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Abstract: The ability to control external devices through thought is increasingly becoming a reality.
Human beings can use the electrical signals of their brain to interact or change the surrounding
environment and more. The development of this technology called brain-computer interface (BCI)
will increasingly allow people with motor disabilities to communicate or use assistive devices to
walk, manipulate objects and communicate. Using data from the PhysioNet database, this study
implemented a pattern classification system for use in a BCI on 109 healthy volunteers during real
movement activities and motor imagery recorded by 64-channels electroencephalography (EEG)
system. Different classifiers such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN),
and Decision Trees (TREE) were applied on different combinations of EEG channels. Starting from
two channels (C3, C4 and CP3 and CP4) positioned on the contralateral and ipsilateral sensorimotor
cortex, the Region of Interest (RoI) centred on C3/Cp3 and C4/Cp4 and, finally, a data-driven
automatic channels selection was tested to explore the best channel combination able to increase the
classification accuracy. The results showed that the proposed automatic channels selection was able
to significantly improve the performance of each classifier achieving 98% of accuracy for classification
of real and imagined hand movement (sensitivity = 97%, specificity = 99%, AUC = 0.99) by SVM.
While the accuracy of the classification between the imagery of hand and foot movements was 91%
(sensitivity = 87%, specificity = 86%, AUC = 0.93) also with SVM. In the proposed approach, the
data-driven automatic channels selection outperforms classical a priori channel selection models such
as C3/C4, Cp3/Cp4, or RoIs around those channels with the utmost accuracy to help remove the
boundaries of human communication and improve the quality of life of people with disabilities.

Keywords: brain-computer interface (BCI); electroencephalography (EEG); Support Vector Machine
(SVM); K-Nearest Neighbors (KNN); decision tree; imagination movement (IM)

1. Introduction

The number of people who suffer from temporal or permanent movement disabilities
is enormously growing worldwide. It is estimated to range between 20–50 million people
depending on the World Health Organization (WHO) [1]. People with such motor defi-
ciencies faced an encumbrance on performing their daily activities [2]. Therefore, many
intelligent assistive systems have been developed to improve the Quality of Life (QoL)
for people with movement disabilities by facilitating communication and creating a smart
interactive environment [3]. One of the significant intelligent assistive systems depends on
acquiring and transforming the activation of the Human Central Nervous System (CNS)
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into an artificial output that can be controlling an external device or lead a prosthesis: such
a system is called Brain-Computer Interface (BCI) [4].

The research on BCI started in 1973 [5] when a group of scientists at the University of
California proposed for the first time the BCI expression and launched the BCI challenge,
which aims to control an external object using the brain signal recorded by Electroen-
cephalography (EEG) [6]. After BCI was defined by Vidal [5], the first use of a frequency
band in a BCI was presented in 1988 [7,8]. Later papers used beta and other bands. The 1988
work on BCI robot control explicitly uses [9] an artificial intelligence (AI) algorithm with
machine learning (training) period and examination (testing) period. The development
of the AI algorithms provided a learning pattern recognition approach [10], helping to
increase the quantity and the quality of the BCI research in general and, in particular, on the
Motor Imagery (MI). In this paradigm, the visuomotor imagery has been used to replace the
real execution of the movement [11]. MI is a voluntarily generated signal and is dependent
on the subject’s intention that represents one of the most common paradigms because it
can be used with stroke patients who suffer from movement disabilities. At the same time,
their mental imagery can work properly [12].

Regardless of the application, the first step of any BCI system is the acquiring of the
brain activity usually performed by the EEG system thanks to their portability, cost less,
and its high temporal resolution, and non-invasivity [13–15]. On the other hand, its non-
invasivity decreases the quality of the acquired signals that are corrupted by biological and
non-biological artefacts [16–18]. Thereover, different preprocessing techniques have been
proposed to increase the EEG signal-to-noise ratio (SNR) such as Independent Component
Analysis (ICA) based algorithm both online [19–21] and offline [16,18]. However, this step
is very time-consuming and ICA experts are needed to perform it. Thus, recently semi-
and full-automated systems have been developed to eliminate those artefacts from EEG
recordings such as SASICA, namely Semi-Automatic Selection of Independent Components
for Artifact [22].

The vital core for any pattern classification system used in a BCI is represented by
translating the cleaned signal into a matrix of features. This can be carried out by investi-
gating the EEG signal in the time domain and using a combination of EEG signals from
all channels and calculating different values such as amplitude measurements [23], while
other techniques are based on Power Spectrum Density (PSD) analysis on some specific
frequency bands [24].

