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ABSTRACT

There is a pressing need today to mechanistically
interpret sets of genomic variants associated with
diseases. Here we present a tool called ‘VarSAn’ that
uses a network analysis algorithm to identify path-
ways relevant to a given set of variants. VarSAn ana-
lyzes a configurable network whose nodes represent
variants, genes and pathways, using a Random Walk
with Restarts algorithm to rank pathways for rele-
vance to the given variants, and reports P-values for
pathway relevance. It treats non-coding and coding
variants differently, properly accounts for the number
of pathways impacted by each variant and identifies
relevant pathways even if many variants do not di-
rectly impact genes of the pathway. We use VarSAn
to identify pathways relevant to variants related to
cancer and several other diseases, as well as drug
response variation. We find VarSAn’s pathway rank-
ing to be complementary to the standard approach of
enrichment tests on genes related to the query set.
We adopt a novel benchmarking strategy to quantify
its advantage over this baseline approach. Finally,
we use VarSAn to discover key pathways, including
the VEGFA-VEGFR2 pathway, related to de novo vari-
ants in patients of Hypoplastic Left Heart Syndrome,
a rare and severe congenital heart defect.

INTRODUCTION

The relationship between genotypic differences, e.g. single-
nucleotide polymorphisms (SNPs), and health-related dif-
ferences among individuals is a major topic of research to-
day. A common approach is to find polymorphisms (vari-

ants) that are statistically correlated with phenotypic dif-
ferences, as in genome-wide association studies (GWAS)
(1) and family-based association tests (2). An alternative
approach involves ‘trio-based’ genome sequencing (3,4) of
modest-sized cohorts of patients to identify de novo mu-
tations in the child, and genes and pathways that are fre-
quently impacted by these variants. Irrespective of the
specific methodology used, it is common for genotype-
phenotype studies to identify a set of SNPs, promising to
reveal mechanistic insights into phenotypic variation. Com-
monly, individual SNPs or genes related to them are sub-
jected to further experimental interrogation (5), and there
is intense on-going research into efficient ways to shortlist
variants for experimental follow-up (6–10). In parallel, re-
searchers often seek to understand the biological processes
that are implicated by the identified SNPs (11). Our work
addresses this latter goal. In particular, we present a novel
computational tool to answer the following bioinformatics
question arising from genotype-phenotype studies: given a
set of SNP positions of potential relevance to a phenotype,
which pathways are likely to be important to the phenotype?
We refer to this as the ‘variant set characterization problem’.

The variant set characterization problem is conceptu-
ally similar to the highly popular ‘gene set characterization’
problem, where a given gene set, e.g. differentially expressed
genes from a transcriptomic study, is tested for statistical as-
sociation with biological pathways, Gene Ontology terms,
etc. (12). Indeed, one solution to the variant set characteri-
zation problem is to map SNPs to genes, e.g. based on pre-
dicted impact of a SNP on the function of a gene’s encoded
protein, and then subject the resulting genes to the plethora
of available gene set characterization methods (11), includ-
ing enrichment tests (13,14) and pathway analysis tools (15).
Of particular relevance to our work is the class of meth-
ods that test for associations between the study-based gene
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set (in this case, derived from the phenotype-related SNP
set) and pre-determined gene sets from a compendium such
as REACTOME (16), KEGG (17) or Gene Ontology (18).
Commonly, this is done via a Hypergeometric test of over-
lap between the two gene sets, although alternatives that
make use of rankings (rather than merely sets) of genes have
also been widely used (19,20).

Here, we focus on the task of associating a given SNP set
with pre-determined gene sets. Specifically, the given SNPs
are not assumed to be ranked or assigned numeric scores,
and the candidate pathways with which the SNPs may be
associated are not assumed to have a known network struc-
ture or ‘topology’ (12). These decisions were motivated by
considerations of simplicity and wider applicability. Admit-
tedly, in many cases these assumptions may result in loss of
valuable information, e.g. GWAS SNPs have associated P-
values that may be used to score or rank them in the course
of finding the most relevant pathways (21), and pathway
topology may be used to good effect in gene set characteri-
zation approaches (22–25). Nevertheless, we tackle here the
simpler version of the variant set characterization problem
because it allows the proposed method to be used even when
SNP scores are not available (e.g. de novo variants from a
trio-based studies) and gene sets defined by a common an-
notation (e.g. a Gene Ontology term or the targets of a tran-
scription factor) are used in place of pathways.

As noted above, the most natural solution for the particu-
lar problem posed above is via a test of enrichment between
the SNP-related genes and pathway genes: if many of the
given SNPs point to genes that belong to the same pathway,
the pathway is considered relevant to the given SNP set. The
intuitive appeal and statistical rigor of this approach are
reasons in its favor. Yet, some aspects of the approach merit
closer inspection and potential changes: Firstly, the step of
mapping the given SNPs to genes raises questions. For in-
stance, a SNP may be mapped to a gene if it is predicted to
impact the protein function (26), or if it is a cis-regulatory
eQTL (expression quantitative trait loci) of the gene (6); in
either case the gene’s membership in a pathway furnishes ev-
idence for the relevance of that pathway. But if both types
of SNPs (coding and non-coding) are present in the given
SNP set, do their mapped genes provide equal evidence for
relevance of respective pathways that include those genes?
Even among non-coding SNPs, should a gene related to a
SNP based on eQTL evidence be considered as valuable as
a gene to which a SNP has been mapped purely based on
proximity? Furthermore, if one SNP points to one gene and
(say) three other SNPs point to another gene, should the
two mapped genes have equal importance in determining
relevant pathways, or should the latter gene receive thrice
as much importance?

A second class of questions arises in the gene-to-pathway
mapping step. The enrichment-based approach counts the
number of mapped genes that belong to a pathway. But if
a mapped gene belongs to, say, 10 different pathways, and
another mapped gene belongs to a unique pathway, should
we consider the latter pathway as more relevant to the gene
set (and hence to the SNP set) as there is more specific evi-
dence in its support? Moreover, if a mapped gene is not an-
notated as a member of a pathway, but is known to interact
with another gene (e.g. by physical interactions between the

encoded proteins) and the latter gene belongs to a pathway,
should this be considered as (at least partial) evidence of the
relevance of the pathway? There is some work showing (27)
that appropriate consideration of such indirect evidence of
a gene’s relationship to a pathway is beneficial to pathway
analysis.

The above considerations motivated us to develop a new
computational method to solve the variant set character-
ization problem. The new tool, called VarSAn (Variant
Set Annotator, pronounced ‘version’), builds on the intu-
itive appeal of the enrichment-based approach of count-
ing SNP-related genes that belong to the same pathway,
but re-casts the problem in a network-analysis framework
that addresses the above-mentioned concerns. We employ
VarSAn to analyze sets of GWAS SNPs and somatic mu-
tations related to breast cancer (BrCa) and prostate cancer
(PCa), as well as GWAS SNPs related to drug response vari-
ation. Through these applications we demonstrate the ef-
fects and advantages of key methodological choices in the
tool, e.g. identifying relevant pathways that are supported
by the literature but are not ranked highly by alternative
methods. We report extensive comparisons to the common
approach of performing enrichment tests between SNP-
associated genes and pathway genes. Such comparisons in-
clude a new objective method of evaluating pathway associ-
ation methods, based on the idea that SNP sets for the same
disease should yield similar pathways while those for differ-
ent diseases should yield distinct pathways. Finally, we ap-
ply VarSAn to a recently identified set of de novo mutations
in a cohort of patients of Hypoplastic Left Heart Syndrome
(HLHS) and report on several significant pathways associ-
ated with these variants.

