao M. On bridging paired-end RNA-seq data. BioRxiv. 2021. https:// doi. org/ 10. 1101/ 2021. 02. 26. 433113.
 30. Brown CT, Moritz D, O’Brien MP, Reidl F, Reiter T, Sullivan BD. Exploring neighborhoods in large metagenome assem-

bly graphs using spacegraphcats reveals hidden sequence diversity. Genome Biol. 2020; 21(1):164. https:// doi. org/
10. 1186/ s13059- 020- 02066-4.

 31. David L, Vicedomini R, Richard H, Carbone A. Targeted domain assembly for fast functional profiling of metagen-
omic datasets with S3A. Bioinformatics. 2020; 36(13):3975–81. https:// doi. org/ 10. 1093/ bioin forma tics/ btaa2 72.

 32. Schrinner SD, Mari RS, Ebler J, Rautiainen M, Seillier L, Reimer JJ, Usadel B, Marschall T, Klau GW. Haplotype
threading: accurate polyploid phasing from long reads. Genome Biol. 2020; 21(1):252. https:// doi. org/ 10. 1186/
s13059- 020- 02158-1.

 33. Liu B, Liu Y, Li J, Guo H, Zang T, Wang Y. deSALT: fast and accurate long transcriptomic read alignment with de Bruijn
graph-based index. Genome Biol. 2019; 20(1):274. https:// doi. org/ 10. 1186/ s13059- 019- 1895-9.

 34. Minkin I, Medvedev P. Scalable multiple whole-genome alignment and locally collinear block construction with
SibeliaZ. Nat Commun. 2020; 11(1):6327. https:// doi. org/ 10. 1038/ s41467- 020- 19777-8.

https://doi.org/10.1112/jlms/s1-21.3.167
https://doi.org/10.1146/annurev-genom-090314-050032
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1093/bioinformatics/btz102
https://doi.org/10.1093/bioinformatics/btu538
https://doi.org/10.1186/s12859-015-0709-7
https://doi.org/10.1186/s12859-015-0709-7
https://doi.org/10.1038/ng.1028
https://doi.org/10.1101/gr.222109.117
https://doi.org/10.1093/bioinformatics/btab408
https://doi.org/10.1093/bioinformatics/btw371
https://doi.org/10.1101/2021.02.05.429839
https://doi.org/10.1101/2021.02.05.429839
https://doi.org/10.1093/bioinformatics/btv510
https://doi.org/10.1038/ncomms10063
https://doi.org/10.1038/ncomms10063
https://doi.org/10.1089/cmb.2012.0058
https://doi.org/10.1093/bioinformatics/btt219
https://doi.org/10.1093/bioinformatics/btt219
https://doi.org/10.1038/nbt.1883
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1016/j.cels.2021.08.009
https://doi.org/10.1038/s41592-019-0669-3
https://doi.org/10.1038/s41592-019-0669-3
https://doi.org/10.1073/pnas.1604560113
https://doi.org/10.1101/gr.214346.116
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1101/2021.02.26.433113
https://doi.org/10.1186/s13059-020-02066-4
https://doi.org/10.1186/s13059-020-02066-4
https://doi.org/10.1093/bioinformatics/btaa272
https://doi.org/10.1186/s13059-020-02158-1
https://doi.org/10.1186/s13059-020-02158-1
https://doi.org/10.1186/s13059-019-1895-9
https://doi.org/10.1038/s41467-020-19777-8

Page 31 of 32Khan et al. Genome Biology (2022) 23:190

 35. Minkin I, Medvedev P. Scalable pairwise whole-genome homology mapping of long genomes with BubbZ. ISci-
ence. 2020; 23(6):101224. https:// doi. org/ 10. 1016/j. isci. 2020. 101224.

