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Nervous system of Periplaneta americana cockroach is used in a wide range of pharmacological studies, including electrophys-
iological techniques. This paper presents its role as a preparation in the development of toxinological studies in the following
electrophysiological methods: double-oil-gap technique on isolated giant axon, patch-clamp on DUM (dorsal unpaired median)
neurons, microelectrode technique in situ conditions on axon in connective and DUM neurons in ganglion, and single-fiber oil-gap
technique on last abdominal ganglion synapse. At the end the application of cockroach synaptosomal preparation is mentioned.

1. Introduction

The cockroach, especially the Periplaneta americana species,
is recognized as a very useful model in neurobiological
studies [1]. The field of toxinology owes much to the
use of various nervous preparations obtained from this
insect. Periplaneta americana represents an excellent model
applied in different pharmacological methods, especially
in electrophysiology, which plays a vital part in most of
research activity in toxinology. It may be based on using
natural and “artificial” preparations, as for example the
transfected Xenopus oocytes. A wide range of nervous
functions have been described on the basis of studies on
various parts of cockroach nervous system (Figure 1(a))
and the experiments can be performed on natural models.
Biophysical principles of the nervous system function in
insects are much the same as in mammals. In both groups
of animals similar neurotransmitters can be found, although
their distribution varies. Thus the observations made on
the cockroach can nearly be applied in vertebrates. On
the other hand, some arthropod neurotoxins show high
selectivity to insect nervous system and they are considered
as potent bioinsecticides. Cockroach model has been largely
used for the description of their mode of action. In the

following paragraphs, various electrophysiological methods
using cockroach preparations will be presented, along with
their contribution to the development of toxinology.

2. Giant Axon and Single-Fiber
Double-Oil-Gap Method

Cell body and the dendritic tree of the P. americana giant
interneurons, located in the last abdominal ganglion, have
been well identified for a long time. They possess unmyeli-
nated, very long (1.5–2 cm), large diameter (up to 50 μm) ax-
ons. The axons, being surrounded by glial Schwann cells, can
be isolated manually (Figure 1(b)) under microscope, and
their activity can be observed using the double-oil-gap meth-
od—a refined electrophysiological technique—Figure 2(a)
[2–5]. Such axonal preparation exhibits simple bioelectrical
properties; one type of voltage-dependent sodium and
potassium (Kdr) channels can be found; they are responsible
for generating short (0.5 ms) action potentials. Double-oil-
gap technique permits, in current-clamp, to evoke large (up
to 100 mV) axonal action potentials (Figure 2(b)(A)), to
follow their evolution and to control the resting potential
as well as the level of local response. Passive characteristics
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Figure 1: Cockroach (Periplaneta americana) nervous system. (a) Isolated abdominal nerve cord with last thoracic (1) ganglion and cercal
nerves (4) linked to cerci (5). Giant axon is isolated from one connective between the 4th and the 5th ganglion (2). DUM neurons and
cercal nerve-giant interneuron synapses are located in last abdominal ganglion (3). (b) Isolated giant axon dissected from one connective,
accompanied by the second connective which protects the axon when the preparation is transferred to experimental chamber; axon diameter
∼50 μm. (c) Isolated DUM neuron.

of axonal membrane (resistance and capacitance) can be
analyzed using longer (e.g., 5 ms) hyperpolarizing pulses
(Figure 2(b)(B)); the application of long depolarizing pulses
allows to observe delayed rectification (Figure 2(b)(B)).

In voltage-clamp configuration, depolarizing voltage
pulses induce a short, inwardly directed, tetrodotoxin-
sensitive sodium current and delayed, noninactivating out-
ward potassium current (Figure 2(d)), most sensitive to 3,4
diaminopyridine [6]; hyperpolarizing pulses are used to
record the leak current. At holding potential of −60 mV,
about 50% of sodium current is inactivated; this inactivation
is completely removed when the HP reaches −80 mV and,
in these conditions, a larger current can be observed, simi-
larly to what has been reported by Pichon [2] (Figure 2(e)).
Double-oil-gap method has several advantages: (1) the
recordings are stable and long-lasting (up to 1 hour), (2)
various experimental protocols in current-clamp as well in
voltage-clamp can be applied, (3) the quantity of the tested
molecules can be very small (e.g., 0.2 mL 10−7 M in the case
of a highly active substance), (4) it is inexpensive. However,
the preparation of an isolated axon is a sophisticated
procedure and requires much experience.