One of the most used feature in motor execution (ME) and MI is the Event-Related
Desynchronisation and Synchronisation (ERD/ERS) [25–27] in the alpha band [8–13 Hz]
and the beta bands [14–25 Hz] in the contralateral and ipsilateral sensorimotor areas [28,29].
ERD and ERS were introduced by Pfurtscheller in 1999 [27]. The ERD/ERS patterns showed
high suitability in a pattern classification system implemented in a BCI, especially in the
discrimination between right and left-hand movement. Moreover, they gave accuracy
higher than 80% for online classification [30].

High-density EEG (hdEEG), on the one hand, gives higher spatial accuracy of the
signal recorded [19], but, on the other hand, the large number of EEG channels presents a
significant challenge in developing any BCI system [31]. Therefore, selecting the optimal
channels combinations is one of the most active research fields because it has a massive
effect on the computational load in pattern classification system performance and avoiding
overfitting [32].

According to other papers as [33] that presents a new method for EEG channel selection
optimisation based on relief function [34], the proposed approach aims to realise a data-
driven procedure, considering every feature highly affected by channel selection and
avoiding calculating the summation of features weight of each channel as in [33], in order
to increase the accuracy performance.

In this study, we aim to create a pattern classification system for use in a BCI to
classify between the real and imagined movement of the hands and foot on data from
109 volunteers taken from PhysioNet database [35] by computing and comparing pre-
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processed data throughout a semi-automatic ICA (saICA) [16,18] full automated ICA
(SASICA) [22] and only filtered data. ERD features in different frequency bands, alpha
[8–13 Hz], beta [14–25 Hz], and alpha plus beta [8–25 Hz] were extracted and different chan-
nel configurations, C3 and C4, Region of Interest (RoI) around C3 and C4, and optimised
algorithm methods for channel selection were compared as well as different classifiers such
as Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Decision Trees (TREE).

2. Materials and Methods

The data used in this work were obtained from the EEG Motor Movement/Imagery
Dataset V 1.0.0 [35]. This dataset consists of EEG recordings from 109 participants involving
4 tasks and 14 experimental runs. Nine subjects were excluded from the database (subject
Number: 38, 88, 89, 92, 93, 94, 100, 104 and 106) because their data contains incorrectly
annotated errors labels. The participants performed the MI tasks, while a 64-channel EEG
signal was recorded with a BCI2000 system [31] using the international 10–10 system with a
160 Hz sampling rate and an average reference. The MI is induced by a target that appears
in one of four possible locations along the right edge of the screen. Then, a cursor appears
at the left edge and moves from left to right at a constant rate with its vertical movement
controlled by the power in an α or β band at a location over sensorimotor cortex.

The participants performed 14 experimental runs: 2 baseline runs (1 with eyes open,
‘run 1’, and 1 with eyes closed, ‘run 2’, of 1 min each), and 3 runs for each of the following
4 task combinations (2 min each):

(i) Experimental runs 3, 7, 11. A target appears on either the left or the right side of
the screen. The participant opens and closes the corresponding fist until the target
disappears (Real Hand Movement “RHM”). Then the participant relaxes.

(ii) Experimental runs 4, 8, 12. A target appears on either the left or the right side of the
screen. The participant imagines opening and closing the corresponding fist until the
target disappears (Imagery Hand Movement “IHM”). Then the participant relaxes.

(iii) Experimental runs 5, 9, 13. A target appears on either the top or the bottom of the
screen. Next, the participant opens and closes either fists (if the target is on top) and
both feet (if the target is on the bottom) until the target disappears (Real Fists or Feet
Movement “RFM”). Then the participant relaxes.

(iv) Experimental runs 6, 10, 14. A target appears on either the top or the bottom of the
screen. The participant imagines opening and closing either both fists (if the target is
on top) or both feet (if the target is on the bottom) until the target disappears (Imagery
Fists or Feet Movement “IFM”). Then the participant relaxes.

In this study, we have studied four different combinations of all the tasks despite to
concentrate only on the motor imagery movement as other papers did [36,37] as follow:

(i) Real Hand Movement (RHM) vs. Imagery Hand Movement (IHM): RHM vs. IHM;
(ii) Real Fists or Feet Movement (RFM) vs. Imagery Fists or Feet Movement (IFM): RFM

vs. IFM;
(iii) Real Hand Movement (RHM) vs. Real Fists or Feet Movement (RFM): RHM vs. RFM;
(iv) Imagery Hand Movement (IHM) vs. Imagery Fists or Feet Movement (IFM): IHM

vs. IFM;

2.1. Pre-Processing

The Dataset was imported into the EEGLAB v2019.1, where the signal of the three
repetitions of each task and each subject were concatenated on one signal and decomposed
into its main components using fastICA [38].