 36. Lopez-Maestre H, Brinza L, Marchet C, Kielbassa J, Bastien S, Boutigny M, Monnin D, Filali AE, Carareto CM, Vieira C,
Picard F, Kremer N, Vavre F, Sagot M-F, Lacroix V. SNP calling from RNA-seq data without a reference genome: identi-
fication, quantification, differential analysis and impact on the protein sequence. Nucleic Acids Res. 2016; 44(19):148.
https:// doi. org/ 10. 1093/ nar/ gkw655.

 37. Sacomoto GA, Kielbassa J, Chikhi R, Uricaru R, Antoniou P, Sagot M-F, Peterlongo P, Lacroix V. KIS SPLICE: de-novo
calling alternative splicing events from RNA-seq data. BMC Bioinformatics. 2012; 13(6):5. https:// doi. org/ 10. 1186/
1471- 2105- 13- S6- S5.

 38. Dede K, Ohlebusch E. Dynamic construction of pan-genome subgraphs. Open Comput Sci. 2020; 10(1):82–96.
https:// doi. org/ 10. 1515/ comp- 2020- 0018.

 39. Lees JA, Mai TT, Galardini M, Wheeler NE, Horsfield ST, Parkhill J, Corander J, Ravel J. Improved prediction of bacterial
genotype-phenotype associations using interpretable pangenome-spanning regressions. MBio. 2020; 11(4):01344–
20. https:// doi. org/ 10. 1128/ mBio. 01344- 20.

 40. Wittler R. Alignment- and reference-free phylogenomics with colored de Bruijn graphs. Algoritm Mol Biol. 2020;
15(1):4. https:// doi. org/ 10. 1186/ s13015- 020- 00164-3.

 41. Cleary A, Ramaraj T, Kahanda I, Mudge J, Mumey B. Exploring frequented regions in pan-genomic graphs. IEEE/ACM
Trans Comput Biol Bioinforma. 2019; 16(5):1424–35. https:// doi. org/ 10. 1109/ TCBB. 2018. 28645 64.

 42. Manuweera B, Mudge J, Kahanda I, Mumey B, Ramaraj T, Cleary A. Pangenome-wide association studies with
frequented regions. In: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational
Biology and Health Informatics (BCB ’19). New York: Association for Computing Machinery: 2019. p. 627–32. https://
doi. org/ 10. 1145/ 33073 39. 33434 78.

 43. Sheikhizadeh S, Schranz ME, Akdel M, de Ridder D, Smit S. PanTools: representation, storage and exploration of pan-
genomic data. Bioinformatics. 2016; 32(17):487–93. https:// doi. org/ 10. 1093/ bioin forma tics/ btw455.

 44. Khan J, Patro R. Cuttlefish: fast, parallel and low-memory compaction of de bruijn graphs from large-scale genome
collections. Bioinformatics. 2021; 37(Supplement_1):177–86. https:// doi. org/ 10. 1093/ bioin forma tics/ btab3 09.

 45. Holley G, Melsted P. Bifrost: highly parallel construction and indexing of colored and compacted de bruijn graphs.
Genome Biol. 2020; 21(1):249. https:// doi. org/ 10. 1186/ s13059- 020- 02135-8.

 46. Guo H, Fu Y, Gao Y, Li J, Wang Y, Liu B. deGSM: memory scalable construction of large scale de bruijn graph. IEEE/
ACM Trans Comput Biol Bioinforma. 2019; Early Access:1–1.

 47. Chikhi R, Limasset A, Medvedev P. Compacting de bruijn graphs from sequencing data quickly and in low memory.
Bioinformatics. 2016; 32(12):201–8. https:// doi. org/ 10. 1093/ bioin forma tics/ btw279.

 48. Minkin I, Pham S, Medvedev P. TwoPaCo: an efficient algorithm to build the compacted de bruijn graph from many
complete genomes. Bioinformatics. 2016; 33(24):4024–32. https:// doi. org/ 10. 1093/ bioin forma tics/ btw609.

 49. Baier U, Beller T, Ohlebusch E. Graphical pan-genome analysis with compressed suffix trees and the Burrows–
Wheeler transform. Bioinformatics. 2015; 32(4):497–504. https:// doi. org/ 10. 1093/ bioin forma tics/ btv603.

