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Objectives: To identify the molecular subtypes of glioblastoma multiforme (GBM) related
to M2 macrophage-based prognostic genes, then to preliminarily explore their biological
functions and construct immunotherapy response gene models.
Material and Methods: We used R language to analyze GBM microarray data, and other
tools, including xCell and CIBERSORTx, to identify subtypes of GBM that related to M2
macrophages. The process started with the exploration of biological functions of the two
subtypes by pathway analyses and GSEA, and continued with a combined procedure of
constructing an M2 macrophage-related prognostic gene model and exploring the immune
treatment response for GBM.
Results: A high abundance of M2 macrophages in GBM was associated with poor prognosis.
According to M2 macrophage-related prognostic genes, GBM was divided into two subtypes
(cluster A and cluster B). The differential gene enrichment analysis of the two clusters showed
that cluster A was less enriched in M2 macrophages and had immunopotential. The M2score,
which was constructed based on M2 macrophage-related prognostic genes, was not only related
to the survival and prognosis of patients with GBM, but also predictive of the effectiveness of
immunotherapy in these patients. This result has been effectively verified in an external data set.
Conclusion: GBM was successfully divided into two subtypes according to M2-macro-
phage-related prognostic genes. In GBM, a high M2score may indicate better clinical out-
come and enhancement of the immunotherapy response.
Keywords: glioblastoma, M2 macrophage, prognosis, immunotherapy, molecular subtypes

Introduction
Glioblastoma multiforme (GBM) is the most aggressive and deadliest primary brain
tumor of adults.1Althoughmany treatments, including surgical resectionwith chemother-
apy and radiotherapy,may improve the outcome, themedian survival time is still only 14–
16 months2 and the 5-year survival rate is just 9.8%.3 GBM is a biologically hetero-
geneous intracranial neoplasm and it has most of the classical hallmarks of a tumor. The
poor prognosis in GBM is due to significant differences between patients and the wide
dissemination of cancer cells before diagnosis.4 Even if resections are repeatedly per-
formed, recurrence can be predicted with certainty.5 Recent studies have focused on
genetic and epigenetic research to discover the subtypes of GBM with different prog-
noses, and to guide personalized therapies targeting specific molecules or pathogenies.
However, the challenge remains that GBM is still incurable, while any progress and
achievements have been limited.

Correspondence: Lanhua Tang
Department of Oncology, Xiangya
Hospital, Central South University,
Changsha, People’s Republic of China
Email orchidtang@126.com

International Journal of General Medicine 2022:15 913–926 913
© 2022 Xiao et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

International Journal of General Medicine Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 22 October 2021
Accepted: 23 December 2021
Published: 26 January 2022

http://orcid.org/0000-0002-3070-2789
mailto:orchidtang@126.com
http://www.dovepress.com/permissions.php
https://www.dovepress.com


Over the past decade, immunotherapy has revolutio-
nized the field of oncology and developed into one of the
most effective cancer therapies for many fatal cancers,
such as melanoma and colorectal cancer, which largely
explains its success. The main breakthrough came with
immune checkpoint blockade (ICB) therapy. Among the
immune check inhibitors, monoclonal antibodies, includ-
ing PD-1/PD-L1 and CTLA-4 inhibitors, have provided
promising therapeutic outcomes. However, GBM has
benefited little from immune checkpoint inhibitors so far.
The poor results may be caused by several mechanisms,
including the heterogeneous nature of GBM and the
immunosuppressive status of the tumor microenvironment.

Tumor-associated macrophages (TAMs), accounting
for approximately 30–50% of the bulk in GBM, play an
important role in cancer maintenance and progression.
TAMs have different phenotypes owing to their activation
state. M0 is a precursor “pre-activation” state, which can
polarize into “classical” (M1) with seemingly anti-tumor
functions and “alternative” (M2) with pro-tumor effects
due to chemokines and cytokines.6 M2 macrophages play
a pivotal role in immune suppression and pro-tumor
functions during GBM progression through the secretion
of immunosuppressive factors.7 A high ratio of M2/M1 in
TAMs results in poor clinical prognosis, and inhibiting the
polarization of M0 to M2 could dramatically reduce the
growth of glioma stem cells. Gordon et al found that PD-1
expression by TAMs had anti-phagocytic and tumor
immunity inhibition effects, implying that PD-1 may also
function through a direct effect on macrophages, other
than modulating T cells.8 The underlying mechanism of
M2 macrophages in GBM has great significance for esti-
mating the prognosis of GBM patients and improving the
therapeutic outcome.

