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Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), is threatening people's lives 
and impacting their health. It is still unclear whether people engaged in physi-
cal activity are at an increased risk of SARS-CoV-2 infection and severe forms of 
COVID-19. In order to provide data to help answer this question, we, therefore, in-
vestigated the effects of endurance training on the levels of host proteins involved 
in SARS-CoV-2 infection in mice. Eight-week-old C57BL/6J mice were subjected 
to treadmill running (17–25  m/min, 60–90  min, 5  sessions/week, 8  weeks). 
After the intervention, the levels of angiotensin-converting enzyme 2 (ACE2; 
host receptor for SARS-CoV-2), transmembrane protease serine 2 (TMPRSS2; 
host protease priming fusion of SARS-CoV-2 to host cell membranes), FURIN 
(host protease that promotes binding of SARS-CoV-2 to host receptors), and 
Neuropilin-1 (host coreceptor for SARS-CoV-2) were measured in 10 organs that 
SARS-CoV-2 can infect (larynx, trachea, lung, heart, jejunum, ileum, colon, liver, 
kidney, and testis). Six organs (heart, lung, jejunum, liver, trachea, and ileum) 
showed changes in the levels of at least one of the proteins. Endurance training 
increased ACE2 levels in heart (+66.4%), lung (+37.1%), jejunum (+24.7%) and 
liver (+27.4%), and FURIN in liver (+17.9%) tissue. In contrast, endurance train-
ing decreased Neuropilin-1 levels in liver (−39.7%), trachea (−41.2%), and ileum 
(−39.7%), and TMPRSS2 in lung (−11.3%). Taken together, endurance training 
altered the levels of host proteins involved in SARS-CoV-2 cell entry in an organ-
dependent manner.
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1   |   INTRODUCTION

Coronavirus disease 2019 (COVID-19), which can result 
from infection with severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), is a pandemic and a serious 
global threat to human health and individual survival. 
The SARS-CoV-2 virus contains a single-stranded RNA 
genome that encodes structural and nonstructural pro-
teins necessary for the viral life cycle. Among the struc-
tural proteins, the spike glycoproteins play a particularly 
important role in cell entry (Mittal et al., 2020). These 
spike proteins are cleaved into an S1/S2 site by the host 
protease FURIN. Consequently, the receptor-binding 
domain (RBD) of the S1  subunit binds to the host's 
angiotensin-converting enzyme 2 (ACE2), and an area 
close to the FURIN cleavage site of the S1 subunit binds 
to Neuropilin-1 in the host plasma membrane (Cantuti-
Castelvetri et al., 2020; Hoffmann et al., 2020; Wu et al., 
2020,). Subsequently, cleavage of the S2  site by the host 
transmembrane protease serine 2 (TMPRSS2) exposes the 
membrane fusion peptide of the SARS-CoV-2  spike gly-
coprotein, which leads to the priming of fusion between 
the virus and host cell membranes and the progression of 
cell entry by the virus (Hoffmann et al., 2020). Based on 
these infection mechanisms, ACE2, TMPRSS2, FURIN, 
and Neuropilin-1 are considered to be critical host factors 
for cell entry by SARS-CoV-2. Studies of cultured cells 
have shown that genetic or pharmacological inhibition 
of the expression or activity of these host factors can at-
tenuate host cell entry by SARS-CoV-2 (Bestle et al., 2020; 
Cantuti-Castelvetri et al., 2020; Hoffmann et al., 2020; Wu 
et al., 2020). Therefore, changes in the expression of these 
host proteins may affect SARS-CoV-2 infectivity as well as 
symptom patterns and the risk of COVID-19 severity.