The activity of giant axon can also be recorded in in
situ conditions in the whole nerve cord [7]. In such case,
axon is left on its place in nervous chain, stays in contact
with others axons and its microenvironment is much less
changed compared to isolated axon. After one connective is
desheathed, the giant axons become accessible for micro-
electrodes. Introducing them allows to record the exact
axonal resting potential in its semi-physiological microen-
vironment. Extracellular stimulation, even performed from
some mm distance, evokes action potentials similar in
size and amplitude to action potential recorded from the
isolated axon (Figure 2(c)), however, long-pulse stimulation
can only accelerate the generation of action potential. The
accessibility of the axon in situ to the tested molecules is

much more limited, however, their effect can be considered
more physiological in such conditions.

Double-oil-gap method has been used in toxinological
studies for many years. The long history of anti-insect scor-
pion toxins started with this technique, when in the 1970–80s
the toxins purified from North African scorpions (Androc-
tonus australis Hector—AaH IT and Buthus judaicus—Bj
IT) by Professor Eliahu Zlotkin and collaborators from
the Hebrew University of Jerusalem, Israel, and Faculté de
Médecine, Marseille, France [8], were tested for the first
time on cockroach isolated giant axon by electrophysiologist
Professor Marcel Pelhate, at Angers University, France [9,
10]. Toxicity tests and biochemical studies, especially by
means of binding assays, established the specificity of this
toxin, which has been confirmed by electrophysiological
experiments. In the subsequent years, the story developed
with the application of more and more modern methods
and presently many details of arthropod toxins’ selectivity to
insects are known [11–13]. Their applicability as bioinsecti-
cides is now under consideration [12, 14, 15].

Scorpion toxins, active on sodium channels, are divided
into two large groups: alpha and beta toxins, modifying
mainly the channels’ inactivation and activation, respectively
[12, 13, 16, 17]. Among alpha toxins, an alpha-like subgroup
has been established [18, 19]. The insect-selective toxins,
depressant and excitatory, are beta toxins. Several toxins
related to these groups were tested and their mode of action
was determined using the single-fiber oil-gap method. It
helped to discriminate between excitatory and depressant
groups of toxins. The most distinctive features of axonal
bioelectric activity modification induced by excitatory toxins
(AaH IT1 from Androctonus australis Hector, Bj IT1 from
Buthotus judaicus—[9, 10, 20]; Bm 32-VI and Bm 33-I from
Buthus martensi—[21]; are a slight depolarization, a decrease
in threshold for action potential generation (Figure 3(a)(A)
and (B)), and the repetitive activity instead of a single
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Figure 2: Single-fiber double-oil-gap method on isolated giant axon. (a) Electronic arrangement of technique for current- and voltage-
clamp recordings (CC and VC, resp.)—according to [4]. α and β are the lateral (recording and stimulating) electrodes immersed in 180 mM
KCl—they have contact with the cut ends of axons in connective and represent intracellular electrodes; γ electrode is plunged in physiological
saline (with the tested substances)—it has contact with the extracellular side of the isolated axon. Amplifier 1 is a high-input impedance,
negative capacitance amplifier, 2—high-gain differential amplifier, 3—current-to-voltage converter; 4—analogue compensator for leakage
and fast and slow capacitive currents. In CC γ electrode is grounded and resistor = 3 MΩ. (b)(A) Action potential evoked by a 0.5 ms
depolarizing current pulse. (b)(B) The effect of long symmetrical current pulses: the hyperpolarizing one—used to estimate the passive
axonal membrane properties and the depolarizing one—used to observe the membrane rectification (Rec.). (c) Action potential recorded
from in situ giant axon using microelectrode. (d) Total current recorded under voltage pulse from holding potential −70 mV to −10 mV;
K+—potassium component, Na+—sodium component. (e) Voltage-dependence of sodium current recorded at various holding potentials:
−1 :−60, 2 :−70 and 3 :−80 mV. The points (not shown) for curves are mean values from 5 experiments performed in control conditions.
Note that at holding potential of −60 mV, about 50% of Na current is inactivated.
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Figure 3: The effects of beta group of scorpion toxins on axonal bioelectrical activity. (a) The effect of Bj-xtrIT—a recombinant excitatory
anti-insect toxin from Buthus judaicus scorpion: (A) control action potential; (B) action potential recorded from the same axon in 10 min
of toxin action (10−7 M)—note much lower threshold (th) for action potential generation and a slight membrane depolarization; (C)
repetitive activity evoked after artificial repolarization of axonal membrane and stimulation with single, short (0.5 ms) current pulse; (D)
long duration, high frequency repetitive activity observed after the artificial membrane hyperpolarization to −80 mV—activity was evoked
by a single, short stimulation. (b) Bigger and prolonged sodium current recorded after 10 min of Bj-xtrIT presence (tx, 10−7 M) compared
to control (c); currents were elicited with voltage pulses from HP = −70 mV to −30 and −20 mV. (c) Axonal activity modified by Lqh IT2
(10−6 M)—anti-insect depressant toxin. (A) control action potential and (B) the progressive decrease of its amplitude together with the
membrane depolarization induced by toxin; (C) block of action potential generation observed after 15 min of toxin action.