According to the expression patterns, GBM
tumors were originally grouped into four subtypes: neural,
proneural, classical and mesenchymal.9 The revised clas-
sification system then eliminated the neural subtype owing
to normal brain tissue contamination.10 Although many
other classification systems have been developed,11–14 no
M2 macrophage-based molecular subtypes have been
reported. We hypothesized that analyzing the M2 macro-
phage-related prognostic gene expression pattern in GBM
could enable us to differentiate the subtypes efficiently.
This new classification system would provide us with
a new direction for GBM prognosis and response to
therapies.

Methods
Dataset Acquisition from GlioVis
Database
GlioVis is a web-based database for data visualization and
analysis to explore brain tumor expression datasets.15 This
user-friendly database offers the research community an
unprecedented fast and intuitive portal to molecular
profiles.15 The Cancer Genome Atlas–Glioblastoma
Multiforme (TCGA-GBM) and a GBM dataset reported
by Gravendeel et al,16 including corresponding clinical
data, were obtained for downstream study. The relevant
CEL files were downloaded and the robust multiarray aver-
age (RMA) normalized analysis was applied. Then, the
probe was converted into gene symbols by the R program
and the batch effects were removed before downstream
analysis.17 GBM patients with complete outcome data and
expression data were included in the subsequent analysis.
Somatic mutation datasets of TCGA-GBM and The Cancer
Genome Atlas Low-Grade Glioma (TCGA-LGG) were
downloaded from TCGA, and copy number variation
(CNV) data were obtained from the University of
California, Santa Cruz (UCSC) Xena website (http://xena.
ucsc.edu/). No additional ethical approval was applicable,
owing to the data being publicly available.

Tumor Immunity Analyses and WGCNA
The immune and stromal cell expression profiles of all
GBM samples were qualified using xCell tools (https://
xcell.ucsf.edu). xCell is a simple web tool that
calculates independent enrichment scores of 64 kinds of
immune and stromal cells based on enrichment.18

Weighted gene co-expression network analysis
(WGCNA) was applied to explore the correlations between
immune-related genes and immune cell types by construct-
ing significant modules. WGCNA was conducted using the
“WGCNA” package for R (version 3.6.2).19 The immune-
related gene list was downloaded from the immunology
database and analysis portal (ImmPort) system. First, both
the average linkage method and Pearson’s correlation
matrices were applied to establish the co-expression simi-
larity matrix. To enhance the matrix similarity and construct
a co-expression network, appropriate β-values were
selected. Next, the adjacency matrix was transformed into
a topological overlap matrix (TOM) to determine immune
cell connectivity. Finally, an average linkage hierarchical
clustering tree was established according to TOM-based
dissimilarity, and immune cells with similar expression
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profiles were clustered to form modules.20 The associations
between immune cell type and immune-related genes were
evaluated by Pearson’s correlation analysis.

Discovering Subtypes of GBM
To distinguish cancer subtypes based on M2 macrophages,
we repeatedly perturbed the data and partitioned the
patients using a classical clustering algorithm.21 A range
of potential cluster numbers K was explored to evaluate
the stability and consistency of the clustering, determine
the clustering numbers of samples and establish the con-
sistent clustering algorithm. Two principles were applied
to select the number K: first, the growth rate of the cumu-
lative distribution function (CDF) value should be low-
; second, the correlation in the group should be high, while
there should be no small clusters in the clustering group.22

Classification of TCGA-GBM patients into various clini-
cally significant subtypes was performed using the
“ConsensusClusterPlus” package in this process. For the
purpose of elucidating the molecular mechanism of
patients in the different clusters, gene set enrichment
analysis (GSEA) was conducted by comparing the patients
in the different clusters.