Three different techniques were applied and tested to improve the dataset’s Signal
to Noise Ratio (SNR) and to eliminate non-cerebral signals, i.e., eye movements, environ-
mental and channel noise. The first technique is simply based on applying a bandpass
filter [1–48 Hz], while the second technique relies on the auto selection and exclusion
of the EEG noisy components using SASICA software [22] on the filtered data. Finally,
the last technique used a semi-automatic ICA (saICA) based procedure [16,18] to identify
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and classify artefactual components, where checking was applied to ensure no under or
over-cleaning was reached by the saICA after filtering the data as for the previous method.

2.2. Channels Selection

In order to detect the optimal groups of channels that give the best performance
of the model, various classification processes have been performed with different pre-
classification selected group of channels commonly used because placed on the region of
motor cortex area [39]:

• C3/C4: using only the data from C3 and C4 channels.
• CP3/CP4: using only the data from CP3 and CP4 channels.
• ROIC3/ROIC4: includes FC3, C5, C3, C1, CP3, FC4, C2, C4, C6, CP4.
• ROICp3/ROICp4: includes C3, CP5, CP3, CP1, P3, CP2, C4, CP6, P4 as is shown in

Figure 1a–d, respectively.
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Figure 1. Different channels configuration tested: the red filled circles are located on the selected
electrodes in the different configurations (a) C3/C4, (b) CP3/CP4, (c) ROI include C3/C4, and (d) ROI
include CP3/CP4.

2.3. Features Extraction

Event-Related Desynchronisation [27,40] in alpha, beta, and alpha plus beta was
applied to the data (filter, SASICA, and saICA).

Three finite impulse response filters were used to compute the ERD in three different
frequency bands and for each EEG channel, ERD_A (i.e., the desynchronisation value
obtained integrating the alpha band between 8–13 Hz), ERD_B (i.e., the desynchronisa-
tion value obtained integrating the beta band between 14–25 Hz), and ERD_AB (i.e., the
desynchronisation value obtained integrating the alpha lus band between 8–25 Hz).

ERD [27] was calculated using a pre-stimulus ‘Rest’ of 2 s (i.e., two seconds before
the onset stimulus) and 2 s post-stimulus ‘Task’ (i.e., two seconds after the onset stimulus)
across all trials and subjects. Once the two PSD (on the Rest and on the Task) were
calculated, the ERD was abstained by the following formulation:

ERD =
∑band PSD(Task)− ∑band PSD(Rest)

∑band PSD(Rest)

‘band’ subscript refers to alpha, beta and alpha plus beta.



Brain Sci. 2022, 12, 57 5 of 16

2.4. Classification

The performance of three different classifiers was investigated, namely SVM, KNN,
and TREE. SVM [41] is a supervised machine learning model that uses classification
algorithms for two-group classification problems [42]. The second classifier is KNN [43],
representing a non-parametric machine learning method where the input consists of the
k closest training examples in feature space, while the output depends on whether KNN
is used for classification or regression [44]. Finally, TREE classifier [45] was used as a
predictive modelling approach. It uses a decision tree (as a predictive model) to go from
observations about an item (represented in the branches) to conclusions about the target
value of the item (represented in the leaves) [46].

The hyperparameters of each classifier have been optimised in a way that minimises
five-fold cross-validation loss by using Bayesian optimisation [47].

2.5. Optimisation Channels Selection

A new optimisation method has been proposed in this study for data-driven channel
selection. In contrast with the previous channel combinations which have been selected
and fixed before the classification procedure [39] an optimisation system has been created
to select the optimal combination of channels that gives the best model for each task.

This optimisation system initially works by computing the weight of each feature by
using the relieff Matlab function, which calculates the Rank importance of predictors [34].

The descending order of the features based on their weight was given, then 64 groups
of features were created, where the first group includes only the first feature in the feature
order vector, while the second group includes the first and second features in the features
order vector, and so on until the last group which includes all the features.