MATERIALS AND METHODS

Random walk with restarts on a heterogeneous network

Random walk with restart (RWR) is a network analysis al-
gorithm that quantifies the proximity of a node to a set of
nodes (‘query set’) in a graph. We used the RWR imple-
mentation in the DRaWR (27) tool as the core of VarSAn.
Details of this implementation, especially how it handles a
heterogeneous network, are provided in (27). Briefly, given
a heterogeneous network with weighted edges, firstly, edge
weights are rescaled so that the sum of weights of all edges
of the same type is the same constant, regardless of the edge
type. (If the network edges are unweighted, all edge weights
are assumed to be 1). Next, transition probabilities are as-
signed as follows: for any node u, every edge adjacent to it is
assigned a transition probability out of u, proportionate to
the edge weight so that the sum of transition probabilities
out of u equals 1. This step results in a transition probabil-
ity matrix A, with Aij being the probability that the random
walk, if currently at node i, will transition to node j in the
next step. (The rescaling step mentioned above ensures that
an edge of a more frequent type is less likely to be followed
in a transition, all else being equal). The RWR is a stochas-
tic process where the probability distribution of the random
walk’s location at step t, given by vt, evolves as follows:

vt+1 = (1 − c) Avt + cα
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where ‘c’ is the restart probability and α is the probability
distribution over nodes immediately after a restart. We set
α so as to assign zero probability to all nodes outside of the
query set and nodes in the query set are assigned equal prob-
abilities summing to 1. Note that the implementation also
allows nodes in the query set to have pre-determined node
weights, in which case the restart probability at each such
node is proportional to its weight. VarSAn uses the node
weight feature in the SNP-weight mode. Note that in set-
ting up the heterogeneous network, VarSAn limits the SNP
nodes to only include the SNPs in the query set.

The DRaWR program (27) makes a distinction between
‘gene nodes’ and ‘property nodes’. DRaWR reports the
equilibrium probability scores of ‘property nodes’ based
on the query nodes selected from ‘gene nodes’. In using
this program in VarSAn we set SNPs and genes as ‘gene
nodes’ and pathways as ‘property nodes’, so that pathways
are ranked based on their connectivity to SNP nodes in the
query set. SNP-gene edges were added as directed edges
with weights of 1 or the appropriate value inferred in the
pan-tissue mode.

Heterogeneous network in VarSAn

Nodes: The network includes SNP nodes representing
the query set, gene nodes representing all genes from
GTEX, HumanNet and pathway dataset (REACTOME
or KEGG), and pathway nodes representing a selection
of 321 KEGG (17) pathways or 476 REACTOME (28)
pathways. REACTOME pathways were downloaded from
https://reactome.org/ and filtered to remove redundancies
and small (< 30 gene) pathways (see Supplementary Note
S1, Supplementary Table S4). KEGG pathways were ob-
tained from ConsensusPathDB (29).

Coding SNP-gene edges: The Polymorphism Phenotyp-
ing v2 (PolyPhen-2) software (26) predicts the functional ef-
fect of human non-synonymous SNPs. A (node for a) SNP
located within a gene’s coding sequence is connected to (the
node for) that gene if it is predicted by PolyPhen-2 to be
‘probably damaging’ or ‘possibly damaging’. The user may
choose to limit connections to ‘probably damaging’ SNPs
only.

Non-coding SNP-gene edges: SNP-gene connections for
non-coding SNPs (ncSNPs) are based on eQTLs from
GTEx analysis v8 (30,31) and/or genomic proximity (dis-
tance from gene start site below a user-specified threshold,
set to 10 Kb by default). If the user chooses to define these
based on eQTLs, they may further specify the most rele-
vant of 49 tissues for which GTEx eQTLs are available. (The
number of SNP-gene associations for each tissue range from
1.1 million to 37 million). Alternatively, the user may choose
to base ncSNP-gene edges on the union of eQTLs across all
tissues. (This is the ‘pan-tissue’ option for setting ncSNP-
gene connections). In this case, a SNP-gene edge is weighted
by an automatically calculated ‘relevance score’ of the tissue
for which the eQTL relationship of the SNP-gene pair has
been recorded. The tissue relevance score is calculated as –
log(p), where p is the P-value of the hypergeometric test be-
tween the query set SNPs and GTEx eQTLs for that tissue.
In cases where a SNP-gene pair is an eQTL relationship in
multiple tissues, the sum of the appropriate tissue relevance
scores is used as the edge weight.

SNP-weight scheme: In this setting, every ncSNP con-
nected to the same gene is first assigned a weight of 1/N,
where N is the number of such ncSNPs. Next, the total
weight of each ncSNP is set to the sum of weights it is as-
signed based on all the genes it is connected to (Supplemen-
tary Figure S1). Every coding SNP is given a weight as 1 in
this scheme. This optional scheme allows the user to down-
weight the impact of ncSNPs that are in linkage disequilib-
rium (LD) with each other, as is likely to be the case when
multiple ncSNPs connect to the same gene based on eQTL
and/or proximity. However, this is a simplistic strategy to
deal with the LD issue, motivated by ease-of-use consider-
ations.

Gene–gene and gene–pathway connections: gene–gene
relationships from HumanNet PPI network (32) may be op-
tionally included as edges in the network. These edges were
downloaded from (33). Genes belonging to a pathway are
represented as gene-pathway edges.

Empirical P-value calculation

VarSAn randomly samples query sets using stratified sam-
pling based on the numbers of coding and non-coding vari-
ants in the real query set. Each random query set has the
same number of SNPs and the same proportion of coding
and non-coding SNPs as the real query set. The empirical

P-value of pathway i is calculated as pi =
∑N

j = 1 I(e pi, j ≥ e pi )
N ,

where e pi is the equilibrium probability of pathway i us-
ing the real query set, eqi, j is the equilibrium probability of
pathway i using jth random query set, I(x) = 1 if x is true
and = 0 otherwise, N is the number of random query sets
(N = 100 by default). VarSAn reports all pathway nodes
ranked first by empirical P-values and then by equilibrium
probabilities.

Query sets

Cancer/disease GWAS SNPs: Disease-associated GWAS
SNPs were downloaded from GWAS Catalog (34).
Breast cancer GWAS SNPs from Michailidou et al.
(35) and prostate cancer GWAS SNPs GWAS Catalog
(EFO 0001663) were used. The 12 diseases that have the
most associated GWAS SNPs are used in the consis-
tency and discrimination evaluation (see Supplementary
Table S2).

Cancer somatic mutations: Somatic mutations of breast
cancer and prostate cancer were obtained from COSMIC
(36). Coding mutations from COSMIC mutation data
(genome screens) and non-coding mutations from COS-
MIC non-coding variants were used.

Drug response GWAS: Drug response GWAS P-values
were calculated for each of 24 different drugs/treatments us-
ing 284 lymphoblastoid cell lines (37), using the procedure
described in (38).

RESULTS

VarSAn: A network-guided tool for associating a variant set
with pathways

VarSAn is a variant set analysis tool that employs a random
walk with restart (RWR) algorithm on a heterogeneous net-
work to rank pathways by their relevance to a given set

https://reactome.org/
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of SNPs. (We use SNPs and variants interchangeably, and
somewhat loosely, to refer to single nucleotide positions that
are of interest to the researcher.) The network analyzed by
VarSAn must include nodes for SNPs, genes and pathways,
as well as edges connecting SNPs to genes and those con-
necting genes to pathways (Figure 1A). It may optionally
include additional types of nodes and edges. Relevance of a
pathway to the given set of SNPs is quantified by the prox-
imity of the pathway node to nodes representing the SNP
set, as per the RWR algorithm.

The network can be easily customized by the user if so de-
sired (details below), and we present here the general guide-
lines and our specific decisions in setting up the network for
this work. The complete set of SNP nodes in the network
(the ‘SNP universe’) represents a collection of SNPs that in-
cludes the user-specified SNP set (the ‘query set’) as well as
other SNPs that are used as a statistical ‘background’ set for
contrasting with the query set. Gene nodes represent genes
that are related to SNPs in the SNP universe in some pre-
determined manner, with those pairwise SNP-gene relation-
ships being represented as edges between respective gene
and SNP nodes. Each pathway node represents a biological
pathway and is connected to nodes representing genes that
belong to the pathway. More generally, pathway nodes may
represent any systems-level property or annotation, such as
a Gene Ontology (GO) term, shared by a set of genes. Op-
tionally, there may be gene-gene edges representing known
relationships, e.g. genetic interactions, among genes. The
network allows for multiple types of edges connecting the
same two node types, e.g. there may be two types of SNP-
gene edges, one representing cases of a SNP predicted to im-
pact a gene’s expression and another representing predicted
SNP impact on the activity of the protein encoded by the
gene.