Identification of Differentially Expressed
Genes in Different Clusters
The mRNA expression profiles extracted from patients in
different clusters were subjected to differential expression
analysis by the R software package. The differentially
expressed genes (DEGs) were selected according to the cri-
teria: P<0.05, |log2FC)| >1. The “limma” package of R was
conducted to find DEGs.23 The Gene Ontology (GO) path-
way enrichment of DEGs was performed, and a P-value less
than 0.05 was set to indicate a significant difference.

Establishment of the M2
Macrophage-Related Gene Signature and
Prognostic Model Construction
Based on the M2 macrophage-related genes, principal
component analysis (PCA) was used to construct the M2
macrophage-related prognostic model (M2score). PCA1,
PCA2, PCA3, PCA4 and PCA5 were extracted to serve as
the M2score, since PCA1–PCA5 made independent con-
tributions to more than 70% of the overall explained
variation. This method focused the score on the set with
the largest block of well-correlated genes in the set, while
the contributions from other genes, which did not track

with other set members, were decreased.24 After obtaining
the prognostic value of each gene signature score, we
applied an algorithm similar to GGI25 to define the
M2score of each patient:

M2score ¼ ∑ðPC1jþ PC2jþ PC3jþ PC4jþ PC5jÞ

where j is the expression of genes.

Protein–Protein Interaction (PPI)
Network Construction and Identification
of Hub Genes
The PPI network was constructed using the Search Tool
for Retrieval of Interacting Genes (STRING) (https://
string-db.org) and Cytoscape software.26 MCODE,
a Cytoscape plugin,27 was applied to analyze significant
modules in the PPI network. We used the default settings,
with degree cutoff at 2, node score cutoff at 0.2, K core at
2 and a maximum depth of 100 to infer modules. The PPI
network topological structure and relationship characteris-
tics, including MCC, DMNC, MNC, Degree, EPC,
BottleNeck, EcCentricity, Closeness, Radiality,
Betweenness, ClusteringCoefficient and Stress, were cal-
culated using the CytoHubba plugin, and the top ranked
genes can be considered as the hub genes.

Prediction of Immunotherapy Response
The IMvigor210 cohort is an urothelial carcinoma cohort
treated with atezolizumab, an anti-PD-L1 antibody
approved by the FDA. This cohort, which is based on
the Creative Commons 3.0 License, was used to predict
the patients’ response to immunotherapy.28 The clinical
information and complete expression data were obtained
from http://research-pub.Gene.com/imvigor210-corebiolo
gies. The raw data were normalized and the count value
was transformed into the TPM value.

Tumor Immune Dysfunction and Exclusion (TIDE) is
a web platform (http://tide.dfci.harvard.edu) that infers
gene functions in modulating tumor immunity and evalu-
ates biomarkers to predict the ICB clinical response.29 The
TIDE algorithm is a calculation method and can evaluate
two different tumor-immune escape mechanisms, namely,
the dysfunction of tumor-infiltrating cytotoxic
T lymphocytes (CTLs) and the rejection of CTLs by
immunosuppressive factors.30 Patients with a higher
TIDE score have a higher chance of anti-tumor immune
escape, while patients with lower TIDE score show
a lower ICB treatment response rate.31
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Statistical Analysis
The expression of immune-related genes in tumor and
normal tissues was compared by one-way ANOVA. The
clinical characteristics between the two groups were ana-
lyzed by the chi-squared test. The Kaplan–Meier method
was applied for the logarithmic rank test in survival ana-
lysis. The waterfall function in the “maftools” package
was used to visualize the mutational landscape in TCGA-
GBM and TCGA-LGG patients. The area under the curve
(AUC) of the receiver operating characteristics (ROC)
curve was applied to evaluate the performance of the
prognostic signature using the R package. All statistical
analyses were performed using the R program (version
3.6.1, https://www.r-project.org/). A P-value of 5% or
lower was considered to be statistically significant.