Rapid lifestyle changes in response to the COVID-19 
pandemic have reportedly led to a decrease in daily 
physical activity and an increase in sedentary behavior 
(Aubertin-Leheudre & Rolland, 2020). Decreased physical 
activity contributes to an increased risk of various chronic 
diseases, such as obesity, diabetes, and cardiovascular dis-
ease (Booth et al., 2012), therefore, it is highly beneficial 
to maintain sufficient physical activity and exercise lev-
els, even during a pandemic. To date, it remains unknown 
whether exercise habits modulate host susceptibility to 
SARS-CoV-2 infection and the risk of a severe COVID-19 
course. Answering these essential questions will help us to 
estimate the health risks to athletes and to prescribe safer 
exercise regimes in the COVID-19 pandemic. In order to 
provide data to help answer this question, we, therefore, 
aimed to elucidate the effects of endurance training on 
key host factors involved in SARS-CoV-2 infection (ACE2, 
TMPRSS2, FURIN, and Neuropilin-1) using a mouse 

model in this study. It has been shown that SARS-CoV-2 
can infect organs other than the respiratory system, and 
people with COVID-19 have had a wide range of symp-
toms (Mao et al., 2020; Salamanna et al., 2020). Therefore, 
we analyzed the organs that have been reported to be sus-
ceptible to SARS-CoV-2 infection: larynx, trachea, lung, 
heart, liver, jejunum, ileum, colon, testis, and kidney.

2   |   MATERIALS AND METHODS

2.1  |  Ethical approval

All animal experiments were approved by the Animal 
Experimental Committee of Nippon Sport Science 
University (no. 020-A05). The authors have read, and all 
experiments complied with, the policies and regulations 
of the Fundamental Guidelines for Proper Conduct of 
Animal Experiments and Related Activities in Academic 
Research Institutions published by the Ministry of 
Education, Culture, Sports, Science and Technology, 
Japan (no. 71, 2006).

2.2  |  Experimental animals

Twelve 8-week-old male C57BL/6J mice (CLEA Japan) 
were randomly divided into a sedentary control (n  =  6) 
and endurance training group (n  =  6). Based on our 
previous work (Tamura et al., 2014) and the prelimi-
nary validation, the sample size was sufficient to detect 
adaptations with endurance training, at least in skeletal 
muscle. The mice were housed (6  mice/cage, cage size 
19.7 × 37.5 × 13.3 cm) in a 12-h light/dark cycle (18:00–
06:00 h) at 22℃. They had access to standard chow (CE-2, 
CLEA Japan) and water ad libitum.

2.3  |  Endurance training protocol

Among the many endurance training methods, treadmill 
running was adopted in this study because of the prior-
ity to accurately specify and report the experimental con-
ditions (i.e., intensity, time, and frequency). Mice in the 
endurance training group were subjected to endurance 
running on a motor-driven treadmill. The mice performed 
treadmill running 5  days/week for 8  weeks. During the 
training period, workloads (speed and/or duration) in 
each exercise session were progressively increased (weeks 
1 and 2: 17  m/min, 60  min; weeks 3 and 4: 20  m/min, 
60 min; weeks 5 and 6: 25 m/min, 60 min; and weeks 7 
and 8: 25 m/min, 90 min).
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2.4  |  Tissue collection

Twenty-four hours after the final exercise session, the mice 
were sacrificed with cervical dislocation. Gastrocnemius 
muscle, larynx, trachea, lung, heart, liver, jejunum, ileum, 
colon, kidney, testis, and inguinal adipose tissue (iWAT) 
were collected and washed in PBS. Tissues were frozen in 
liquid nitrogen and stored at −80℃ until used in further 
assays.

2.5  |  Protein extraction and 
western blotting

Protein extraction and western blotting analysis were 
performed as described previously (Tomiya et al., 2019; 
Wakabayashi et al., 2020). Briefly, tissues were homog-
enized in radioimmunoprecipitation assay buffer (188-
02453, Fujifilm Wako Pure Chemical Corporation) 
containing a protease and phosphate inhibitor cocktail 
(169-26063/167-24381, Fujifilm Wako Pure Chemical 
Corporation). The protein concentration was measured 
using the bicinchoninic acid (BCA) method (295-78401, 
Fujifilm Wako Pure Chemical Corporation). Equal 
amounts (2.5–10 μg) of protein were separated using stand-
ard SDS-PAGE on 10% and 12% (w/v) TGX polyacryla-
mide gels (161-0173/161-0175, Bio-Rad) and transferred 
to polyvinylidene difluoride membranes (IPVH00010, 
Merck Millipore). Protein transfer was confirmed by stain-
ing with Ponceau S (33427.01, SERVA Electrophoresis 
GmbH). The membranes were blocked with blocking rea-
gent (NYPBR01, Toyobo Co., Ltd.) for 1 h and incubated 
for 1 h with primary antibodies diluted in Can Get signal 
reagent 1 (NKB-101, Toyobo Co., Ltd.). The antibodies 
used in this study are listed below. After incubation, the 
membranes were washed with Tris-buffered saline con-
taining 0.01% Tween 20 (TBST,T9142, Takara Bio Inc.), 
then incubated for 1 h at room temperature with the sec-
ondary antibodies (7074/7076, Cell Signaling Technology) 
diluted in Can Get signal reagent 2 (NKB-101, Toyobo Co., 
Ltd.) and washed again with TBST. Chemiluminescent 
reagents (SuperSignal West Pico Chemiluminescent 
Substrate; Thermo Fisher Scientific) were used for protein 
detection. The blots were scanned and quantified using 