response to current stimulation (Figure 3(a)(C)). The ability
of the axon to generate such bursting discharges manifested
itself especially when it was artificially repolarized or hyper-
polarized (Figure 3(a)(D)). Exalted axonal excitability result-
ed from the increase in sodium current amplitude at negative
membrane potentials and its prolongation observed under
voltage pulse (Figure 3(b)). The analysis of sodium current
voltage dependence revealed a shift in sodium current voltage
dependence towards more negative membrane potentials
[20]. In toxicity tests, these toxins caused an immediate
contraction paralysis of fly larvae and a quick excitatory
“knock-down” effect on locusts [8, 10], which remains
consistent with the observations done in electrophysiological
experiments.

The name “depressant toxins” comes from the flaccid
paralysis they cause in fly larvae. The toxins within this

group (Bj IT2—[10]; toxin from Scorpio maurus palmatus
venom—[22]; Bot IT3 and BoT IT4 from Buthus occitanus
tunetanus—[23, 24]; BmK ITa and BmK ITb from Buthus
martensi Karsch—[23]; Lqh IT2—[25] evidently increase
sodium permeability at resting potential, inducing relatively
fast depolarization and distinct decrease in action potential
amplitude (Figure 3(c)(A) and (B)), eventually blocking the
conduction (Figure 3(c)(C)). In voltage-clamp experiments,
the lowering of peak sodium current was observed, however,
along with a development of a constant current, at holding
potential equal to axonal resting potential, that is, −60 mV.

There have also been cases of finding toxins of which the
effects on axonal electrophysiological activity appear inter-
mediate between those of excitatory and depressant groups,
for instance: BcTx1 from East African scorpion Babycurus
centrurimorphus [26] or BoT IT2, which, moreover, induced
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a new, unusual current with slow activation/deactivation
kinetics [23, 24, 27]. Bot IT2 is insect-selective; its binding
site is similar to that one of AaH IT1 excitatory toxin, but
amino acid sequence resembles the ones found in depressant
toxins [23, 24]. Similar modification of axonal bioelectrical
activity by Bot IT2 has been evidenced using a toxin from
the venom of ant, Paraponera clavata, also tested on the
cockroach isolated axon [28].

The comparative analysis of electrophysiological effects
of several excitatory and depressant toxins suggests that the
discrimination between these two groups of toxins is not
always easy and certainly not possible only on the basis of
bioelectrical activity modifications. Parallel biochemical and
structural studies are absolutely required. As mentioned
above, these two groups of toxins belong to one very large
group of beta toxins that bind to receptor 4 on sodium
channel [13, 14, 17].