Results
Low Fractions of M2 Macrophage Are
Associated with Better Overall Survival in
GBM
After downloading and processing the data from TCGA
and Gravendeel, the gene expression profiles were
obtained and then uploaded to the xCell website to analyze
the different immune cell fractions. The fractions of M2
macrophages were significantly different in the GBM sub-
types, with the mesenchymal subtype having the highest
fraction (Figure 1A and B). According to the M2 macro-
phage fractions, patients were divided into high- and low-
fraction groups. The overall survival was analyzed by the
Kaplan–Meier survival curve and the results demonstrated
that the groups with low fractions of M2 macrophages in
both TCGA (Figure 1C) and Gravendeel datasets
(Figure 1D) were significantly associated with better out-
comes in GBM.

Acquisition of the M2
Macrophage-Related Gene Module
To identify the M2 macrophage-related genes, we down-
loaded 4723 immune genes from the ImmPort system.
A WGCNA network was constructed by the
R programming WGCNA package for this purpose. After
removing outlier samples, the soft threshold (β=4, scale-
free R2=0.9 in TCGA; β=3 scale-free R2=0.9) was used to
guarantee a scale-free network, ultimately identifying 16
distinct modules in TCGA-GBM and five distinct modules
in the Gravendeel dataset (Figure 2A–D). The immune

genes in the same color module have similar gene expres-
sion patterns. Correlations between modules and the frac-
tions of M2 macrophages were calculated, and the blue
module, including 424 genes in TCGA-GBM and 461
genes in the Gravendeel dataset, was found to be corre-
lated positively with M2 macrophages (Figure 2E and F).
Thus, the genes in the blue module were selected as
potential prognostic genes in the following univariate
Cox analyses. Finally, 68 genes were confirmed to be
significantly associated with overall survival by univariate
Cox analyses (Figure 2G). So, these 68 genes were defined
as M2 macrophage-related prognostic genes and were
included in the subtype analysis.

Clustering of GBM by M2
Macrophage-Related Prognostic Genes
The consistent clustering analysis of GBM was performed
based on the expression of M2 macrophage-related prog-
nostic genes in TCGA-GBM dataset. According to the
cumulative distribution function (CDF), the area under
CDF curve analyses and the correlation between groups,
the patients were clustered into two subgroups, which we
defined as the M2clusterA group and M2clusterB group
(Figure 3A). The M2clusterA group included 287 GBM
patients while the M2clusterB group included 238 GBM
patients. Kaplan–Meier survival analysis confirmed that
the M2clusterA group had a better overall survival rate
(Figure 3B). Furthermore, the M2 macrophage-related
prognostic gene expression, cluster information and clin-
ical features are displayed in the heatmap, which illustrates
that the mesenchymal subtype was mainly grouped in
M2clusterB while MGMT promoter methylation status
and CpG island methylator phenotype (G-CIMP) were
significantly associated with the M2clusterA group
(Figure 3C). The GO enrichment analysis indicated that
the M2 macrophage-related prognostic genes were signifi-
cantly enriched in immune response, immune regulation
and immune receptor activity (Figure 3D). Based on these
results, these two cluster groups had different clinical
features and molecular characteristics.

First, for further study of the potential molecular
mechanisms between M2clusterA and M2clusterB groups,
GSEA was conducted by comparing these two cluster
groups, and the result showed that E2F targets, G2M
checkpoint and myc targets signaling pathways were sig-
nificantly upregulated in the M2clusterA group
(Figure 3E), while angiogenesis, epithelial–mesenchymal
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transition and IL-6/JAK/STAT1 signaling were signifi-
cantly downregulated in the M2clusterA group
(Figure 3F).

Second, the immune infiltration in the M2clusterA and
M2clusterB groups was analyzed by CIBERSORTx,
which is another platform used to verify the different
tumor immune microenvironment in the two groups.
TCGA-GBM gene expression profiles were uploaded to
the website and the results suggested that the fractions of
immune cells, such as M0 macrophages, M2 macrophages,
activated mast cells and resting NK cells, were different in
the M2clusterA and M2clusterB groups, indicating
a varied tumor immune microenvironment (Figure 3G).