Later on, a 64-classification procedure will be performed using the 64 features group
combination, and the combination of the features that give the highest accuracy was selected
as the optimal group of channels. The previous procedure is explained in Figure 2.
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3. Results
3.1. Comparison between the Cleaning Methods

Three different cleaning techniques (Filter, SASICA, saICA) were applied separately
on the EEG signal. Then the effect of the cleaning technique on the accuracy of the pattern
classification system was calculated and tested by creating all the possible combinations
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with features (ERD_A, ERD_B, ERD_AB), classifiers, and channels selection technique
proposed in this study. The accuracy was calculated following the formula:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)

where TP indicates the True Positive, TN the True Negative, FP the False Positive and FN
the False Negative. The accuracy is obtained as the proportion of correct predictions (both
true positives and negatives among the total number of cases examined.

The results with the highest accuracy have been obtained using the ERD_AB as a
feature, the SVM as a classifier, and the optimal channels selection technique.

A significant difference in the accuracy value has been noticed based on the cleaning
techniques among the combination of the different tasks (RHM vs. IHM, RFM vs. IFM,
RHM vs. RFM, IHM vs. IFM).

The saICA technique showed the highest capability to clean the EEG signal without
removing the important components. Thus, the data, cleaned with this method, give the
highest accuracy across tasks comparison (mean = 94.25, SD = 3.86), followed by the data
cleaned with SASICA (mean = 61.75, SD = 8.80), while the filter application performs the
lowest accuracy (mean = 53, SD = 8.67).

The obtained accuracy using the three different cleaning techniques is summarised in
Table 1.

Table 1. Comparing the accuracy of classification using three different cleaning techniques (Filter,
SASICA, and saICA) using ERD_AB as a feature, the optimal channels selection, and SVM classifier.

RHM vs. IHM (%) RFM vs. IFM (%) RHM vs. RFM (%) IHM vs. IFM (%) Mean ± Standard
Deviation

Filter 45 61 60 46 53± 8.67
SASICA 68 50 60 69 61.75 ± 8.80
saICA 98 94 96 91 94.25 ±3.86

Thus, the results reported below from now on refer to the saICA cleaned data.

3.2. General Comparison across Methods
3.2.1. An Overview across All the Proposed Techniques

Several IM and RM EEG pattern classification methods have been created with differ-
ent features (ERD_A, ERD_B, ERD_AB), several channel groups (C3/C4, CP3/CP4, ROI
C3/C4, ROI CP3/CP4, and optimal channels) and classifiers (SVM, KNN, TREE). The
performance has been tested by calculating the accuracy among four different tasks combi-
nations (RHM vs. IHM, RFM vs. IFM, RHM vs. RFM, IHM vs. IFM). Table 2 summarises
the classification accuracy among the different techniques.

Detailed analysis for each test is presented below.
The best results were obtained using ERD_AB as a feature and SVM as a classifier

and the combination of the optimal channel (RHM vs. IHM = 98%, RFM vs. IFM = 94%,
RHM vs. RFM = 96%, and IHM vs. IFM = 91%). Extra analysis has been carried out in the
following sections.

3.2.2. Comparison between the Channel Selection Techniques

Across all the tasks combinations, it has been found that the optimal channel selection
techniques return the highest accuracy (mean = 94.75, SD = 1.49%) followed by ROI
C3/C4 (mean = 87.5, SD = 3.2%), ROI Cp3/Cp4 (mean = 80.75, SD = 4.13%), C3/C4
(mean = 76, SD = 13.47%) and the lowest values obtained using CP3/CP4 (mean = 69.75,
SD = 7.22%). Figure 3 shows the optimal channel selection for a particular combination of
parameters (ERD_AB as feature and SVM as a classifier) and among the four different tasks
combinations (RHM vs. IHM, RFM vs. IFM, RHM vs. RFM, IHM vs. IFM). As shown in
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meta-analysis by [48], many studies show recruitment of frontoparietal and central areas
during the execution of the motor imagery of the lower and upper limbs.

Table 2. Summarise the classification accuracy using different sets of features (ERD_A, ERD_B, and
ERD_AB) different sets of channel selection methods (C3/C4, CP3/CP4, ROI C3/C4, ROI CP3/CP4,
and optimal channels) and different sets of classifiers (SVM, KNN, and TREE) to classify between
different tasks combinations (RHM vs. IHM, RFM vs. IFM, RHM vs. RFM, and IHM vs. IFM).