 50. Chikhi R, Limasset A, Jackman S, Simpson JT, Medvedev P. On the representation of de bruijn graphs In: Sharan R,
editor. Research in Computational Molecular Biology. Cham: Springer: 2014. p. 35–55.

 51. Marcus S, Lee H, Schatz MC. SplitMEM: a graphical algorithm for pan-genome analysis with suffix skips. Bioinformat-
ics. 2014; 30(24):3476–83. https:// doi. org/ 10. 1093/ bioin forma tics/ btu756.

 52. Hopcroft JE, Motwani R, Ullman JD. Introduction to Automata Theory, Languages, and Computation (3rd Edition).
USA: Addison-Wesley Longman Publishing Co., Inc.; 2006.

 53. Marchet C, Kerbiriou M, Limasset A. BLight: efficient exact associative structure for k-mers. Bioinformatics. 2021;
37(18):2858–65. https:// doi. org/ 10. 1093/ bioin forma tics/ btab2 17.

 54. Pibiri GE. Sparse and skew hashing of k-mers. bioRxiv. 2022. https:// doi. org/ 10. 1101/ 2022. 01. 15. 476199.
 55. Rahman A, Medvedev P. Representation of k-mer sets using spectrum-preserving string sets In: Schwartz R, editor.

Research in Computational Molecular Biology. Cham: Springer: 2020. p. 152–168.
 56. Břinda K, Baym M, Kucherov G. Simplitigs as an efficient and scalable representation of de Bruijn graphs. Genome

Biol. 2021; 22(1):96. https:// doi. org/ 10. 1186/ s13059- 021- 02297-z.
 57. Chikhi R, Holub J, Medvedev P. Data structures to represent a set of k-long DNA sequences. ACM Comput Surv.

2021;54(1). https:// doi. org/ 10. 1145/ 34459 67.
 58. Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, Weng Z, Liu Y, Mason CE, Alexander N, Henaff E, McIntyre

ABR, Chandramohan D, Chen F, Jaeger E, Moshrefi A, Pham K, Stedman W, Liang T, Saghbini M, Dzakula Z, Hastie A,
Cao H, Deikus G, Schadt E, Sebra R, Bashir A, Truty RM, Chang CC, Gulbahce N, Zhao K, Ghosh S, Hyland F, Fu Y, Chais-
son M, Xiao C, Trow J, Sherry ST, Zaranek AW, Ball M, Bobe J, Estep P, Church GM, Marks P, Kyriazopoulou-Panagioto-
poulou S, Zheng GXY, Schnall-Levin M, Ordonez HS, Mudivarti PA, Giorda K, Sheng Y, Rypdal KB, Salit M. Extensive
sequencing of seven human genomes to characterize benchmark reference materials. Sci Data. 2016; 3(1):160025.
https:// doi. org/ 10. 1038/ sdata. 2016. 25.

 59. Lappalainen T, Sammeth M, Friedländer MR, ‘t Hoen PAC, Monlong J, Rivas MA, Gonzàlez-Porta M, Kurbatova N,
Griebel T, Ferreira PG, Barann M, Wieland T, Greger L, van Iterson M, Almlöf J, Ribeca P, Pulyakhina I, Esser D, Giger T,
Tikhonov A, Sultan M, Bertier G, MacArthur DG, Lek M, Lizano E, Buermans HPJ, Padioleau I, Schwarzmayr T, Karlberg
O, Ongen H, Kilpinen H, Beltran S, Gut M, Kahlem K, Amstislavskiy V, Stegle O, Pirinen M, Montgomery SB, Donnelly P,
McCarthy MI, Flicek P, Strom TM, Lehrach H, Schreiber S, Sudbrak R, Carracedo Á., Antonarakis SE, Häsler R, Syvänen
A-C, van Ommen G-J, Brazma A, Meitinger T, Rosenstiel P, Guigó R, Gut IG, Estivill X, Dermitzakis ET, Consortium TG.
Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013; 501(7468):506–11.
https:// doi. org/ 10. 1038/ natur e12531.