ChemiDoc XRS (170-8071, Bio-Rad) and Quantity One 
(170-9600, version 4.5.2, Windows; Bio-Rad), and we used 
the Ponceau S signal (25–150 kDa) intensity as a loading 
control.

2.6  |  Primary antibodies

The following antibodies were used: Myoglobin (1:3000, 
16048-1-AP, Proteintech); cytochrome c oxidase subunit IV 
(COX IV; 1:1000, 4844, Cell Signaling Technology); glucose 
transporter 4 (GLUT4; 1:1000, 66846-1-IG, Proteintech); 
monocarboxylate transporter 1 (MCT1; 1:1000, 20139-1-
AP, Proteintech); MCT4 (1:3000, 27787-1-AP, Proteintech); 
uncoupling protein 1 (UCP1; 1:1000, ab23841, Abcam); 
ACE2 (1:2000, 21115-1-AP, Proteintech); TMPRSS2 
(1:2000, NBP3-00492, Novus Biologicals); FURIN (1:2000, 
18413-1-AP, Proteintech); and Neuropilin-1 (1:2000, 3725, 
Cell Signaling Technology).

2.7  |  Statistical analysis

Data were expressed as mean ± SE for individual plots. 
Differences between the control and endurance train-
ing group were examined using the Mann–Whitney U 
test, and statistical significance was defined as p < 0.05. 
Statistical tests were performed using GraphPad Prism 
(Version 9.0.0, Mac, GraphPad Software).

3   |   RESULTS

3.1  |  Validation and profile of endurance 
training

First, we evaluated whether adaptation by endurance 
training was sufficiently induced and the profile of adap-
tations. A slight decrease in body weight and a decrease in 
white adipose tissue weight were observed (Table 1). On 
the other hand, skeletal muscle weight was not affected 
by the endurance training in this study (Table 1). Eight 
weeks of endurance training induced significant oxida-
tive adaptations in the skeletal muscle (Figure 1a,b), such 

Control Trained p value

Body weight (g) 29.32 ± 0.63 27.25 ± 0.53 0.041

Soleus muscle weight (mg) 10.25 ± 0.37 8.93 ± 0.14 0.065

Gastrocnemius muscle weight (mg) 137.4 ± 2.25 132.3 ± 2.60 0.241

Inguinal adipose tissue weight (mg) 245.8 ± 12.5 201.7 ± 8.82 0.026

Epididymal adipose tissue weight (mg) 442.4 ± 15.7 243.1 ± 11.2 0.002

T A B L E  1   Physical characteristics 
after endurance training intervention
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as increased levels of myoglobin (+17.1%), biomarkers 
of mitochondrial content (COX IV [+92.4%]), and sub-
strate transporters (GLUT4 [+31.4%], MCT1 [+15.1%], 
and MCT4 [+21.0%]). In addition to skeletal muscle 

adaptations, we also observed systemic adaptations to the 
endurance training; specifically, there was a clear induc-
tion of browning of iWAT (i.e., UCP1 induction [Figure 
1c,d; +591.4%]). Moreover, we found that endurance 

F I G U R E  1   Validation and profiles of endurance training model. (a) Representative blots and (b) protein content of myoglobin, COX 
IV, GLUT4, MCT1, and MCT4 in gastrocnemius muscle. (c) Representative blots and (d) protein content of UCP1 in iWAT. (e) Glycogen 
concentration in liver. Data are expressed as mean ± SE. Differences between control and endurance training group were examined using 
the Mann–Whitney U test. Statistical significance was defined as p < 0.05
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training increased the glycogen concentration of the liver 
(Figure 1e; +123.4%). These data clearly support that 
skeletal muscle and non-skeletal organ adaptations are 
sufficiently induced by endurance training in this work. 
These findings strongly warrant a subsequent analysis of 
protein-based adaptations involved in SARS-CoV-2 cell 
entry in various tissues.