Channel
Selection

Features
RHM vs. IHM (%) RFM vs. IFM (%) RHM vs. RFM (%) IHM vs. IFM (%)

SVM KNN TREE SVM KNN TREE SVM KNN TREE SVM KNN TREE

C3/C4
ERD_A 50 51 52 59 57 55 62 61 60 56 57 54
ERD_B 72 72 70 61 63 62 65 63 58 58 60 56

ERD_AB 84 81 84 84 82 81 80 78 77 56 55 55

CP3/CP4
ERD_A 56 54 52 58 56 58 62 60 58 57 55 57
ERD_B 70 70 68 65 67 65 68 65 65 54 55 55

ERD_AB 83 82 80 61 60 60 81 78 75 54 54 55

ROI C3/C4
ERD_A 78 81 61 83 79 61 87 88 67 79 68 60
ERD_B 92 78 74 86 77 69 96 82 78 75 68 58

ERD_AB 92 89 86 82 79 66 94 87 83 82 73 60

ROI
CP3/CP4

ERD_A 69 63 56 75 66 56 79 71 62 67 66 56
ERD_B 86 75 74 79 66 68 91 87 73 65 65 60

ERD_AB 93 90 82 77 71 61 78 77 60 75 71 68

Optimal
channels

ERD_A 89 80 73 88 76 69 91 89 72 85 75 69
ERD_B 95 85 84 93 82 76 95 90 83 86 70 65

ERD_AB 98 88 93 94 85 87 96 88 91 91 90 68
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Figure 3. Optimal channel selection for a particular combination of parameters (ERD_AB as feature
and SVM as a classifier) and among the four different combination tasks.

The classification accuracy of different BCIs was calculated by using ERD_AB as a
feature and SVM as a classifier, and different sets of channels (C3/C4, CP3/CP4, ROI
C3/C4, ROI CP3/CP4, and optimal channels) to evaluate the performance of each group,
as reported in Figure 4.



Brain Sci. 2022, 12, 57 8 of 16

Brain Sci. 2021, 11, x FOR PEER REVIEW 8 of 16 
 

(mean = 87.5, SD = 3.2%), ROI Cp3/Cp4 (mean = 80.75, SD = 4.13%), C3/C4 (mean = 76, SD 
= 13.47%) and the lowest values obtained using CP3/CP4 (mean = 69.75, SD = 7.22%). 
Figure 3 shows the optimal channel selection for a particular combination of parameters 
(ERD_AB as feature and SVM as a classifier) and among the four different tasks 
combinations (RHM vs. IHM, RFM vs. IFM, RHM vs. RFM, IHM vs. IFM). As shown in 
meta-analysis by [48], many studies show recruitment of frontoparietal and central areas 
during the execution of the motor imagery of the lower and upper limbs. 

 

 
Figure 3. Optimal channel selection for a particular combination of parameters (ERD_AB as feature 
and SVM as a classifier) and among the four different combination tasks. 

The classification accuracy of different BCIs was calculated by using ERD_AB as a 
feature and SVM as a classifier, and different sets of channels (C3/C4, CP3/CP4, ROI 
C3/C4, ROI CP3/CP4, and optimal channels) to evaluate the performance of each group, 
as reported in Figure 4. 

 
Figure 4. Column chart specifies the effect of the channel selection technique on the classification 
percentage accuracy to classify between different tasks. Showed that the highest accuracy is 
Figure 4. Column chart specifies the effect of the channel selection technique on the classification
percentage accuracy to classify between different tasks. Showed that the highest accuracy is obtained
by using the optimal channels selection technique. Using Semi-Auto ICA cleaned data and ERD_AB
as a feature, SVM as a classifier.

3.2.3. Comparison between the Features

It has been found that the ERD_AB returns the highest accuracy across tasks compar-
isons (mean = 94.75 ± SD = 1.49%) followed by ERD_B (mean = 92.25 ± SD = 2.136%) and
the lowest values obtained using ERD_A (mean = 88.25 ± SD = 1.25%).

The classification accuracy of different BCIs was calculated by using the optimal
channels selection and SVM as a classifier and different sets of features (ERD_A, ERD_B,
and ERD_AB) in order to evaluate the performance of each group, as reported in Figure 5.
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Figure 5. Column chart specifies the effect of the features on the classification percentage accuracy to
classify between different tasks using semi-auto ICA cleaned data with the optimal channel selection
and SVM as a classifier. Showed that the highest accuracy is obtained by using ERD_AB as a feature.

3.2.4. Comparison between the Classifiers

It has been found that the SVM returns the highest accuracy among all the tasks
combinations (mean = 94.75 ± SD = 1.49 %) followed by KNN (mean = 87.75, SD = 1.031 %)
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and the lowest values obtained using TREE (mean = 84.75, SD = 5.72%). This result is
explained in Table 3 which summarises the classification results.