 60. Mas-Lloret J, Obón-Santacana M, Ibáñez-Sanz G, Guinó E, Pato ML, Rodriguez-Moranta F, Mata A, García-Rodríguez
A, Moreno V, Pimenoff VN. Gut microbiome diversity detected by high-coverage 16S and shotgun sequencing of
paired stool and colon sample. Scientific Data. 2020; 7(1):92. https:// doi. org/ 10. 1038/ s41597- 020- 0427-5.

 61. Howe AC, Jansson JK, Malfatti SA, Tringe SG, Tiedje JM, Brown CT. Tackling soil diversity with the assembly of large,
complex metagenomes. Proc Natl Acad Sci. 2014; 111(13):4904–9. https:// doi. org/ 10. 1073/ pnas. 14025 64111.

https://doi.org/10.1016/j.isci.2020.101224
https://doi.org/10.1093/nar/gkw655
https://doi.org/10.1186/1471-2105-13-S6-S5
https://doi.org/10.1186/1471-2105-13-S6-S5
https://doi.org/10.1515/comp-2020-0018
https://doi.org/10.1128/mBio.01344-20
https://doi.org/10.1186/s13015-020-00164-3
https://doi.org/10.1109/TCBB.2018.2864564
https://doi.org/10.1145/3307339.3343478
https://doi.org/10.1145/3307339.3343478
https://doi.org/10.1093/bioinformatics/btw455
https://doi.org/10.1093/bioinformatics/btab309
https://doi.org/10.1186/s13059-020-02135-8
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1093/bioinformatics/btw609
https://doi.org/10.1093/bioinformatics/btv603
https://doi.org/10.1093/bioinformatics/btu756
https://doi.org/10.1093/bioinformatics/btab217
https://doi.org/10.1101/2022.01.15.476199
https://doi.org/10.1186/s13059-021-02297-z
https://doi.org/10.1145/3445967
https://doi.org/10.1038/sdata.2016.25
https://doi.org/10.1038/nature12531
https://doi.org/10.1038/s41597-020-0427-5
https://doi.org/10.1073/pnas.1402564111

Page 32 of 32Khan et al. Genome Biology (2022) 23:190

 62. Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, Yuen MMS, Keeling CI, Brand D, Vandervalk BP, Kirk
H, Pandoh P, Moore RA, Zhao Y, Mungall AJ, Jaquish B, Yanchuk A, Ritland C, Boyle B, Bousquet J, Ritland K, MacKay J,
Bohlmann J, Jones SJM. Assembling the 20 gb white spruce (picea glauca) genome from whole-genome shotgun
sequencing data. Bioinformatics. 2013; 29(12):1492–7. https:// doi. org/ 10. 1093/ bioin forma tics/ btt178.

 63. Bloom BH. Space/Time trade-offs in hash coding with allowable errors. Commun ACM. 1970; 13(7):422–6. https://
doi. org/ 10. 1145/ 362686. 362692.

 64. Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinfor-
matics. 2011; 27(6):764–70. https:// doi. org/ 10. 1093/ bioin forma tics/ btr011.

 65. Zhao L, Xie J, Bai L, Chen W, Wang M, Zhang Z, Wang Y, Zhao Z, Li J. Mining statistically-solid k-mers for accurate NGS
error correction. BMC Genomics. 2018; 19(10):912. https:// doi. org/ 10. 1186/ s12864- 018- 5272-y.

 66. Hiseni P, Rudi K, Wilson RC, Hegge FT, Snipen L. HumGut: a comprehensive human gut prokaryotic genomes collec-
tion filtered by metagenome data. Microbiome. 2021; 9(1):165. https:// doi. org/ 10. 1186/ s40168- 021- 01114-w.