3.2  |  Effects of endurance training on the 
levels of proteins involved in SARS-CoV-2 
cell entry in select cardiorespiratory organs

We analyzed protein levels in the cardiorespiratory organs 
such as: larynx, trachea, lung, and heart. With endurance 
training, there was no detectable change in protein levels 
measured in the larynx (Figure 2a,b). However, endur-
ance training decreased Neuropilin-1 levels in the trachea 
(Figure 2c,d; −41.2%); increased the content of ACE2 in 
the lungs (Figure 2e,f; +37.1%); and slightly, but statisti-
cally significantly, reduced TMPRSS2 levels (Figure 2e,f; 
−11.3%). ACE2 protein levels in the heart were increased 
by endurance training (Figure 2g,h; +66.4%), but the lev-
els of TMPRSS2, FURIN, and Neuropilin-1 remained un-
affected (Figure 2g,h).

3.3  |  Effects of endurance training on the 
levels of proteins involved in SARS-CoV-2 
cell infection in select digestive organs

We next analyzed the levels of proteins in the digestive organs 
such as: jejunum, ileum, colon, and liver. In the jejunum, 
ACE2 protein content was increased with endurance train-
ing (Figure 3a,b; +24.7%). Whereas no statistically significant 
changes in TMPRSS2, FURIN, and Neuropilin-1 levels were 
detected (Figure 3a,b). Mice subjected to endurance train-
ing showed decreased levels of Neuropilin-1 in the ileum 
(Figure 3c,d; −30.6%), but no changes in ACE2, TMPRSS2, 
or FURIN (Figure 3c,d). Endurance training had no effect 
on the levels of ACE2, TMPRSS2, FURIN, or Neuropilin-1 in 
the colon (Figure 3e,f). In the liver, ACE2 and FURIN pro-
tein levels were significantly increased (Figure 3g,h; ACE2 
[+27.4%]; FURIN [+17.9%]), and Neuropilin-1  levels were 
decreased (Figure 3g,h, −39.7%).

3.4  |  Effects of endurance training on the 
levels of proteins involved in SARS-CoV-2 
cell infection in the urogenital system

In addition to examining the respiratory and digestive 
organs, we assessed changes in host factor proteins with 

endurance training in urogenital organs (testis and kid-
ney). When we examined the testis (Figure 4a,b) and kid-
neys (Figure 4c,d), we found that endurance training did 
not result in any quantitative changes in any of the pro-
teins analyzed in this study.

4   |   DISCUSSION

Changes in ACE2 expression resulting from endurance 
training have been studied in several organs in the past 
(Barretti et al., 2012; Kar et al., 2010; Somineni et al., 
2014). Those studies, however, only examined changes in 
the heart, brain, or kidney from the perspective of blood 
pressure regulation by the renin–angiotensin system. In 
contrast, this study aimed to understand the infection 
processes of SARS-CoV-2, thus we examined changes in 
ACE2  levels in more organs than previously reported. 
Furthermore, we also examined changes in the concen-
trations of proteases (TMPRSS2 and FURIN) and a co-
receptor (Neuropilin-1) required for SARS-CoV-2 cell 
entry. To the best of our knowledge, no study has reported 
changes in the expression of these proteins in the context 
of exercise and training. Recently, the possibility that exer-
cise and training may affect susceptibility to SARS-CoV-2 
infection has been discussed in commentary and review 
articles (South et al., 2020; Zbinden-Foncea et al., 2020). 
However, these descriptions were based on the limited 
knowledge of exercise training-induced ACE2 adaptation. 
Therefore, this study made an important contribution, in 
that it comprehensively and experimentally revealed the 
alterations in host factors involved in SARS-CoV-2 infec-
tion by endurance training.