Here, we defined one type of SNP-gene edges based on
Polyphen2 (26) predictions of coding SNPs impacting pro-
tein activity (see Materials and Methods). Another class of
SNP-gene edges was defined for non-coding SNPs, where
we used either eQTL studies to relate SNPs to genes (see
Methods) or simply the location of the SNP relative to
a gene. We defined gene-gene edges to represent protein-
protein interactions from the HumanNet (32) database.
Pathway nodes and gene-pathway edges were defined to
reflect gene memberships in selected pathways in pathway
databases, such as ReactomeDB (28) and KEGG (17) (see
Methods).

Once the network and the query set of SNPs has been
specified, VarSAn analyzes the dynamics of a random walk
with restarts (RWR) whose ‘restart set’ is the query set.
Briefly, this simulates the steps of a random ‘walker’ that
hops from one node to another over time, at each time step
following one of the edges adjacent to the node it currently
occupies, with the probability of following an edge being de-
termined by the number and weights of available edges (see
Methods). This probability is identical among all edges of
the same type, but differs between edges of different types,
with rarer edges receiving high relative probabilities to ac-
cord them greater weight. In addition to the repeated itera-
tions of such probabilistic hops from node to node, the ran-
dom walker occasionally (and also stochastically) decides
to ‘restart’, whereby it hops directly to one of the nodes

in the restart set regardless of whether such a node is di-
rectly connected to the current node. Such a random walk
with restarts is well-studied mathematically (39); the ‘equi-
librium probability’ of any node reflects the probability of
finding the random walker at that node at an arbitrary step,
in the long term. Furthermore, due to the occasional but
repeated restart decisions by the walker, nodes in, adjacent
to or at a few hops from the restart set tend to have higher
equilibrium probability, which therefore serves as an objec-
tive measure of the network-based proximity of the node to
the restart set. VarSAn therefore uses the equilibrium prob-
ability of a pathway node as a relative measure of that path-
way’s relevance to the query set of SNPs.

Accounting for large pathways. The above approach for
scoring network nodes tends to be biased toward high-
degree nodes in the network. In our case, nodes represent-
ing large pathways (with many gene-pathway edges lead-
ing into the pathway node) tend to have higher equilibrium
probabilities, since there are relatively many ways for the
walker to reach such nodes. To address this high-degree
node bias, VarSAn calculates ‘empirical P-values’ for ev-
ery node’s equilibrium probability: it notes the equilibrium
probability pv of a pathway node v, then repeats the RWR
calculations N (say, 100) times, each time using a randomly
selected set of nodes as the query set (having the same size
as the original query set), counts the number of times (say
n) out of these N repeats that the equilibrium probability of
node v is greater than pv, and defines the fraction n/N as the
‘empirical P-value’ of node v (Figure 1B). Note that a node
that was assigned a high equilibrium probability mainly due
to its large degree (i.e. a large pathway) will tend to have
high equilibrium probabilities in the repeats with random
query sets as well, for the same reason, and thus have a
high (poor) empirical P-value. The empirical P-value tests
the significance of a (large) equilibrium probability assigned
to a pathway under the null hypothesis that connectivity
from the query SNP set to the pathway is no different from
connectivity of a random SNP set to this pathway. VarSAn
thus ranks pathways first by their empirical P-values, which
represent their connectivity to the query set, and then
(to break ties) by their equilibrium probabilities, which
are determined by both the connectivity and the network
topology.

Handling multiple SNPs related to the same gene. RWR-
based scoring of pathways treats each SNP in the query set
as equally important, since the random walker ‘restarts’ by
hopping back to one of those SNPs chosen uniformly at
random. If multiple SNPs in the query set are related to
the same gene, then that gene will have greater influence on
pathway scoring compared to a gene that is related to a sin-
gle SNP in the query set. This may or may not be desirable to
the user. For instance, consider a case where a GWAS-based
query set includes multiple non-coding SNPs that are in
linkage disequilibrium (LD) with each other and are located
in the regulatory region of the same gene. In this case, the
RWR approach assigns relatively high weight to the gene,
and thus prefers pathways that include the gene. However,
such proportional weighting may be undesirable, since the
multiple SNPs in LD do not provide independent evidence
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Figure 1. (A) Workflow of variant set characterization by VarSAn. A network is defined with SNP nodes, gene nodes and pathway nodes. SNP and gene
nodes are connected by edges representing biological evidence of their relationship, e.g. the SNP is predicted to impact the gene’s encoded protein or the
gene’s expression (eQTL). Gene nodes are connected to pathway nodes to indicate genes that belong to a pathway. Gene-gene edges are optional and may
represent various types of relationships, e.g., protein-protein interactions. A subset of SNPs, to be characterized, is designated as the ‘query set’ and a
Random Walk with Restarts (RWR) algorithm is used, with this query set as its ‘restart set’, to identify relevant pathways. (B) Empirical P-values reflect
the relevance of pathways to the query set of SNPs. Each pathway is assigned an ‘equilibrium probability’ by the RWR algorithm, run with the query set
as the restart set. The process is repeated many times, using different random sets of SNPs as the query set, and the equilibrium probability of a pathway
from the original RWR is compared to corresponding values with the random query sets to assign an empirical P-value to the pathway. (C) Assignment
of SNP-gene edges in the network in pan-tissue eQTL mode. Each SNP-gene edge represents an eQTL in any tissue in the GTEx compendium. The edge
is weighted by the ‘relevance score ’ (W1, W2, etc). of the tissue which is calculated as -log(p), where p is the P-value of the hypergeometric test between
the query set SNPs and GTEx eQTLs for that tissue. If a SNP-gene relationship is supported by eQTLs detected in multiple tissues, the edge weight is the
sum of the relevance scores of those tissues.
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for the significance of that gene (and its related pathways) to
the disease represented by the query set. On the other hand,
proportional weighting may be deemed appropriate by the
user, if for instance the query set was derived by means other
than association tests. and multiple SNPs near the same
gene do in fact present greater evidence for that gene’s rele-
vance. The VarSAn implementation offers the user two sim-
ple modes for handling of multiple non-coding SNPs related
to the same gene. The first mode (called ‘SNP-weight’, see
Supplementary Figure S1) is to assign each of N non-coding
SNPs connected to the same gene a weight of 1/N; the RWR
algorithm uses these weights during the restart step, hop-
ping back to a SNP node with probability proportional to
its weight. (Note that a SNP node may be connected to mul-
tiple genes, in such cases its weight is the sum of its assigned
weights due to its connection to each gene). In the other
mode (called ‘SNP-uniform’), all SNPs have equal weight.
Note that this dichotomous handling of SNPs connected
to the same gene applies only to non-coding SNPs (see
Discussion).

Case studies with VarSAn: pathways related to breast cancer
and prostate cancer

As a first assessment of its functionality, we used VarSAn
to identify pathways related to breast cancer GWAS SNPs,
with the hope of cross-checking the top reported path-
ways against prior knowledge about this disease. The
SNP set, obtained from GWAS Catalog (35), includes
137 non-coding SNPs and 9 coding SNPs. VarSAn was
run with a network defined as above, with SNP-gene
edges based on eQTLs (located within 1 mbp of gene)
for breast tissue from the GTEx project (30,31) (for non-
coding SNPs) or PolyPhen-2 predictions of ‘probably dam-
aging’ and ‘possibly damaging’ SNPs (for coding SNPs).
Table 1A lists the 15 top-ranked pathways (among 476
pathways in the network) from this analysis; for 12 of
these pathways, the table cites a prior publication sup-
porting the pathway’s relevance to breast cancer (also
see Supplementary Table S1). For example, the pathway
‘PKMTs methylate histone lysines’ is ranked second: ly-
sine methylation and demethylation are catalyzed by pro-
tein lysine methyltransferases (PKMTs), a process shown
to be important in cancers, including breast cancer (40).
The third ranked pathway––‘Hedgehog on state’––points
to the involvement of Hedgehog signaling, which is known
to mediate breast cancer invasiveness (41). Three of the
top pathways identified (Table 1A) are p53-related; the tu-
mor suppressor p53 is found to be altered in 20–40% of
breast carcinomas cases (42), and p53-related pathways are
among the most intensely studied in this disease context
(43). The pathway ‘Stabilizaton of p53’ was among the
highly ranked pathways (ranked 7, Table 1A), and pro-
vides a useful glimpse into the inner workings of VarSAn.
This pathway contains 73 genes, yet only one of those
genes is related directly to the query set of SNPs (GWAS
SNP chr22 28725099 is an eQTL of the checkpoint kinase
gene CHEK2), which would normally be insufficient evi-
dence of the relevance of this pathway. However, as Fig-
ure 2A illustrates, VarSAn not only uses the corresponding
‘two-hop path’ (SNP to gene to pathway), it also finds 27

‘three-hop paths’ (SNP to gene to interacting gene to path-
way) and is thus able to relate as many as 26 of the 146
SNPs in the query set to the ‘Stabilization of p53’ pathway,
thereby ranking the latter as highly relevant to the query
set.