Table 3. Classifiers mean accuracy among channels selection techniques, with respect to the features
over the four tasks combinations.

Channel Groups Features
RHM vs. IHM (%) RFM vs. IFM (%) RHM vs. RFM (%) IHM vs. IFM (%)

SVM KNN TREE SVM KNN TREE SVM KNN TREE SVM KNN TREE

CP3/CP4,
ROI C3/C4,

ROI CP3/CP4,
Optimal channels

ERD_A 68 66 59 73 67 60 76 74 64 69 64 59
ERD_B 83 76 74 77 71 68 83 77 71 68 64 59

ERD_AB 90 86 85 80 75 71 86 82 77 72 69 61

The SVM classifier has always provided the best mean accuracy with respect to
different single features as reported in Table 3. All the three classifiers achieve classification
accuracy above 60% even when the features selected belong only to ERD_A and ERD_B
set of features, but a clear increase is recorded with the SVM performance with respect to
KNN and even more respect to TREE classifier.

The classification accuracy of different BCIs was calculated by using the optimal
channels selection and ERD_AB as a feature and different sets of classifiers (SVM, KNN,
and TREE) in order to evaluate the performance of each group, as reported in Figure 6.
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Figure 6. Column chart specifies the effect of the features on the classification accuracy to classify
between different tasks using the optimal channels selection and ERD_AB as a feature. Showed that
the highest accuracy is obtained by using the SVM classifier.

3.3. Evaluation of the Optimal Channel Selection Technique

In order to evaluate the performance of the proposed optimal channels selection
technique (on ERD_AB as a feature and SVM as a classifier), several parameters (sensitivity,
specificity, Area under the Curve (AUC), True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) have been calculated and summarised in Table 4.



Brain Sci. 2022, 12, 57 10 of 16

Table 4. Summarising the results obtained for the optimal channels selection technique showing the
results obtained for the sensitivity, specificity, area under the curve AUC, true positive (TP), true
negative (TN), false positive (FP) and false negative (FN) of a pattern classification system for use in
a BCI using the semi-auto cleaned ICA data with the ERD_AB as a feature and SVM as a classifier.

RHM vs. IHM RFM vs. IFM RHM vs. RFM IHM vs. IFM

Accuracy 98% 94% 96% 91%
Sensitivity 97% 92% 91% 87%
Specificity 99% 90% 99% 86%

AUC 0.99 0.96 0.97 0.93
TP 194/200 184/200 181/200 174/200
TN 199/200 181/200 197/200 171/200
FP 1/200 19/200 3/200 29/200
FN 6/200 16/200 19/200 26/200

The novel channels selection technique showed the highest fit with (RHM vs. IHM)
task with Sensitivity = 97%, specificity = 99%, AUC = 0.99, TP= 194/200, TN = 199/200,
FP = 1/200 and FN = 6/200.

4. Discussion and Conclusions

With the aim to define a pattern classification system for use in a BCI to classify
between the real and the imagined movements, facilitating the interaction between people
with limited motor abilities and their environment, a PhysioNet data set has been used [35],
that includes EEG signals acquired during the performance of four different tasks: Real
Hand Movement (RHM); Imagery Hand Movement (IHM); Real Fists or Feet Movement
(RFM), and Imagery Fists or Feet Movement (IFM).

The goal of this study was to compare between different sets of pre-processing tech-
niques (filtering, SASICA, and saICA), features (ERD in Alpha, Beta, and Alpha + Beta
range), the different combinations of EEG channels (C3/C4, CP3/CP4, RoI centred on
C3/C4 and RoI centred on CP3/CP4 and optimal channels combination), and different
classifiers (SVM, KNN, and TREE) in order to evaluate their performance in a pattern
classification system for use in a BCI.

The overall results have highlighted that the combination of the saICA as a cleaning
method, the features ERD_AB, the optimal channel selection technique as the best channel
configuration, and the SVM classifier give the best model solution, showing the highest
accuracy values.

The different pre-processing approaches, based on filtering and independent compo-
nent analysis methods, have been tested to reduce the signal-to-noise ratio. In this context, a
semi-automated offline algorithm saICA [16,18] and a fully automated system SASICA [22]
provided the best results with respect to the filtering data applying a pass-band filter
followed by a notch filter.