 67. Blackwell GA, Hunt M, Malone KM, Lima L, Horesh G, Alako BTF, Thomson NR, Iqbal Z. Exploring bacterial diversity via
a curated and searchable snapshot of archived DNA sequences. PLOS Biology. 2021; 19(11):1–16. https:// doi. org/ 10.
1371/ journ al. pbio. 30014 21.

 68. Yoshimura J, Ichikawa K, Shoura MJ, Artiles KL, Gabdank I, Wahba L, Smith CL, Edgley ML, Rougvie AE, Fire AZ,
Morishita S, Schwarz EM. Recompleting the caenorhabditis elegans genome. Genome Res. 2019; 29(6):1009–22.
https:// doi. org/ 10. 1101/ gr. 244830. 118.

 69. Li H. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv. 2013. https:// doi. org/
10. 48550/ arXiv. 1303. 3997.

 70. Chikhi R, Medvedev P. Informed and automated k-mer size selection for genome assembly. Bioinformatics. 2013;
30(1):31–7. https:// doi. org/ 10. 1093/ bioin forma tics/ btt310.

 71. Lee S, Min H, Yoon S. Will solid-state drives accelerate your bioinformatics? in-depth profiling, performance analysis
and beyond. Brief Bioinforma. 2015; 17(4):713–27. https:// doi. org/ 10. 1093/ bib/ bbv073.

 72. Kokot M, Długosz M, Deorowicz S. KMC 3: counting and manipulating k-mer statistics. Bioinformatics. 2017;
33(17):2759–61. https:// doi. org/ 10. 1093/ bioin forma tics/ btx304.

 73. Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA. Reducing storage requirements for biological sequence compari-
son. Bioinformatics. 2004; 20(18):3363–9. https:// doi. org/ 10. 1093/ bioin forma tics/ bth408.

 74. Burrows M, Wheeler DJ. A block-sorting lossless data compression algorithm. Technical report, Systems Research
Center, Digital Equipment Corp. 1994.

 75. Gross J, Yellen J. Graph Theory and Its Applications. USA: CRC Press, Inc.; 1999, p. 264.
 76. Kleinberg J, Tardos E. Graphs. In: Algorithm Design. USA: Addison-Wesley Longman Publishing Co., Inc.: 2005.
 77. Ma X, Shao Y, Tian L, Flasch DA, Mulder HL, Edmonson MN, Liu Y, Chen X, Newman S, Nakitandwe J, Li Y, Li B, Shen

S, Wang Z, Shurtleff S, Robison LL, Levy S, Easton J, Zhang J. Analysis of error profiles in deep next-generation
sequencing data. Genome Biol. 2019; 20(1):50. https:// doi. org/ 10. 1186/ s13059- 019- 1659-6.

 78. Kokot M, Deorowicz S, Debudaj-Grabysz A. Sorting data on ultra-large scale with RADULS. In: Beyond Databases,
Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation. Cham:
Springer: 2017. p. 235–45.

 79. Limasset A, Rizk G, Chikhi R, Peterlongo P. Fast and scalable minimal perfect hashing for massive key sets. In: 16th
International Symposium on Experimental Algorithms (SEA 2017) (Leibniz International Proceedings in Informatics
(LIPIcs)). Dagstuhl: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: 2017. p. 25–12516. https:// doi. org/ 10. 4230/
LIPIcs. SEA. 2017. 25.

 80. Fredman ML, Komlós J. On the size of separating systems and families of perfect hash functions. SIAM J Algebraic
Discret Methods. 1984; 5(1):61–68. https:// doi. org/ 10. 1137/ 06050 09.

 81. Marçais G. Compact vector: Bit packed vector of integral values. GitHub. 2020. https:// github. com/ gmarc ais/ compa
ct_ vector. Accessed 18 June 2020.

 82. Khan J, Patro R. Cuttlefish: Building the compacted de Bruijn graph efficiently from references or reads. GitHub.
2022. https:// github. com/ COMBI NE- lab/ cuttl efish. Accessed 24 July 2022.