We performed a similar subjective assessment of VarSAn
on a set of 57 GWAS SNPs (2 coding, 55 non-coding)
for prostate cancer (35), cross-checking the top reported
pathways against the literature (Table 1B). The pathway
‘RAB geranylgeranylation’ was ranked 2 among 476 path-
ways. Many RAB genes have been found up- or down-
regulated in prostate cancer. For example, increased RAB25
(44,45) levels have been observed in prostate cancer and
Rab3B (46) has been noted to promote cancer cell sur-
vival. As another example, the ‘NOD1/2 Signaling Path-
way’ (rank 12 in Table 1B) has been shown to play an impor-
tant role in prostate cancer progression (47). We also used
VarSAn with query sets comprised of somatic mutations
found in breast cancer or prostate cancer patients from the
Cosmic database (36). While the GWAS-based query sets
analyzed above included 50–150 SNPs each, with over 90%
being non-coding SNPs, the somatic mutation-based query
sets are much larger and are more biased towards coding
variants (16 011 coding variants and 3005 non-coding vari-
ants in breast cancer; 11 449 coding and 1365 non-coding
variants in prostate cancer). These two query sets thus ex-
hibited different statistical properties while still represent-
ing the same two disease contexts as above. Top pathways
reported by VarSAn are shown in Supplementary Table S1,
and include several pathways known to be associated with
the corresponding cancer type.

Results presented above illustrate that VarSAn can iden-
tify biologically relevant pathways for SNP sets of diverse
sizes and composition (coding versus non-coding). Next,
as a purely statistical assessment of the results, we asked
how the number of significant pathways discovered in each
of the four analyses above compares to random expecta-
tion. To this end, we generated a random query set with
the same number of SNPs and same proportion of non-
coding and coding SNPs as the original query set, and
counted the number of significant pathways (with empirical
P-value ≤ 0.05). We repeated this 100 times for each of the
four disease-related query sets introduced above. Figure 2B
shows the number of significant pathways observed in these
randomized ‘control experiments’, with the blue dots mark-
ing the number of significant pathways VarSAn reports for
the respective cancer-related query sets. Approximately 24
out of 476 pathways are expected to be significant by chance
at P ≤ 0.05. Indeed, most of the random query sets were
reported as related to 20–30 significant pathways, small in
comparison to corresponding numbers for cancer-related
query sets (PCa somatic mutations: 99, BrCa somatic mu-
tations: 79, PCa GWAS: 66, BrCa GWAS: 34).

Evaluation of methodological choices in VarSAn

We next assessed the value of some of the key methodologi-
cal choices made in implementing VarSAn. For instance, as
noted above, VarSAn not only calculates equilibrium prob-
abilities of pathway nodes (representing network connectiv-
ity of each node to the query set), it then computes empirical
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Figure 2. (A) SNP (red) and gene (green) nodes connected to the pathway node ‘Stablization of p53’, directly (SNP – gene – pathway) or indirectly (SNP
– gene – gene – pathway) are shown. The left layer of gene nodes are genes directly connected to SNP nodes. The SNP set, obtained from a breast cancer
GWAS study, has only one SNP that is associated with a member gene of the pathway (darker edge), but many indirect connections establish the relevance
of this pathway to the SNP set. (B) Numbers of significant pathways (at empirical P-value < 0.05) reported by VarSAn for each of four disease-related
SNP sets (blue dots). Each number is contrasted with a distribution (box and whiskers plots) of corresponding numbers for 100 random query sets of
similar size and composition as the disease-related SNP set. (C) Pathway ranks reported by VarSAn for the BrCa GWAS SNP set, when using equilibrium
probability (x-axis) or empirical P-value (y-axis) as pathway score. Size of each circle represents the number of genes in the pathway. (D) Effect of using
gene-gene edges. Pathways ranked highly (top 50) by one method and ranked at 250 or worse by the other method are marked in red. * Reactome pathway
R-HSA-5625886: Activated PKN1 stimulates transcription of AR regulated genes KLK2 and KLK3; ** Reactome pathway R-HSA-186797: Signaling
by PDGF (E) Scatter plot of pathway rank using VarSAn on the BrCa GWAS SNP set, with SNP-gene edges based on eQTLs from the relevant tissue
(y-axis) versus those based on eQTLs from all tissues (pan-tissue approach, x-axis). Seven of the top 10 pathways reported by the pan-tissue approach are
in the top 50 reported with the breast tissue eQTLs being used for SNP-gene edges (marked in red) (F) Rank of target pathways for 24 drugs with 10x,
20×, 30× and 40× noisy query sets. Each box represents average rank of target pathways across the 20 independent tests at corresponding noise level.
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Table 1. Top 15 pathways reported by VarSAn for a query set of GWAS SNPs for (A) breast cancer and (B) prostate cancer, along with citations to
literature evidence supporting their relevance to the respective disease. Pathways are ranked first by empirical P-value and then by equilibrium probability.

Pathway
Equilibrium
Probability

Empirical
P-value PMID

A
Protein-protein interactions at synapses 1.99E-03 0
PKMTs methylate histone lysines 1.08E-03 0 22194015
Hedgehog ‘on’ state 7.23E-04 0 31394751
snRNP Assembly 5.69E-04 0
TP53 Regulates Transcription of Cell Death Genes 5.32E-04 0 12619115
Vpr-mediated nuclear import of PICs 1.27E-04 0
Stabilization of p53 5.55E-05 0 12619115
Regulation of RAS by GAPs 3.87E-04 0.01 28579913
RAF activation 2.01E-04 0.01 7834453
SUMOylation of transcription cofactors 1.88E-04 0.01 29484374
Regulation of PTEN gene transcription 1.30E-04 0.01 28410191
Macroautophagy 1.04E-03 0.02 18790778
TP53 Regulates Metabolic Genes 4.78E-04 0.02 12619115
Signaling by PDGF 2.52E-04 0.02 29380307
Signaling by NTRK1 (TRKA) 2.37E-04 0.02 30637364
B
Protein-protein interactions at synapses 2.84E-03 0
Retrograde transport at the Trans-Golgi-Network 2.06E-03 0 22721754
RAB geranylgeranylation 2.00E-03 0 15805241
Gamma carboxylation, hypusine formation and arylsulfatase activation 1.43E-03 0 23835622
Translesion synthesis by Y family DNA polymerases bypasses lesions
on DNA template

8.68E-04 0

G alpha (z) signalling events 8.54E-04 0 11313909
Termination of translesion DNA synthesis 8.39E-04 0 26046662
Regulation of actin dynamics for phagocytic cup formation 7.22E-04 0 28747635
RHO GTPases activate PKNs 6.90E-04 0 18079321
Regulation of TP53 Activity through Phosphorylation 4.26E-04 0 23187804
SUMOylation of DNA replication proteins 4.00E-04 0
NOD1/2 Signaling Pathway 3.99E-04 0 22228081
PI3K/AKT Signaling in Cancer 3.81E-04 0 23456430
Degradation of beta-catenin by the destruction complex 3.60E-04 0 24578946
Pre-NOTCH Transcription and Translation 3.28E-04 0 26521657

P-values of those equilibrium probabilities. This is expected
to mitigate the well-known tendency of RWR algorithms to
assign greater probability to high-degree nodes (large path-
ways in our case). Figure 2C compares the ranks of all path-
ways related to the BrCa GWAS query set, based on equi-
librium probabilities (x axis) and on empirical P-values (y
axis). We observe that large pathways tend to be ranked near
the top when only equilibrium probabilities are used while
they are more evenly distributed when empirical P-values
are considered, thus arguing that VarSAn addresses the bias
towards large pathways.