Somatic Mutation Frequency Landscape
and Protein–Protein Interaction Network
Construction
To explore the mutations of M2 macrophage-related prog-
nostic genes in different glioma types, we constructed
waterfall plots for M2 macrophage-related prognostic
genes in GBM and in low-grade glioma (LGG). The
graphs showed that 91 out of 393 GBM patients
(23.16%) had alterations (Figure 4A), while 43 out of
508 LGG patients (8.46%) had alterations (Figure 4B).
Thus, more somatic mutation was observed in M2 macro-
phage-related prognostic genes in GBM than in LGG.

Figure 1 Distribution of M2 macrophages in different subtypes and the prognostic value of M2 macrophages. (A) Distribution of M2 macrophages in GBM subtype –
mesenchymal, proneural and classical – in TCGA-GBM dataset. (B) Distribution of M2 macrophages in the Gravendeel dataset. (C) Kaplan–Meier survival curve for
proportion of M2 macrophages in TCGA-GBM dataset. (D) Kaplan–Meier survival curve for proportion of M2 macrophages in the Gravendeel dataset. Statistical significance
at ***P<0.001 and ****P<0.0001.
Abbreviation: ns, not significant.

International Journal of General Medicine 2022:15 https://doi.org/10.2147/IJGM.S343152

DovePress
917

Dovepress Xiao et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


The STRING tool was applied and then a PPI net-
work was constructed to better understand the interplay
among the 68 M2 macrophage-related prognostic genes.
There were 68 nodes and 473 edges in this network
(Figure 4C). CytoHubba is a Cytoscape plugin that
allows the use of several topological analysis algorithms
to identify the hub genes. In the present study, the MCC
method was applied, and 10 hub genes (FCGR2A,
CCR1, CD68, ITGAM, C3AR1, TLR2, CYBB, CXCL8,
CCR5 and ITGB2) of the whole network are visualized
in Figure 4D. The gradual color change from red to
yellow represents the connection score, from high
to low.

Clinical Application of the PCA-Derived
M2score and Relationship to
Immunotherapy
Based on PCA and the calculation method, the M2score
was obtained (Figure 5A). First, we grouped the
IMvigor210 cohort into high- and low-M2score groups;
although the Kaplan–Meier survival curve between the
two groups did not differ significantly, there was a trend
toward statistical significance (P=0.068) (Figure 5B).
Then, patients in both TCGA-GBM and the Gravendeel
dataset were divided into high- and low-M2score groups.
The Kaplan–Meier survival results indicated that the high-

Figure 2WGCNA network and module detection. (A) Selection of the soft-thresholding powers in TCGA-GBM. Power 4 was chosen because the fit index curve flattened
out upon reaching a high value (>0.8). (B) Selection of the soft-thresholding powers in the Gravendeel dataset. Power 3 was chosen because the fit index curve flattened out
upon reaching a high value (>0.9). (C) Correlation matrix for eigengene and M2 macrophages in TCGA-GBM dataset. Each cell includes the corresponding correlations and
the P-value. (D) Correlation matrix for eigengene and M2 macrophages in the Gravendeel dataset. (E) Scatter plot of the correlation between the blue module eigengene
and M2 macrophages in TCGA-GBM dataset. The correlation coefficient and P-value are indicated in the plot. (F) Scatter plot of the correlation between the blue module
eigengene and M2 macrophages in the Gravendeel dataset. (G) Venn diagram showing prognostic immune genes and M2 macrophage-related genes in TCGA-GBM dataset
and Gravendeel dataset.
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M2score group was strongly associated with better overall
survival (Figure 5C and D). A dendrogram, including the
M2score, M2cluster, CIMP status, survival status, MGMT
status, subtype, isocitrate dehydrogenase-1 (IDH1) status,
treatment plan and clinical features, is illustrated in
Supplementary Figure 1A (Figure S1A). The figure
demonstrates that the IDH mutations were significantly
associated with higher M2scores. Meanwhile, the IDH
mutations were more likely to be grouped in clusterA
and had better overall survival. A prognostic nomogram
was then developed by combining prognostic factors,
including IDH mutation, gender, patient age and M2score

(Figure S1B). The predicted probabilities corresponded
well with the actual 1-, 3- and 5-year overall survival
rates of GBM patients (Figure S1C).