Toxin VII from South American scorpion, Tityus serru-
latus, is a typical beta toxin with no selectivity to any group
of organisms [29, 30]. Its effect on cockroach axon can also
be described as intermediate between those of excitatory and
depressant toxins. In the presence of the toxin, resting
depolarization was observed jointly with a tendency to
repetitive discharges. Sodium current was activated at more
negative potential than normally; it was prolonged, but
holding current development was slower than in the case of
depressant toxins [31].

Scorpion alpha toxins bind to the receptor site 3 on
sodium channel and inhibit the channel’s inactivation [12].
In voltage-clamp experiments, short sodium current is
prolonged during depolarizing voltage pulse (Figure 4(b));
potassium current is not modified. In current-clamp, short
action potentials are extended and transformed into plateau
action potentials (Figure 4(a)). Such effects were observed
when the first anti-insect toxin LqhαIT from Leiurus quin-
questriatus hebraeus scorpion venom was tested on cockroach
isolated axon [32, 33]. Later, several new anti-insect toxins
with similar LqhaIT characteristics were described, as for
example BoT IT1 [23, 24].

Alpha toxin (LqhαIT) was also tested on cockroach
giant axon in in situ conditions. The first observed effect,
after the toxin’s application, was a repetitive generation of
slightly prolonged action potentials in response to short
stimulation—such effect has never been observed in the
experiments on isolated giant axon (Figure 4(c)). Later on,
plateau action potential sometimes appeared (Figure 4(d)),
but it was never as long in duration as in the case of isolated
axon, even after a prolonged application of high toxin
concentration. The influence of axonal microenvironment
created by glial cells and other axons is a very likely factor
in this matter. And it is necessary to consider the fact that
the experimental conditions may vary from the physiological
ones in a very diverse degree, which in turn may affect
significantly the effects of the tested molecules.

Electrophysiological experiments performed on the
cockroach axon helped to define a new group of scorpion
neurotoxins: the alpha-like toxins. Receptor site of these
molecules overlaps with receptor site 3 on sodium channel,
where alpha toxins bind [18, 19]. Alpha-like toxins do not

express selectivity toward insect or mammalian sodium
channels. Pharmacological characteristics of alpha-like tox-
ins are similar but not identical with those of alpha neuro-
toxins. They induce plateau potentials, but in addition, they
depolarize progressively the axonal membrane. They inhibit
the inactivation of sodium current, but to a lesser degree than
in the case of LqhαIT. Moreover, a tail current appears, which
increases when depolarizing pulses are applied repeatedly
(every 5 s) and at the same time, the peak sodium current
decreases [18, 19].

Along with the science progressing, modern techniques
in molecular biology were applied and a “new era” in scorpi-
on anti-insect toxins launched. One of the most noteworthy
approaches towards this issue so far have been presented by
Professor Michael Gurevitz and Dr. Dalia Gordon from the
Department of Molecular Biology and Ecology of Plants, Tel
Aviv University, Israel. They and their collaborators isolated
the genetic material responsible for the synthesis of toxins
from the scorpion venom, they defined the cDNA sequence
and developed artificial expression systems [33–36]. New,
recombinant toxins LqhαITr [36], Lqh IT2 [37] and Bj-xtrIT
[38], tested on the cockroach isolated giant axon, showed
much resemblance in their mode of action to the native
counterparts. Such studies provided an extremely valuable
conclusion: the activity of properly prepared recombinant
toxins is the same as that of the native ones. This was a huge
step in the field of toxinology. Nowadays, the recombinant
toxins are accessible in a greater number than the native
molecules and the advent of further mutations is feasible.
It is pivotal now to study the molecular basis of anti-insect
selectivity, as well as anti-mammalian specificity.