A second key feature of VarSAn is the inclusion of
gene–gene relationships in the network. (This is an op-
tional feature and in our tests above we used a protein-
protein interaction database to define such edges. The user
may also provide a custom network for use in VarSAn).
This allows indirect SNP-to-pathway connections to con-
tribute to pathways’ equilibrium probabilities, as we saw
through an example (‘Stabilization of p53’ pathway as-
sociated with BrCa GWAS set) above. While direct con-
nections capture the extent to which genes related to the
given SNP set belong to a pathway, indirect connections
relax this view to accommodate instances of SNP-related
genes being ‘partners’ of pathway genes; however, such in-
direct connections contribute less to VarSAn’s calculations
compared to direct connections (see Methods). Figure 2D
compares the ranks of pathways from VarSAn analysis of

the BrCa GWAS query set, with and without gene-gene
edges in the network. (We will refer to these two settings
of VarSAn as VarSAn full and VarSAn noPPI). There is a
strong agreement between the two rankings, but there are
also conspicuous examples of pathways highly ranked by
VarSAn full and poorly ranked by VarSAn noPPI. For in-
stance, the pathways ‘Signaling by PDGF’ (54 genes, rank
14) and ‘Activated PKN1 stimulates transcription of Andro-
gen Receptor regulated genes KLK2 and KLK3’ (36 genes,
rank 40) were ranked at 250 or worse by VarSAn noPPI.
We have already noted the literature-based relevance of
the PDGF signaling pathway (Table 1). The role of An-
drogen Receptor-controlled expression of genes klk2 and
klk3, which encode human kallikrein 2 (hK2) and prostate
specific antigen (PSA) respectively, is well-documented for
prostate cancer, where these genes are used as biomark-
ers. Recent studies have yielded promising new insights
into their diagnostic/therapeutic potential for BrCa (48),
and the broader role of Androgen Receptor in BrCa is a
topic of active research today (49). Thus, in light of litera-
ture evidence, these two pathways revealed by VarSAn as
relevant to breast cancer, but only when using gene-gene
interactions, illustrate how allowing for indirect connec-
tions between SNPs and pathways can provide novel bi-
ological insights. (We also noted in Figure 2D that there
are no pathways with a similar disparity of rankings in
the opposite direction, i.e., a pathway highly ranked, say
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≤50, by VarSAn noPPI that is poorly ranked, say ≥250, by
VarSAn full).

We next assessed the impact of methodological choices
made in defining SNP-gene edges in the network. It was
noted above that a non-coding SNP is deemed related to
a gene if it is an eQTL of and located in cis-regulatory re-
gion (1 Mb up- and down-stream of the transcription start
site) of the gene. In our analyses above, for each cancer
(breast or prostate) we relied on eQTLs detected by the
GTEx project (30,31) for the corresponding tissue-of-origin
in defining SNP-gene edges. On the other hand, if the user-
specified SNP set does not have an obvious correspondence
to a tissue for which a comprehensive collection of eQTLs
exists, VarSAn adopts the following strategy (Figure 1C:
first, it considers GTEx eQTLs for every tissue separately;
second it assigns a weight to each tissue that reflects how
enriched the query set of SNPs is for eQTLs from that tis-
sue, thereby scoring the relevance of each tissue to the query
set; and finally, it creates a SNP-gene edge in the network if
the SNP is an GTEx eQTL of the gene in any tissue, but
weights the edge based on the tissue-relevance computed
in the previous step (see Methods). Thus, if the query set
comprises breast cancer-related SNPs, it is likely that breast
tissue will be scored highly, and SNP-gene edges based on
breast tissue eQTLs will receive high weights. The ability to
relate SNPs to genes automatically by utilizing a pan-tissue
compendium of eQTLs is an important feature of VarSAn
that enables its broader applicability. Here, we sought to de-
termine how the results of adopting this pragmatic strat-
egy differ from the ideal scenario where eQTL data from
the appropriate tissue exist. For this, we compared pathway
rankings for the BrCa GWAS query set, obtained as above
using breast tissue eQTLs, with rankings produced by us-
ing the less specific, pan-tissue approach to SNP-gene re-
lationships. As shown in Figure 2E, the two rankings are
highly correlated (Spearman’s rho 0.50, P-value 1.45E-31).
For example, of the top 10 pathways reported by the pan-
tissue approach, seven are in the top 50 reported with the
breast tissue eQTLs being used for SNP-gene edges. A high
correlation was observed also when repeating the above as-
sessment using the PCa GWAS query set (Supplementary
Figure S2). These results suggest that the strategy of uti-
lizing pan-tissue information on SNP-gene relationships in
creating the VarSAn network yields pathway rankings that
are reasonable approximations to those based on a more
query-specific tissue. Finally, we compared the default strat-
egy (VarSAn full) to a baseline where SNP-gene edges were
based solely on location (10 kb up- and down-stream of the
gene), and noted that the pathway rankings are very dif-
ferent between the two strategies (Supplementary Figure
S3). (VarSAn also allows users to provide a custom SNP-
gene network if none of the above-mentioned options are
suitable).

Robustness of VarSAn to irrelevant SNPs in query set

In our experiences with the VarSAn tool, we noticed that
the top pathway associations were often based on (SNP–
gene–pathway) connections involving only a small fraction
of the SNPs (variants) being analyzed. This is a desirable
property: the variant set is likely to include only a relatively

small number of variants easily linked to a particular path-
way, and the variant set characterization method should be
able to recover that pathway despite the presence of a large
number of ‘irrelevant’ variants in the query set. To test this
aspect of the VarSAn tool, we set up a controlled analy-
sis scenario where we started with a small set of SNPs with
a strong connection to a specific pathway P (this ensured
that VarSAn ranks the pathway P at or near the top), and
progressively introduced many randomly chosen variants to
the query set, examining how the rank of the pathway P
changes in these more ‘noisy’ conditions.

For this analysis, we utilized genotype, gene expression
and drug response data on a panel of ∼300 lymphoblas-
toid cell lines (LCLs) from a prior study (38). This data
set includes measurements of cytotoxicity (EC50 of dosage-
response curve) of each of of 24 different treatments, mostly
cancer drugs, on every LCL. We used genotype data from
the LCL panel to define GWAS SNPs for each treatment
(using cytotoxic response as phenotype); while there were
few or no SNPs that met standard GWAS thresholds (after
multiple hypothesis correction), we used the 100 most sig-
nificant P-values to define the GWAS SNP set for that treat-
ment. For each drug, we first used VarSAn to associate the
100 most significant SNPs with REACTOME pathways,
and selected the top-ranked pathway as the ‘target’ path-
way. We then use VarSAn to identify the top 5 SNPs with
strongest connections to the target pathway (for each drug).
The resulting set of 5 SNPs was considered the ‘clean query
set’, and its association with the target pathway was consid-
ered as ‘true’ (by design). We then added 50, 100, 150, or
200 randomly selected SNPs to the query set to construct
‘noisy query sets’ with noise levels of 10×, 20×, 30× and
40×, respectively. Twenty noisy query sets were generated
independently for each noise level. We noted down the rank
of the target pathway among all 476 REACTOME path-
ways, upon applying VarSAn to the noisy query sets, and
noted the average rank across the 20 independent tests at
each noise level (Supplementary Table S3). We repeated this
entire process for each of the 24 drugs. The results, shown
in Figure 2F, indicate how VarSAn retains or loses its sensi-
tivity to the true association with noise level. We noted that
on average (across all drugs), the true pathway continues to
be reported in the top 5 even at the 20× noise level (20 times
as many ‘irrelevant’ SNPs as the clean query set), and in the
top 10 at the 30× noise level. At the 40x noise level the true
pathway is no longer in the top 10, on average. However,
we also noted that the above behavior varies substantially
from one drug to another, implying that the strength of con-
nection between the clean query set and the target pathway
can vary substantially, and in some cases the association re-
mains discoverable (e.g. average rank of 5 or better) even at
the highest noise level applied. Overall, this exercise suggest
that VarSAn can effectively recover the pathway associated
with a small set of variants even in the presence of tens of
times as many irrelevant variants in the query set.