The saICA outperforms the other methods because it controlled for over cleaning
and down cleaning effects. In particular, while the filter approach probably suffers from
an intrinsic down cleaning, keeping the motor artifacts that compromise the ERD feature
extraction and consequently the classification, SASICA fully automatic version instead,
over-cleaning the data, deletes some physiological activity during the task, compromising
the feature extraction classification as well.

Moreover, regarding the necessity of cleaning the data, different pre-processing tech-
niques, referred to supervised ICA approach, were highly time-consuming. On this aspect,
neural networks can help since they do not need a strong pre-processing as shown in some
studies [49]. In those studies, only minimal pre-processing such as removing or interpo-
lating bad channels were used and all the rest was left to the burden of learning from a
potentially noisy signal to the neural network [49]. On the other hand, machine learning
methods based on artificial neural networks with the ability to use techniques that allow a
system to automatically detect and classify features from raw data, including unsupervised



Brain Sci. 2022, 12, 57 11 of 16

training of raw input data (i.e., automatic feature selection and dimensionality reduction),
are highly computationally expensive to train and to determine the hyperparameters.
Consequently, the choice of the hyperparameters is mainly user-dependent [49].

The analysed EEG signal features have been the event-related desynchronisation
ERD and synchronisation (ERS) in the alpha [8–13 Hz], beta [14–25 Hz], and alpha plus
beta [8–25] bands, highly suitable for motor execution and MI. The ERD is the acquisition
recording method to evoke through the visual stimulation, linked with motor-related brain
functions, mainly execution and imagery of motor actions [50]. Two different types of ERD
features can be differentiated: one short-lasting, localised into occipital areas and involving
upper alpha components which most likely reflects primary visual processing and feature
extraction, and the other longer-lasting, more widespread, prominent over parietal areas
and maximal for lower-alpha components, mostly related to cognitive processing and
mechanisms of attention [50]. Alpha ERD selectivity was mainly observed at motor areas,
whereas beta ERD responses selective to motion obeying this law were recorded at motor
and prefrontal nonmotor sites. Unilateral voluntary upper limb movement is accompanied
by an ERD feature in the alpha and beta bands localised over the contralateral sensorimotor
area [27]. The results related to ERD features within both frequency bands (alpha plus beta)
were consistently stronger, arose faster, and more widespread while observing motion [51].
In our case, the best results obtained on alpha plus beta ERD support that both bands
are involved during motor imagery but also during motor action since the best accuracy
classification was obtained in those bands when considered together with respect to the
only alpha or beta bands.

The test on different combinations of channels to detect the optimal groups of features
returned the highest accuracy [52] on the classification percentage between the different
tasks for the optimal channel selection techniques, with a mean of 94.75% accuracy applying
the SVM classifier. It provided the best results with respect to single-channel selection,
using only the data provided by channels C3 and C4 and CP3 and CP4, and ROI C3/C4 and
ROI CP3/CP4. Using a single-channel approach might be a solution to avoid computational
time according to [17]. In our opinion, the single-channel solution presents some issues
in all the cases the task under investigation involves a long-range and distributed brain
network [53]. Since the MI signal derives its activities from a distributed network [54],
picking a single channel or an average of channels based on a topographic map could
be misleading, especially if the aim is to describe the whole neuronal communication
system [49,52,53]. Specifically, when an electrical potential is generated by a neuronal
group, its activity is not only recorded from the electrode closest to this source but also
from distant ones, due to the electric field propagation phenomenon. Consequently, each
channel on the scalp derives its signal from more than one source. This problem worsens
with the increasing number of sources activated at the same time. The generators of EEG
activity cannot be reliably inferred based on a priori selected single channels, or a limited
group of channels, due to the electric/magnetic field propagation problem. Moreover,
using information coming from only one electrode can be misleading especially when
the activated network is spread among the entire scalp [17,52]. In this regard, methods
able to extract the under-investigated neural source by combining the activity from all the
electrodes, are suitable for overcoming possible misleading results by avoiding the choice
of a single electrode or averaging a group of electrodes. This should be the reason why the
optimal channel selection has given the highest accuracy.

In addition, in the present study, the performance of three different classifiers SVM,
KNN, and TREE were tested and compared at (i) the single feature set selected, (ii) con-
cerning the channel group adopted, and (iii) for each of the four tasks analysed. After the
optimisation of the hyperparameters for each classifier using the Bayesian optimisation
approach [55] the best results were provided by the SVM classifier:

(i) even if all the three classifiers achieve classification accuracy above 60%, a clear
increase is recorded with the SVM also considering only ERD_A and ERD_B features
(see Table 3);
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(ii) with respect to the channel group adopted SVM classifier rises always the higher
mean value (see Table 5);

(iii) among all the tasks combination (mean= 94.75 ± SD = 1.49%). For each of the
analysed single tasks and among the different combinations of channels group the
SVM classifier has always provided the best mean accuracy with respect to different
single features as reported in Table 2. Our results are in line with other literature on
MI in BCI that support SVM as the best and most used classifier in this context [56,57].