Toxicity tests, binding studies and electrophysiological
recordings along with the molecular modeling, gene cloning
and the site-directed mutagenesis create an opportunity to
investigate the molecular basis of toxins’ activity. The
experiments performed on alpha-like toxins from Buthus
martensi Karsch using cockroach axon showed that mutation
of a single amino acid can change completely the toxin mode
of action [39]. A phrase: “a story of one amino acid” may
well summarize the long history of multiapproach studies
on depressant toxins from Leiurus quinquestriatus hebraeus.
In the experiments on the isolated axon of the cockroach, it
has been shown that the replacement of the amino acid in
position 58 from Asn to Asp is able to change completely
the toxin’s mode of action. At the same time, its affinity to
sodium channel target and its toxicity decreased. Conclusion
from these studies was as follows: Asn in position 58 plays the
mandatory role in the activity of depressant toxins [13, 40].

The isolated axon of the cockroach was also used in
the tests on the toxins obtained from the spider venom. In
most cases they prolonged the duration of action potential,
however, plateau action potential could only be generated
in the presence of a potassium channel blocker. Sodium
current inactivation was inhibited in the presence of the
toxin, but never to such a degree as in the case of scorpion
alpha toxins [41–43]. Postapplication of LqhαIT increased
the late sodium current recorded during depolarizing pulse
(Stankiewicz, personal observations).
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Figure 4: (a) The effect of LqhαIT (10−7 M)—recombinant anti-insect alpha toxin from Leiurus quinquestriatus hebraeus venom on axonal
action potential; c—control action potential, tx—progressive increase of action potential duration until plateau action potential under toxin.
(b) sodium current prolonged until the end of depolarizing pulse in toxin presence (tx). (c) Repetitive discharges induced by LqhαIT (5 ×
10−6 M) recorded from the axon in connective (in situ), using microelectrode technique; connective was stimulated by extracellular silver
electrodes through an isolated unit. (d) Plateau action potential generated sometimes by axon in situ in toxin presence.

3. DUM Neurons in Patch-Clamp and
Microelectrode Techniques

In 1989 and 1990 two articles describing the application of
patch-clamp technique in the study on the activity of neu-
rosecretory dorsal unpaired median (DUM—Figure 1(c))
neurons from terminal ganglion of Periplaneta americana
nerve cord were published [44, 45]. The technique of single
DUM cell isolation and patch-clamp recording on it have
been developed in Laboratory of Neurophysiology at Angers
University in France by Professor Bruno Lapied. DUM
neurons possess an endogenous pacemaker activity which
depends on a wide range of ionic membrane conductances
[46]. Various types of receptors provide a very precise regula-
tion of the neurons’ spontaneous activity and neurosecretory
function. DUM neurons represent an outstanding model
for studies on intracellular processes [47–49] as well as for
pharmacological tests [50, 51]. They have also been used in
toxinological experiments.

There were several experiments on DUM cells per-
formed simultaneously with observations on an isolated

axon. Although DUM neurons represent a much more
complex model of bioelectrical activity than the axon, the
observations were similar and the conclusions-compatible
[25, 52]. Background sodium channels (bNa) in DUM
neurons were examined using the patch-clamp cell-attached
technique [53]. They appeared to be a new target for
LqhαIT toxin, even more sensitive than the classical voltage-
dependent Na channels in this preparation. The activity
of bNa is limited at membrane potential −50 mV (DUM
neuron resting potential) and can be “liberated” under
LqhαIT action or at very negative (−90 mV) membrane
potential. In the presence of the toxin (10−8 M), unclustered,
brief single channel openings in control (at −50 mV) were
transformed into large, multistep amplitude bursting activ-
ity, separated by periods of silence. Open probability of the
channels increased by about 20-fold. Such channel activity
was well corresponding to the transformation observed in
DUM neurons: from regular beating, spontaneous activity to
rhythmic bursting [53, 54].

Background sodium channels in DUM neurons are also
the target for beta toxin (VII) from Brazilian scorpion,
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Figure 5: Activity of dorsal unpaired median (DUM) neurons from terminal abdominal ganglion, examined with the microelectrode
technique. (a) Single action potential and (b) regular spontaneous activity recorded from the neuron in the ganglion—in in situ conditions,
in control. (c) Radical change of neuron regular beating discharges into bursting activity in LqhαIT (10−6 M) presence.