Comparison of VarSAn with overlap-based statistical tests

The conventional approach to associating SNP sets with
pathways is to find the genes related to the given SNPs and
then test for associations between the resulting gene set and
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each pathway, using, say, the Hypergeometric test. We thus
compared the results of VarSAn to those from such an ap-
proach, which we refer to as the ‘HGT’ method. In this
method, the query SNP set is mapped to a gene set using
the same rules as in VarSAn, and the gene set is tested for
enrichment in genes of a pathway using the Hypergeometric
test. The latter step is repeated for each pathway, and path-
ways are ranked by P-value. Figure 3A compares this rank-
ing with that from VarSAn, for the BrCa GWAS SNP set.
Firstly, we note that the results are in broad agreement. For
instance, the pathways have a strong tendency to be ranked
< = 100 by both methods or > = 100 by both methods. (422
of the 476 pathways are in these two square regions of the
plot, compared to 318 by random chance). Secondly, we fo-
cused on pathways with highly disparate rankings between
methods, specifically, a rank ≤50 by one method and ≥250
by the other. There are only six such pathways, and five of
them are highly ranked by VarSAn (but poorly ranked by
HGT). The latter five pathways have literature evidence sup-
porting their role in BrCa (Table 2A), suggesting to us that
VarSAn’s network-based approach can identify important
pathways that are not discovered using the conventional ap-
proach. There is a single pathway, Interferon gamma sig-
naling, that was highly ranked by HGT but ranked poorly
by VarSAn, reminding us that the two approaches can pro-
vide complementary insights. (Also see Supplementary Fig-
ure S13 for similar evidence of complementarity seen when
analyzing the BrCa somatic mutation set.)

The KEGG pathway database (17) includes disease-
related pathways including a ‘breast cancer pathway’ and a
‘prostate cancer pathway’, which offered us another oppor-
tunity to compare the two ranking methods (VarSAn and
HGT). For this evaluation, we used 321 KEGG pathways
to define pathway nodes in the network (evaluations above
were based on REACTOME pathways), and used VarSAn
and HGT respectively to rank these pathways for relevance
to BrCa and PCa GWAS and somatic mutation query sets
(Table 2B). For three of the four test cases, VarSAn ranked
the known disease-related pathway higher (for a query set
representing that disease) than did HGT, with the most no-
table difference being for the BrCa somatic mutation SNP
set, where the breast cancer pathway was ranked at 56 by
VarSAn and at 246 by HGT. Moreover, in these three cases,
the empirical P-value assigned by VarSAn to the known
disease-related pathway was ≤0.05, while the Hypergeomet-
ric test P-value was ≥0.5. In one of our four tests (BrCa
GWAS query set, Table 2B), HGT ranked the known path-
way higher than VarSAn, although both methods reported
insignificant P-values (0.97 and 0.32 respectively), suggest-
ing that they both failed to detect the pathway’s association
with this query set.

A novel evaluation framework based on consistency and dis-
crimination

Our evaluations above relied on the use of external annota-
tions of pathways relevant to the query set being analyzed,
introducing an element of subjectivity to them, since ‘rele-
vance’ is subjective. This is a problem faced by any current
framework for testing pathway associations. To address this,
we devised a fully data-driven scheme for such evaluations,

based on the following basic principle: if we have different
sets of SNPs associated with different diseases, a good path-
way association method should report the same pathways
when analyzing random subsets of SNPs for the same dis-
ease (‘consistency’) and report different pathways when an-
alyzing SNP sets of different diseases.

To implement this scheme, we first obtained GWAS SNP
sets for 12 diseases from the GWAS Catalog (34) (Supple-
mentary Table S2), ensuring that there were at least 200
GWAS SNPs for each disease. From each such SNP set, we
derived 10 pairs of mutually exclusive subsets of size 100 via
random sampling (see Methods, Figure 3B). Each of the 20
SNP sets thus defined for each of the 12 diseases was then
used as a query set for VarSAn to rank pathways. We de-
fined the ‘pathway similarity score’ (‘PSS’) between any two
SNP sets as the number of pathways that have a top-20 rank
of association with both SNP sets. The PSS was computed
between each pair of mutually exclusive subsets of SNPs of
the same disease, and its average across 10 such pairs was
noted as the ‘consistency score’ of rankings for that disease.
Similarly, the PSS was calculated for 10 pairs of SNP sub-
sets representing two different diseases (see Methods), and
its average across the 10 pairs was noted as the ‘confusion
score’ of pathway rankings for that pair of diseases.

Figure 3C shows the consistency scores (diagonal values)
and confusion scores (off-diagonals) for VarSAn rankings,
across all diseases and disease-pairs respectively. (There are
two off-diagonal entries for each disease pair, which rep-
resent two separate estimates of the confusion score, see
Methods). We noted that the diagonal entry is almost al-
ways the largest in its respective row or column, indicating
that the top pathways reported for two (non-overlapping)
sets of SNPs for the same disease tend to be more in agree-
ment than pathways lists reported for different diseases. For
instance, the consistency score for ‘Asthma’ is 6.3, mean-
ing that on average 6.3 pathways are shared among the top
20 pathways reported from two mutually exclusive sets of
GWAS SNPs for this disease. In comparison the confu-
sion score for Asthma and any other disease is about 1.5
on average (mean of off-diagonal entries in first row and
first column), revealing that the pathway lists reported for
Asthma and one of the other 11 diseases tend to have far
less commonality. The relatively few high values outside
of diagonals in Figure 3C point to pairs of diseases with
high pathway-level similarity between their SNP sets. For
instance, ‘Crohn disease’ and ‘Inflammatory bowel disease’
have confusion scores similar to their respective consistency
scores; this is expected since the two diseases (as defined
in the GWAS Catalog) are related (50). Similarly, ‘Neuroti-
cism’ and ‘Schizophrenia’ had high mutual confusion scores
(within two-fold of their individual consistency scores); in-
deed, there is some literature evidence suggesting neuroti-
cism as a risk factor for schizophrenia (51). Note that the
GWAS SNP sets representing these two phenotypes do not
have a significant overlap (739 Schizophrenia GWAS and
642 Neuroticism GWAS share only 7 common SNPs), and
the link reported in Figure 3C emerges through sharing of
pathways as revealed by the SNP sets. An intriguing off-
diagonal entry is for the pair Asthma and ‘Systemic lupus
erythematosus’ (SLE), where the confusion score is rela-
tively high and within a factor of two of the individual con-
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Figure 3. (A) Scatter plot of pathway ranks reported by VarSAn and HGT, for the BrCa GWAS SNP set. Pathways labeled 1 to 5 are those with significantly
better ranking in VarSAn than in HGT, with supporting literature evidence in Table 2A. Pathway labeled 6 is ‘Interferon gamma signaling’, and was ranked
significantly better by HGT. (B) Scheme for assessing consistency and confusion scores of a pathway ranking method. SNPs associated with each disease
are sampled to create two mutually exclusive subsets of 100 SNPs each; the process is repeated 10 times to create 10 pairs of subsets. Top pathways reported
for each of the two subsets in a pair should be similar, and this is captured in the consistency score. Top pathways for SNP sets from different diseases
should be distinct, and this is reflected in the confusion score. (C) Consistency and confusion scores for all diseases and disease pairs in the evaluation.
Diagonal entries represent consistency score of different diseases. Off-diagonal entries represent confusion scores between each pair of diseases. There are
two entries for each disease pair, due to an asymmetry in the evaluation procedure (see Methods); these two entries may be considered as two estimates of
the confusion score. CC-ratio of each disease is calculated as the ratio of consistency score over the average of all confusion scores where the target disease
is a member of the pair. D) Scatter plot of CC-ratios of VarSAn versus HGT.
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Table 2. A) Five pathways ranked within top 50 by VarSAn but worse than 250 by HGT, for the BrCa GWAS SNP set. Citations (Pubmed identifiers)
provide literature evidence of their relevance to breast cancer. First column represents numeric labels of points in Figure 3A. B) Ranks of a ‘positive control’
pathway for each disease (breast cancer or prostate cancer), obtained from the KEGG database, as per the two methods (VarSAn and HGT). The method
was required to rank a large collection of 321 KEGG pathways for relevance to either a GWAS set or a somatic mutations set for the respective disease.