Table 5. Classifiers mean accuracy among tasks and selected features, with respect to channels
selection techniques.

Features Channel Groups
RHM vs. IHM (%), RFM vs. IFM (%),
RHM vs. RFM (%), IHM vs. IFM (%)

SVM KNN TREE

ERD_A
ERD_B

ERD_AB

C3/C4 65.58 65 63.66
CP3/CP4 64.08 63 62

ROI C3/C4 85.5 79 68.58
ROI CP3/CP4 77.8 72 64

Optimal channels 91.75 83.16 77.5

The aim of pooling features and testing these different combinations of task conditions,
channels group, and classifiers was to investigate how their combination might improve
the classification accuracy for a reliable MI-based BCI.

Finally, some consideration among the tasks classifying between RHM and IHM
gives the highest accuracy 98%, while comparing between IHM and IFM give the lowest
accuracy 91% by using the same features and the same manner to select the channels (see
Table 1). The better performance obtained compared between imagery tasks still represents
a challenge, probably due to the higher variability between the performances among the
volunteers and in particular, due to the absence of closed-loop feedback that might test the
accuracy of the task performed by the volunteers.

To the best of our knowledge, we provide better overall classification results by
comparing the results obtained with other studies working with the same data sets [58–61].
In particular, in Roots et al. [58], the 83.8% accuracy was obtained between the imagery
movement task with the EEGNet Fusion, while in the proposed approach using ERD_AB
and the optimal channels combinations with SVM classifier we reached 91% of the accuracy
in the same task.

In other studies [59–61], that have used deep learning CNN (Convolutional Neural
Network) to classify between events in IHM vs. IFM, obtained, respectively, 96%, 86%, and
85.9% of accuracy but selecting only 10 subjects. The results presented in this study reached,
instead, 91% of accuracy using all the subjects by applying the SVM as a classifier. Based
on different time-domain features and classifiers but the same observed task, Alomari and
colleagues [62] used Movement-Related Cortical Potentials (MRCP) and Neural Networks
(NN) to classify between real and imagined hand movement have obtained an accuracy
of 89% but involving only the first 6 subjects. Once again, in our study by using all the
100 subjects and combining ERD_AB as a feature and SVM classifier we raised accuracy
equal to 98% by using the same tasks. Differently, Sleight and colleagues [63], used EEG
averaged power and SVM to classify between RHM and IHM and they got accuracy equal
to 69% with respect to our 98% of accuracy.

From the channels’ combination point of view, this study proposed a new method
to obtain the combination of the optimal channels. This method was able to obtain the
highest accuracy compared to fixed channels selection. However, in some specific BCI
cases, the lowest number of channels is mandatory and preferred. The RoI and the selected
channels configurations are preferable related to physiological hypotheses, while multiple
channels selected by data-driven approaches might provide increased accuracy results but
less accurate from a physiological and anatomical perspective. For this reason, the number
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of channels and the way to select them might be a good compromise to be decided on the
BCI application purpose.

Finally, from a computation point of view, the proposed model represents huge
improvements in testing time, only 5 ms per sample, compared to the 107 ms when is
used a convolutional neural network [58]. Moreover, even for the training time, this model
requires just around 60 min to calculate the combination of the optimal channel for each
feature and each classifier and to train the model against the days needed for training
neural networks.

In conclusion, in this paper, we have presented a study based on data from the
PhysioNet database. The automatically data-driven channel selection combined with an
SVM classifier and a saICA as a pre-processing method has increased the classification
accuracy for motor and imagery movement tasks to other approaches already presented in
the literature.

5. Open Challenges

As a conclusion of our work, we provide a list of open challenges:

1. The use of different features such as Common Spatial Patterns (CSP) compared to
ERD/ERS might be interesting to be tested.

2. The application of different feature ranking approaches might improve the accuracy
and simultaneously lower the number of channels selected.

3. Different feature selection methods such as the Akaike Information Criterion (AIC)
might guide the users to consider an optimal number of EEG channels.

4. Testing the accuracy of the single-subject performance instead of the accuracy at the
group level.
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