Anti-PD-1/PDL1 and anti-CTLA4 have provided
breakthrough immunotherapy in cancer treatment. To
determine whether our immune classification and
M2score could predict GBM patients’ response to ICB
therapy, we verified the high- and low-M2score based on
the IMvigor 210 cohort. The stacked column chart showed
that were higher percentages of complete and partial
responses (CR and PR) in the high-M2score group
(Figure 5E).

Figure 3 Identification of M2 macrophage-related subtypes of GBM in TCGA-GBM dataset. (A) Consensus score matrix of TCGA-GBM samples when k=2. (B) Kaplan–
Meier survival curves derived from TCGA-GBM survival data for M2clusterA and M2clusterB groups. (C) Heatmap of the M2 macrophage-related prognostic genes ordered
by subtype, with annotations associated with MGMT status, CIMP status, M2cluster and M2score. (D) Signaling pathways associated with M2 macrophage-related prognostic
genes. The enrichment of Gene Ontology (GO) pathways related to immune response, immune regulation and immune receptor activity. (E and F) GSEA results on the
pathway of M2clusterA. E2F targets, G2M checkpoint and myc targets signaling pathways were significantly upregulated (E), while angiogenesis, epithelial–mesenchymal
transition and IL-6/JAK/STAT1 signaling were downregulated (F). (G) Histogram showing differences in the composition of immune cells between M2clusterA and
M2clusterB. *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001.
Abbreviation: ns, not significant.
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TIDE is a computational method which integrates
T-cell dysfunction and removal characteristics and simu-
lates tumor immune escape at the level of tumor-infiltrat-
ing CTLs to predict the ICB response, which has an
advantage in predicting the efficacy of anti-PD1/PDL1
and anti-CTLA4 therapy. After uploading the expression
data to the website, the results indicated that 35 GBM
patients had immunotherapy efficacy, while 490 patients
failed on immunotherapy in the TCGA-GBM cohort.
Using the ROC algorithm, we constructed the ROC
curve and found that M2score had the capacity to predict
the responsiveness of immunotherapy (AUC 0.657, 95%
CI: 0.556–0.758) (Figure 5F). In addition, the AUC was
0.643 (95% CI: 0.502–0.643) to evaluate the responsive-
ness to immunotherapy of M2score in the Gravendeel
dataset (Figure 5F), which also demonstrated an appropri-
ate predictive accuracy. Therefore, we concluded that

M2score could effectively predict the survival outcome
of GBM. Moreover, M2score was a potential biomarker
for evaluating the clinical response to immunotherapy, to
a certain extent.

Discussion
Based on morphological similarities, GBM has tradition-
ally been classified into gliosarcoma, giant cell GBM and
epithelioid GBM by the WHO Classification of Tumors of
the Central Nervous System (CNS).32 With features con-
taining both neoplastic cells and stroma, GBM has histo-
logical heterogeneity, with disappointing prognosis. Even
for patients who have similar histopathological features,
the molecular biological characteristics are variable, which
makes it challenging to effectively target patients using
different treatment strategies. Genome-wide transcriptome
analysis led to the classification of GBM into four distinct

Figure 4 Somatic mutation frequency landscape and protein–protein interaction network construction. (A) Somatic mutation of M2 macrophage-related prognostic genes
in TCGA-GBM dataset. (B) Somatic mutation of M2 macrophage-related prognostic genes in TCGA-LGG dataset. (C) PPI networks of M2 macrophage-related prognostic
genes using the STRING tool. Genes are represented as nodes in the plot, and their interactions are denoted by lines. (D) Top 10 hub genes using the MCC algorithm. The
color of a node in the PPI network reflects the P-value.
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Figure 5 Clinical application of the PCA-derived M2score and its relationship to immunotherapy. (A) Principal component analysis (PCA) for GBM. (B) Kaplan–Meier
survival curve for high- and low-M2score groups in the IMvigor210 cohort. (C) Kaplan–Meier survival curve for high- and low-M2score groups in the Gravendeel dataset.
(D) Kaplan–Meier survival curve for high- and low-M2score groups in TCGA-GBM dataset. (E) Stacked barplot for immunotherapy response of high- and low-M2score
groups based on the IMvigor 210 cohort. (F) ROC curve AUC statistics assessing the predictive power of the M2score for immunotherapy response in TCGA-GBM dataset
and Gravendeel dataset based on the TIDE tools.
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molecular subtypes – mesenchymal, classical, proneural
and neural – based on the bulk tumor gene expression
profile.9 However, the clinical relevance of subtyping is
still controversial.13 Gill et al reported that the neural
subtype contained a variable mixture of infiltrating glioma
cells and non-neoplastic brain cells, providing
a particularly robust and clinically relevant dataset, as the
samples were taken from the margins of the tumor.10