A
Pathway PMID

1 Stabilization of p53 12619115
2 Signaling by PDGF 29380307
3 Ubiquitin Mediated Degradation of Phosphorylated Cdc25A 10995786
4 PRC2 methylates histones and DNA 23251464
5 Activated PKN1 stimulates transcription of AR (androgen receptor)

regulated genes KLK2 and KLK3
10188912

B
Query Set VarSAn HGT
Prostate Cancer (somatic) 40 (0) 55 (0.91)
Prostate Cancer (GWAS) 32 (0.02) 47 (0.59)
Breast Cancer (somatic) 56 (0.01) 246 (0.99)
Breast Cancer (GWAS) 104 (0.32) 74 (0.97)

sistency scores. This reflects a greater than usual extent of
shared pathways between these diseases, and may be re-
lated to literature evidence of their shared Immunoglobin E
(IgE)-related pathophysiology (52) and reports of increased
risk of Asthma in SLE patients (53).

However, other than the few above-mentioned interest-
ing examples of larger off-diagonal entries, the matrix in
Figure 3C clearly exhibits greater consistency scores than
confusion scores, indicating that GWAS SNP sets of dif-
ferent diseases lead to different pathway lists. This is a de-
sirable feature of the pathway ranking method, as men-
tioned above. To make this contrast between consistency
and confusion scores more explicit, we calculated, for each
disease, the ratio of its consistency score (diagonal value)
and the average confusion score against every other disease
(average of off-diagonal values in the row and column for
that disease). This ratio, called the CC ratio, is shown at
the bottom of Figure 3C, and has a median of ∼3.3. The
CC ratio offers us an objective way to evaluate a pathway
ranking method and to compare methods as well. We thus
calculated consistency and confusion scores for the HGT
method, in a manner identical to how Figure 3C was de-
rived. The result, shown in Supplementary Figure S4, again
tend to place large values on the diagonal, but now the off-
diagonal values are frequently comparable to diagonal val-
ues in the same row or column, suggesting a smaller gap
between consistency and confusion scores. To investigate
this, we calculated CC ratios for the HGT method (shown
at the bottom of Supplementary Figure S4) and plotted
these along with corresponding ratios for VarSAn in Fig-
ure 3D. We see that VarSAn has a greater CC ratio for 10 of
the 12 diseases, strongly suggesting its advantage over the
HGT approach for retrieving pathways related to disease
SNPs.

In some applications, users may choose to define SNP-
gene edges based solely on the SNP’s proximity to the gene,
e.g. if appropriate eQTL data are not available. We evalu-
ated above one such scheme, where SNPs within 10 kb of
a gene were connected to that gene (Supplementary Fig-
ure S3). We now used the CC ratio approach to compare
different choices for the proximity window used in such a
scheme. For the above 12 disease GWAS sets, we computed
CC ratios for four different definitions of SNP-gene proxim-

ity (10kb, 50kb, 100kb and 200kb) and noted better perfor-
mance with smaller windows compared to larger ones (see
Supplementary Figures S7-S12).

VarSAn identifies pathways associated with hypoplastic left
heart syndrome

Hypoplastic Left Heart Syndrome (HLHS) is a congenital
heart defect where the left side of the heart is critically un-
derdeveloped. It is a rare, heritable disease (54) and despite
promising recent findings (55–58) its genetic basis is poorly
understood (59) and mortality remains substantial (60).
Here, we analyzed sequencing data from 24 trios (HLHS-
affected proband and unaffected parents) (61), identified
654 de novo single-nucleotide variants from the cohort (Sup-
plementary Table S5), and used VarSAn to characterize
systems-level processes and pathways implicated by the
variant set. Variant-gene edges in the network were deter-
mined based on proximity alone (variant located within
10 kb up- or downstream of gene) since eQTL informa-
tion from an appropriate tissue is not available. (The choice
of 10 kb proximity window was based on our evaluations
noted in previous section). Gene-gene edges were based on
protein-protein interactions from HumanNet database, and
the pathway nodes represented REACTOME pathways, as
in analyses above.

Twenty eight of the 476 pathways were determined to
have empirical P-value < 0.05 (Supplementary Table S1),
and of these at least ten pathways (Table 3) have been im-
plicated in HLHS or heart development in the literature.
For instance, the ‘VEGFA-VEGFR2 Pathway’ (empirical
P-value 0.02, rank 15) has been studied in the context of
HLHS and congenital heart disease (62) and failure to up-
regulate VEGF noted (63). This association was discovered
based on 10 de novo variants that are located near genes
of the pathway (Supplementary Figure S5) as well as 235
variants near genes that are not in the pathway, but inter-
act with genes of the pathway (Supplementary Figure S6).
Another interesting association identified was that with the
mTOR signaling pathway, which is known to play a role in
embryonic cardiovascular development (64); disruptions to
this pathway are believed to cause ventricular wall thinning
and cardiomyocyte apoptosis (65). These and other exam-
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Table 3. Top-ranked pathways reported by VarSAn for query set of HLHS de novo mutations. Notes are excerpts from cited publications.

Pathway Literature Support Note

Interleukin-4 and Interleukin-
13 signaling

PMID 30761134 ‘IL-4 level is lower in MI patients who later develop left
ventricular dysfunction’ ‘IL-13−/− male mice exhibit a
significant higher mortality and increased left ventricular dilation
compared with WT mice after MI’

PMID 26195478 ‘Balb/c mice, which are characterized by high levels of
circulating IL-4, exhibited increased cardiac collagen deposition,
left ventricular enlargement,. . . ’

TP53 Regulates Metabolic Genes PMID 23871585 ‘HLHS may involve TP53 pathway-dependent blockade of CM
proliferation’

mTOR signalling PMID 29420210 ‘mTOR pathway . . . is needed for embryonic cardiovascular
development and for maintaining cardiac homeostasis in
post-natal life’

PMID 24481845
Regulation of PTEN gene transcription PMID 18344372 ‘analysis of the HLHS hearts demonstrated . . . an altered

expression . . . The increased expression of . . . phosphatase and
tensin homolog (PTEN) . . . was . . . noted.’

FGFR1 mutant receptor activation PMID 30548283 ‘An important finding was that vascular changes in HLHS fetal
brains were associated with markers of impaired neuronal
differentiation as seen by reduced FGFR1 expression,’

PMID 12893744 ‘data point to a nonredundant role for FGFR1-mediated
signaling in cardiomyocyte development.’

VEGFA-VEGFR2 Pathway PMID 30548283 ‘Failure to upregulate VEGF in HLHS as well as in other
cyanotic CHD has been reported’

PMID 23871585 ‘Immunostaining of the LV (representative images) revealed
strong nuclear expression of HIF-1� (red) and reduced
expression of VEGF (red) and TB4 (green) in severe fetal HLHS
hearts compared with controls. ’

Negative regulation of MAPK pathway PMID 23934094 ‘firmly established a link between the RAS-MAPK signal
transduction pathway and human CHD’

Activation of BH3-only proteins PMID 26580598 ‘Activation of BH3-only proteins and the downstream effectors
Bax/Bak leads to death of myocytes.’

Regulation of lipid metabolism by
Peroxisome proliferator-activated
receptor alpha (PPARalpha)

PMID 11282301 ‘PPAR� not only serves a critical role in normal cardiac
metabolic homeostasis, but alterations in PPAR� signaling likely
contribute to the pathogenesis of a variety of disease states. ’

PPARA activates gene expression PMID 11282301 ‘PPAR� not only serves a critical role in normal cardiac
metabolic homeostasis, but alterations in PPAR� signaling likely
contribute to the pathogenesis of a variety of disease states. ’

ples of pathways associated by VarSAn to HLHS variants
provide avenues for future research into the systems biology
of this disease.