Tityus serrulatus, venom [55]. In the toxin’s presence, single-
amplitude openings of the channels were replaced by events
with several distinct subconductance current levels. Channel
open probability rose by about 50-fold and similarly did the
open-time duration; additionally, very long duration events
emerged. Classical voltage-dependent sodium channels were
also modified in a manner typical for beta toxin. The exper-
iments performed with calcium imaging demonstrated the
rise in the intracellular calcium concentration in the presence
of toxin VII. A very complex study of this phenomenon
evidenced the participation of high-voltage activated N-
type calcium channels and the activation of noncapacitative
calcium entry (NCCE). An important conclusion has been
drawn from these studies that the reduction of the activity of
NCCE may prove a useful strategy in the development of a
drug for antienvenoming therapy [55].

The activity of DUM neurons can also be observed
in in situ conditions using the microelectrode technique.
Terminal abdominal ganglion is separated from the nerve
cord, desheated and fixed. Neurons remain in their place in
ganglion surrounded by glial cells and other neurons. DUM
neurons are recognized by spontaneous action potentials
when the microelectrode enters the cell. The pattern of
neuronal activity is similar to the recordings obtained on
isolated cells, however, the effect of toxins is not exactly
the same. The application of alpha toxin (LqhαIT, 10−5 and
10−4 M) never induced plateau action potential in situ; only
transformation from regular firing into bursting activity was
observed and the bursts were generated from a level of

slight depolarization (Figure 5(c)). In the ganglion, DUM
cells are mainly under the influence of glial cells, as well as
other neurons; thus, the ionic microenvironment remains
partially undisturbed. In order to investigate the toxin’s
mechanism of action, isolated neurons should be used by
all means, however, in situ experiments may in some cases
reveal more on physiological effect of toxic molecules. The
interactions between two neurotoxins observed on isolated
and in situ DUM cells are also different (Stankiewicz et al., in
preparation).

4. Cercal Nerve—Giant Interneuron Synapse
and Single-Fiber Oil-Gap Technique

The information about mechanical stimulation arising in
the cockroach cercal sensory neurons is transmitted to giant
interneurons. Cercal nerves X and XI are connected with
giant interneurone dendritic tree by inhibitory and excitatory
synapses, respectively, located in the last abdominal ganglion.
The activity of these synapses can be observed using the
single-fiber oil-gap technique (Figure 6(a)), developed by
Professor Jean-Jacques Callec in Rennes University [56, 57],
later improved and applied for several years by Professor
Bernard Hue from Laboratory of Neurophysiology at Angers
University, France [58–60]. This method allows the extra-
cellular recording of spontaneous and evoked excitatory
postsynaptic potentials (EPSP) as well as inhibitory postsy-
naptic potentials (IPSP) [57, 60, 61]. Nerve XI is classified
as excitatory and its fibers activate nicotinic receptors at
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Figure 6: Single-fiber oil-gap method applied for studying synaptic transmission between cercal nerve and giant interneurone. (a) The
scheme of electronic circuit used to record postsynaptic events. Recording electrode (α) bathed in isotonic KCl solution is connected with
high-input impedance, negative capacitance amplifier (1); extracellular electrode β is in contact with last abdominal ganglion. Wheatstone
bridge is connected to recording circuit and it is used to apply polarizing current (pc) through postsynaptic membrane. The desheated
ganglion is superfused with saline or test solution. The dissected axon is bathed in paraffin-oil. MS—mechanical stimulation, ES—electrical
stimulation applied to cercal nerve (according to [59, 60]). (b) Control conditions—unitary excitatory postsynaptic potentials (uEPSP)
recorded as spontaneous activity of preparation and (d) c—control excitatory compound postsynaptic potential (cEPSP) observed as the
effect of cercal nerve electrical stimulation. (c) The increased spontaneous activity (uEPSPs) and (d) tx—cEPSPs observed 10 min after
LqhαIT (10−6 M) application using pneumatic injection in synapse vicinity.