Therefore, only three common subtypes that related to
the center of the tumor were investigated in the current
study.

Although many achievements have been made in tar-
geted therapies and immunotherapies, the results are still
unsatisfactory owing to complex pathophysiology.
Therefore, there is an urgent need to establish an individua-
lized risk stratification approach, and to classify GBM
patients into appropriate risk groups to guide individualized
treatment.33 In the present study, high-throughput gene and
transcript-level data from TCGA-GBM and Gravendeel’s
microarray data were analyzed to screen immune-related
DEGs. In order to efficiently estimate the level of immune
cell infiltration, xCell and CIBERSORTx tools, which can
analyze traditional bulk expression profiles and then calcu-
late the immune infiltration scores, were applied. The frac-
tions of M2 macrophages and M2 macrophage-related
immune genes were identified, and then clustering of the
GBM by M2 macrophages was conducted and the M2score
was established successfully. Finally, we found that the
M2score could effectively predict the survival outcome of
GBM and this is a potential biomarker for evaluating the
clinical response to immunotherapy.

In the past few decades, the methods of uncovering
tumor and immune cell interactions have improved the
available treatment options for GBM.34 Mounting evi-
dence suggests that immune suppression induced by can-
cer cells is the major factor responsible for poor
outcomes.35 Macrophages are one of the most abundant
innate immune cell types in the microenvironment of
various tumors.36 M2 macrophages play a pivotal role in
immune suppression and pro-tumor functions during GBM
progression because of the secretion of immunosuppres-
sive factors. Our results verified that GBM patients with
a low fraction of M2 macrophages had significantly better
outcomes in both TCGA and Gravendeel datasets.
Sørensen et al also found that M2 macrophages had an
unfavorable prognostic value in high-grade gliomas.37

Furthermore, a study performed by Zhu et al38 showed
that PD-L1-mediated immunosuppression attributed to the

infiltration and M2-polarization and correlated with poor
survival. Taking these findings into account, the presence
of M2 macrophages is important for the progression of
GBM and has been well studied. Assessing the mechanism
of M2 macrophages in GBM may provide more informa-
tion on treatment options.

The WGCNA network was constructed and then 68
immune genes were identified as M2 macrophage-related
prognostic genes. Based on these 68 gene expression pro-
files, the patients in TCGA-GBM were divided into
M2clusterA and M2clusterB groups. The M2clusterA
group had higher M2score, a smaller fraction of M2
macrophages, more MGMT promoter methylation and
CpG island methylator phenotype, and consequently
a better overall survival rate. Many trials have reported
that MGMT promoter methylation is associated with
longer survival in GBM patients treated with TMZ, both
in the overall population and in older patients.39–42 As for
CpG island methylation, researchers have found that it is
a relevant prognostic factor, independently of the known
predictors, such as grade and age.43 The favorable prog-
nostic value of CpG island methylator phenotype in GBM
patients has been reported in many other studies.43–45

Compared with the non-carrying CpG island methylator
phenotype, the authors found that the carrying CpG island
methylator phenotype was more enriched among the pro-
neural subtypes, which had a better prognosis.9,45 The
GSEA results showed that E2F targets, G2M checkpoint
and myc targets signaling pathways were significantly
upregulated in the M2clusterA group, while angiogenesis,
epithelial–mesenchymal transition and IL-6/JAK/STAT1
signaling were significantly downregulated in the
M2clusterA group. Conversely, Yu et al found that expres-
sion of E2Fs was significantly upregulated and linked with
grade progression.46 Meanwhile, chromatin remodeler
HELLS strongly correlated with targets of E2F3 and
MYC transcriptional activity in GBM patients.47 These
results imply that E2F targets and myc targets signaling
pathway could also affect the prognosis, independently of
the M2 macrophage or immune response. Little is known
about the role of the G2M checkpoint in the pathophysiol-
ogy of GBM.