DISCUSSION

Our goal in this work was to develop a tool for character-
ization of pathways relevant to a given set of SNPs. This
is conceptually similar to the task of characterizing path-
ways associated with a gene set, a well research problem
for which several solutions have been proposed (66). One
of the more popular approaches for gene set characteriza-
tion is based on over-representation analysis, exemplified
by the Hypergeometric test (HGT) of overlap between a
given gene set and pathway genes. The HGT approach has
a natural extension to SNP set characterization, whereby
the SNP set is mapped to a gene set, which is then tested
for pathway association. We tested this approach as a point
of comparison to VarSAn, and found objective and subjec-
tive evidence that the latter is able to identify biologically
interesting pathway associations not revealed by HGT. It
is worth considering some of the theoretical differences be-
tween the two approaches. Firstly, in the HGT approach,
a SNP either ‘relates to’ a pathway or it does not, while
VarSAn implements a quantitative notion of SNP relation-
ship to a pathway. In particular, a SNP may be connected to

a pathway directly (path via one gene) or indirectly (path via
two or more genes), and these two types of connection have
different weights. Our case studies illustrated (Figure 2A)
how indirect connections may lead to meaningful pathway
discoveries. Even direct connections (SNP–gene–pathway)
may not always have the same weight. For example, a SNP
connected to a gene that belongs to exactly one pathway
has a stronger pathway connection than a SNP connected
to a gene that belongs to several pathways. (For this reason,
VarSAn’s pathway ranking is different from the HGT rank-
ing even in the absence of a gene-gene network; see Supple-
mentary Note S2.) As another example, a SNP connected to
two genes in the same pathway provides quantitatively dif-
ferent information about pathway relevance than if it was
connected to only one of those genes. A second difference
between VarSAn and HGT is that the former is inherently
a pathway ranking scheme where pathways are scored (for
relevance) relative to each other, while the latter evaluates
each pathway’s relevance by an absolute statistical criterian
(significance of overlap). This gives HGT the advantage that
the redundancies in the pathway compendium do not affect
scoring of individual pathways, although such redundancies
naturally translate to redundancies in reported associations
and have been noted as a practical concern (67).

A number of tools have sought to utilize gene networks
for various tasks related to analysis of SNP sets. For in-
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stance, NetWAS (68) analyzes GWAS P-values of vari-
ants in the context of gene networks and reports a rank-
ing of genes. ARVIN (69) seeks to identify non-coding risk
variants by examining their sequence as well as network
properties, while HOTNET2 (70) analyzes gene-level mu-
tation scores in the context of a gene network and iden-
tifies subnetworks of mutated genes. (HOTNET2 also uti-
lizes a network diffusion algorithm, similar to the random
walk method used in VarSAn). However, to the best of our
knowledge, none of these methods is designed to solve the
same task that VarSAn is developed for, which is to asso-
ciate pathways to a set of variants without requiring prior
significance scores for variants. It is worth noting that there
are alternative methods, e.g. based on the statistics under-
lying ‘gene set enrichment statistic’ (GSEA), to identify
pathways related to GWAS SNPs (15). While GSEA-based
approaches have certain advantages compared to a HGT-
based approach, their use for GWAS pathway analysis relies
on first ranking SNPs based on GWAS P-values, while our
focus in this work was on the case where the user seeks to
analyze a set of SNPs, without further information on the
relative ranking of those SNPs. Such a scenario may arise,
for example, from family-based studies of a disease (71). At
the same time, we suggest that if the user’s SNP set of inter-
est is amenable to a reliable statistical ranking, they should
consider using tools that make use of this information (72–
74).

There are also ‘topology-based’ tools (12) for gene set
characterization that take into account the internal struc-
tures of pathways, and there is emerging evidence that they
may have a practical advantage over methods that ignore
pathway topology. Such methods typically make use of ad-
ditional information about the gene set to be characterized
(e.g., expression levels or differential expression statistics),
and their extension to SNP set characterization is an inter-
esting but challenging task for future studies. Notably, other
authors have investigated the use of network analysis in the
context of SNPs but with different goals, e.g. to discover
modules or ‘communities’ of inter-related SNPs and genes
(75) and perform pathway enrichment tests on these mod-
ules (74) or to predict disease-related SNPs (76).

VarSAn allows for special handling of non-coding and
coding SNPs in the query set. Since a coding SNP is con-
nected to a gene only if it is predicted to impact the encoded
protein’s function (by PolyPhen-2), we made the assump-
tion that multiple coding SNPs linked to the same gene pro-
vide proportionate evidence for the gene’s relevance to the
biological process represented by the SNP set. On the other
hand, multiple non-coding SNPs in the query set connected
to the same gene may merit special handling. For instance,
if the query set resulted from a GWAS study, they may in-
clude multiple non-coding SNPs in the cis-regulatory region
of the same gene on account of high linkage disequilibrium
(LD), and may not represent proportionate evidence for the
gene’s relevance. A similar concern applies when multiple
non-coding SNPs are connected to the same gene based on
eQTL evidence, since a functional eQTL is likely to be ac-
companied by eQTLs at segregating positions in LD with
it. This is the motivation behind the ‘SNP-weight’ mode of
VarSAn, which lets the user down-weight the contribution
of multiple non-coding SNPs connected to the same gene.

It is a simplistic, optional solution since it does not utilize
LD information, a goal left for future work. It does however
have the practical advantage that a user does not need to tie
their analysis to a specific population group for which LD
structure is available.

VarSAn maps non-coding variants to genes based on
tissue-specific eQTL data from GTEx, if available and ap-
propriate, and utilizes a ‘pan-tissue’ SNP-gene network if
any one tissue is not exclusively appropriate or the user is
unsure of the appropriate tissue to use eQTL data for. This
pan-tissue network is obtained from tissue-specific GTEx
eQTLs for multiple tissues, assigning a weight to each SNP-
gene relationship by summing tissue-specific weights, which
in turn reflect the overap between query SNPs and GTEx
eQTLs for a tissue. This choice is a heuristic and may be
worth future explorations. In particular, it may be benefi-
cial to also utilize the strength of an eQTL in each tissue
when calculating its tissue-specific weight. Future research
will require engineering an optimal way to combine two dif-
ferent pieces of information––the relevance of the tissue to
the SNP set and the strength of eQTL––into one weight.

To some extent, associating a SNP or gene set with a path-
way (or a Gene Ontology term) is a subjective goal: the nu-
merous existing methods, especially for gene set characteri-
zation, have relied partly on intuitive appeal of the method
itself (e.g., the query gene set is enriched for genes of a path-
way) (77) and partly on subjective demonstrations of their
capabilities (e.g. a cancer-related gene set was most strongly
associated with a P53-related pathway) (78). Rigorous eval-
uation of these methods has been challenging. For instance,
Nguyen et al. (12), in one of the most comprehensive efforts
to date on benchmarking gene set characterization tools,
considered gene sets obtained from expression-based stud-
ies of specific diseases and asked how a tool ranks a specific
‘target pathway’ known to be related to the same disease.
This approach, while apparently unbiased, does not objec-
tively establish that the assumed ‘target pathway’ is the most
desired pathway or how undesirable other pathways are. We
believe that the difficulties of benchmarking these tools are
tied to the subjective nature of the task itself. In recognition
of this fundamental limitation, we resorted to examining
complementarity between results from VarSAn and other
approaches (HGT, or variants of VarSAn itself), leaving fi-
nal interpretation to the reader.

At the same time, we did take an important step towards
objective benchmarking of different methods for SNP set
(or gene set) characterization. Instead of pre-determining
the most desirable pathway as a ‘ground truth’, our evalu-
ation pre-supposes that pathway ranking should be consis-
tent when analyzing different random subsets of the same
query set (representing the same disease) and different when
analyzing query sets representing different diseases. Our
‘consistency score’ and ‘confusion score’ are heuristics that
capture this simple idea, and we assessed a pathway ranking
tool by the contrast between these two scores. This avoids
commiting to subjective definitions of ground truth. We be-
lieve more statistically rigorous implementations of this idea
have the potential to move us towards systematic bench-
marking for this important bioinformatics task.

Our work on the VarSAn tool has also opened up sev-
eral opportunities for future research. We mentioned a few
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of these above, e.g., incorporation of pathway structure,
utilization of SNP scores (such as GWAS P-values), and
appropriate handling of non-coding SNPs in linkage dis-
equlibrium. Another exciting possibility is to include addi-
tional node and edge types in the network in order to in-
tegrate new types of relevant information. For example, it
may be possible to include gene regulatory information in
the form of transcription factor (TF) nodes and edges that
connect non-coding SNPs to TFs whose binding sites may
be impacted as well as edges from TFs to their potential
regulatory target genes. We have also speculated on a more
iterative version of propagating information along network
edges: once pathways have been scored for relevance to the
query set of SNPs, perhaps the SNPs could be scored (also
via RWR) for relevance to the top-ranking pathways, and by
iterating pathway and SNP ranking multiple times we may
identify a subset of the query set that is strongly connected
with a subset of the pathways. Finally, in contrast to the
‘unsupervised’ approach adopted in VarSAn, future work
may considering deploying supervised learning methods to
characterize patterns of network connectivity that are pre-
dictive of membership in the query set, and infer pathway
relevance scores from these patterns; such an approach was
used for gene set characterization in recent work (79).
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