 83. Khan J, Kokot M, Deorowicz S, Patro R. Software version used in the paper: Scalable, ultra-fast, and low-memory
construction of compacted de Bruijn graphs with Cuttlefish 2. Zenodo. 2022. https:// doi. org/ 10. 5281/ zenodo. 68970
66. Accessed 24 July 2022.

 84. Mohamadi H, Khan H, Birol I. ntCard: a streaming algorithm for cardinality estimation in genomics data. Bioinformat-
ics. 2017; 33(9):1324–30. https:// doi. org/ 10. 1093/ bioin forma tics/ btw832.

 85. Rizk G, Lavenier D, Chikhi R. DSK: k-mer counting with very low memory usage. Bioinformatics. 2013; 29(5):652–53.
https:// doi. org/ 10. 1093/ bioin forma tics/ btt020.

 86. Patro R, Mount SM, Kingsford C. Sailfish enables alignment-free isoform quantification from rna-seq reads using
lightweight algorithms. Nat Biotechnol. 2014; 32(5):462–4. https:// doi. org/ 10. 1038/ nbt. 2862.

 87. Pandey P, Almodaresi F, Bender MA, Ferdman M, Johnson R, Patro R. Mantis: A fast, small, and exact large-scale
sequence-search index. Cell Syst. 2018; 7(2):201–2074. https:// doi. org/ 10. 1016/j. cels. 2018. 05. 021.

 88. Marchet C, Iqbal Z, Gautheret D, Salson M, Chikhi R. REINDEER: efficient indexing of k-mer presence and abundance
in sequencing datasets. Bioinformatics. 2020; 36(Supplement_1):177–85. https:// doi. org/ 10. 1093/ bioin forma tics/
btaa4 87.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/btt178
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1093/bioinformatics/btr011
https://doi.org/10.1186/s12864-018-5272-y
https://doi.org/10.1186/s40168-021-01114-w
https://doi.org/10.1371/journal.pbio.3001421
https://doi.org/10.1371/journal.pbio.3001421
https://doi.org/10.1101/gr.244830.118
https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.1093/bioinformatics/btt310
https://doi.org/10.1093/bib/bbv073
https://doi.org/10.1093/bioinformatics/btx304
https://doi.org/10.1093/bioinformatics/bth408
https://doi.org/10.1186/s13059-019-1659-6
https://doi.org/10.4230/LIPIcs.SEA.2017.25
https://doi.org/10.4230/LIPIcs.SEA.2017.25
https://doi.org/10.1137/0605009
https://github.com/gmarcais/compact_vector
https://github.com/gmarcais/compact_vector
https://github.com/COMBINE-lab/cuttlefish
https://doi.org/10.5281/zenodo.6897066
https://doi.org/10.5281/zenodo.6897066
https://doi.org/10.1093/bioinformatics/btw832
https://doi.org/10.1093/bioinformatics/btt020
https://doi.org/10.1038/nbt.2862
https://doi.org/10.1016/j.cels.2018.05.021
https://doi.org/10.1093/bioinformatics/btaa487
https://doi.org/10.1093/bioinformatics/btaa487

	Scalable, ultra-fast, and low-memory construction of compacted de Bruijn graphs with Cuttlefish 2
	Abstract
	Background
	Results
	CUTTLEFISH 2 overview
	Experiments
	Computation system for evaluation

	Compacted graph construction for sequencing data
	Compacted graph construction for reference collections
	Maximal path cover construction
	Structural characteristics
	Parallel scaling

	Conclusion
	Methods
	Related work
	Definitions
	Algorithm
	Implicit traversals over
	A deterministic finite automaton model for vertices
	States
	Input symbols
	Transition function
	Initial state
	Accept states

	Algorithm overview
	Edge set construction
	Vertex set extraction
	Hash table structure setup
	Automaton states computation
	Maximal unitigs extraction
	Maximal path-cover extraction
	Parallelization

	Asymptotics
	Time complexity
	Space complexity

	Acknowledgements
	References