Ten hub genes, namely FCGR2A, CCR1, CD68,
ITGAM, C3AR1, TLR2, CYBB, CXCL8, CCR5 and
ITGB2, were identified by CytoHubba, all of which,
except for CXCL8, were associated with the plasma mem-
brane. CXCL8, also known as IL-8, was predominantly
secreted by macrophages and contributed to the
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immunosuppressive microenvironment.48 Seven genes
were enriched in the inflammatory response (CCR1,
CCR5, CXCL8, C3AR1, CYBB, ITGB2 and TLR2), while
four genes each were enriched in the immune response
(CCR1, CCR5, CXCL8 and TLR2), positive regulation of
angiogenesis (CXCL8, C3AR1, CYBB and ITGB2) or che-
motaxis (CCR1, CCR5, CXCL8 and C3AR1). TLR2,
C3AR1, ITGAM, CD68 and CCR5 have been widely
reported as a marker of macrophages in GBM, and studies
have shown that TLR2, CD68 and CCR5 act as immune
suppressors and contribute toward GBM progression in the
tumor microenvironment.49–53 FCGR2A, CYBB, CXCL8
and ITGB2 were significantly upregulated in GBM and
associated with shorter overall survival of GBM
patients.54–58 As for the role of CCR1 in GBM, the results
are still controversial. Zhang et al found that CCR1 and
CCR5 were two key receptors of CCL8 and they triggered
CCL8-induced invasion of GBM cells,59 while Pham et al
reported that individual deletion of CCR1 or CCR5 had
little or no effect on the survival of tumor-bearing mice, or
the number of GBM-infiltrated microglia/macrophages
and lymphocytes.60 Consequently, these 10 hub genes are
associated with a higher degree of malignancy and poorer
prognosis in gliomas.

Furthermore, we investigated the relationship between
the M2score and immunotherapy to guide personalized
treatment decisions. Nowadays, immune checkpoint inhi-
bitors have been approved for gastric cancer, breast cancer,
colon cancer and other cancers.61 However, they have
demonstrated limited efficacy in GBM.62 Hence, for the
future development of immunotherapy in GBM, it is
necessary to construct an efficient immune classification
or prognostic model to predict the response of GBM
patients to ICB therapy.63,64 Based on the results presented
in this report, we successfully verified M2score as an
appropriate predictive score to predict the response to
ICB therapy. Both the IMvigor210 cohort and the TIDE
score showed us that the M2score is a potential biomarker
for evaluating the clinical response to immunotherapy.

we still have some limitations in the current study.
First, this is a retrospective study that may display statis-
tical bias, and the bulk sequence transcriptome data were
used, in which there is a lack of comprehensive explora-
tion for intratumoral heterogeneity. Second, the tumor
immunity analysis was calculated by xCell, which cannot
represent real immune cell infiltration. Finally, the urothe-
lial cancer cohort, instead of a GBM cohort, was applied to
explore the connection between gene expression and the

immunotherapy response. Therefore, prospective studies
and in vitro and in vivo experiments regarding these
genes are required to validate our in silico results, and
the response of immunotherapy should be further verified
in randomized clinical trials.

Conclusion
In summary, by detecting distinct fractions of the M2 macro-
phage, this study successfully identified immune-related
prognostic genes and constructed the M2score, which
could be employed to quantitatively predict the prognosis
of GBM patients. The activation pathway, immune infiltra-
tion, mutation features and drug response underlying the
M2score were also identified. Our findings provide a basis
for understanding the role of M2 macrophages and immune-
related prognostic genes, and indicate the potential clinical
implications of M2score in GBM.
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