postsynaptic membrane. Unitary excitatory postsynaptic
potentials (uEPSP) result from the stimulation of single
hair mechanoreceptors covering the cercus; composed post-
synaptic potentials (cEPSP) are the effect of cercal nerve
XI electrical stimulation. At the presynaptic face of such
synapses, muscarinic receptors are present, the role of which
is to regulate the acetylcholine releasing by negative feedback
[62]. Muscarinic receptors were also found on postsynaptic
membrane [63]. Stimulation of nerve X evokes inhibitory
postsynaptic potentials (IPSP) via activation of GABA recep-
tors [61]. Single-fiber oil-gap method allows to perform
long-term experiments (even up to 12 hours) and well-
adjusted perfusion of the ganglion enables to obtain reliable
dose-response curves. Using the iontophoretic application
of acetylcholine or carbachol to postsynaptic mem-brane
vicinity permits to discriminate between pre- and post-
synaptic action of the tested drugs. Synaptic preparation
from the cockroach represents a remarkably useful model for
pharmacological studies, however, obtaining a high-quality
stable preparation requires much experience.

Cockroach synaptic model allowed to test the toxins
which are active on cholinergic receptors. Snake venom is

a well-known source for them. Alpha-bungarotoxins and
k-bungarotoxins completely blocked uEPSP and cEPSP at
concentration of 10−7 M. All performed experimental pro-
tocols indicated that the toxins block neuronal postsynaptic
nicotinic receptors and α-bungarotoxin was more effective
[64, 65]. Scorpion alpha toxin LqhαIT induced a substantial
increase in the postsynaptic spontaneous activity, that is, in
the frequency and the amplitude of uEPSP (Figures 6(b)
and 6(c)), as well as in the amplitude and duration of
cEPSP (Figure 6(d)). Higher presynaptic activity results in
the increased releasing of acetylcholine, however, it activates
the negative feedback via presynaptic muscarinic receptors in
turn and after several minutes of the toxin’s action, a decrease
in postsynaptic events can be observed (Stankiewicz, per-
sonal observations).

The experiments performed using the single-fiber oil-
gap method with the scolopendra, Scolopendra sp., venom
determined its components which induced the depolar-
ization of the cockroach postsynaptic membrane and the
decrease in EPSP amplitude. Such effect was limited after
pretreatment with atropine. Along with the studies per-
formed on Drosophila muscarinic receptors (Dm1) expressed
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in Xenopus oocytes, it was evidenced that the venom of
scolopendra comprises a component acting as agonist on
insect muscarinic receptors [66].

Lastly, the experiments performed on cockroach synaptic
preparation contributed to studies which allowed to explain
the mechanism of synergistic interaction between chemi-
cal neurotoxins: pyrethroids (permethrin) and carbamates
(propoxur) [67]. The conclusions from these studies are
important for practical implementation in the field of crop
protection.

5. Synaptosomal Preparation from
Cockroach Nerve Cord

The nerve cords of cockroach (Periplaneta americana) have
also been used to prepare synaptosomes, which are func-
tional vesicles containing the nervous terminals. The synap-
tosomal preparation is easy to obtain and has been applied in
several pharmacological tests. As illustration, binding assays
of many radiolabeled toxins have been successfully char-
acterized with synaptosomes [24, 42, 43, 68]. In addition,
studies of photoaffinity labeling using 125I TsVII as a ligand
in synaptosomes of nerve cord from cockroach indicated for
the first time the molecular weight of the scorpion toxin
receptor from the insect nervous system which was suggested
to be associated with voltage sensitive Na+ channels [68].
More recently this preparation was also successful applied in
binding studies involving radiolabelled spider toxins acting
in sodium channels (De Lima, in preparation). Results
obtained from electrophysiological experiments are often
completed using synaptosomal preparation coming from
cockroach nervous system.

6. Summary

Nervous system of the cockroach (Periplaneta americana)
can be recognized as a remarkably useful model preparation
in multiple electrophysiological techniques, which allows
to perform pharmacological tests on diverse levels of ner-
vous system organization. Confronting the results obtained
reveals that a toxin may affect the activity of the same nervous
structure with diverse effects, depending on the experimental
conditions and this conclusion should be taken into account
prior to any definite statement concerning the mode of
action of any toxin.
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