4.1  |  Physiological and clinical 
significance of endurance training-induced 
changes in host factors involved in cell 
entry by SARS-CoV-2

We evaluated the expression levels of ACE2, TMPRSS2, 
FURIN, and Neuropilin-1 in 10 organs in this study, of 
which six (heart, lung, jejunum, liver, trachea, and ileum) 
showed changes in the expression levels of at least one of 
the investigated proteins. It was hypothesized that the ef-
ficiency of SARS-CoV-2 cell entry in these organs may be 
modulated by physical activity. The heart, lungs, jejunum, 
and liver showed increased ACE2 levels following endur-
ance training. Elderly people, smokers, and patients with 
cardiovascular disease or obesity are at a greater risk for 
severe COVID-19 (Chakravarty et al., 2020; Hamer et al., 
2020; Nishiga et al., 2020), and these patients, and rele-
vant model animals, have been found to have increased 
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F I G U R E  2   Effects of endurance 
training on ACE2, TMPRASS2, FURIN, 
and Neuropilin-1 protein levels in 
cardiorespiratory organs. Representative 
blots and protein content of ACE2, 
TMPRSS2, FURIN, and Neuropilin-1 in 
(a, b) larynx, (c, d) trachea, (e, f) lung, 
and (g, h) heart. Data are expressed as 
mean ± SE. Differences between control 
and endurance training group were 
examined using the Mann–Whitney U 
test. Statistical significance was defined as 
p < 0.05
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F I G U R E  3   Effects of endurance 
training on ACE2, TMPRASS2, FURIN, 
and Neuropilin-1 protein levels in 
digestive organs. Representative blots 
and protein content of ACE2, TMPRSS2, 
FURIN, and Neuropilin-1 in (a, b) 
jejunum, (c, d) ileum, (e, f) colon, and 
(g, h) liver. Data are expressed as 
mean ± SE. Differences between control 
and endurance training group were 
examined using the Mann–Whitney U 
test. Statistical significance was defined as 
p < 0.05
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expression of respiratory and cardiovascular ACE2 (Cai 
et al., 2020; Somineni et al., 2014). Therefore, increased 
ACE2 is assumed to be a potential explanatory factor for 
variations in COVID-19  severity. Our results showed a 
marked increase in ACE2  levels, especially in the heart, 
with endurance training. Recently, researchers reported 
that cardiac muscle inflammation occurs as a sequela 
in competitive athletes who have been suffering from 
COVID-19 (Rajpal et al., 2020). However, a limitation of 
that study was that a non-athlete control group was not in-
cluded, and it was not possible to conclude whether myo-
carditis was an athlete-specific or a more common sequela 
of COVID-19. However, if myocarditis is a characteristic 
sequela in athletes, it may be partially explained by an in-
crease in ACE2. Further clinical and basic research will 
allow us to reach a conclusion on this issue.

Studies of cultured cells have shown that, even in cells 
with forced/overexpressed ACE2, cell entry by SARS-
CoV-2 can be partially inhibited by blocking Neuropilin-1 

activity with a neutralizing antibody (Cantuti-Castelvetri 
et al., 2020). In contrast to ACE2 adaptation, endurance 
training decreased the levels of Neuropilin-1 in the liver, 
trachea, and ileum. Therefore, if in vitro findings can be 
interpreted for in vivo conditions, endurance training 
may attenuate cellular infection by SARS-CoV-2 in these 
organs.

4.2  |  Candidate molecular 
mechanisms of endurance training-
induced adaptations

While the mechanisms behind the quantitative gene/
protein regulation of SARS-CoV-2 cell entry are not 
well understood, the area is being actively studied. 
Recently, androgen receptor (AR) was reported to be in-
volved in the transcriptional regulation of both ACE2 
and TMPRSS2 genes (Qiao et al., 2021). Whether or not 

F I G U R E  4   Effects of endurance 
training on ACE2, TMPRASS2, FURIN, 
and Neuropilin-1 protein levels in 
urogenital organs. Representative blots 
and protein content of ACE2, TMPRSS2, 
FURIN, and Neuropilin-1 in (a, b) testis, 
and (c, d) kidney. Data are expressed as 
mean ± SE. Differences between control 
and endurance training group were 
examined using the Mann–Whitney U 
test. Statistical significance was defined as 
p < 0.05
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AR is involved as a common regulator in the quantita-
tive changes in ACE2 and TMPRSS2 induced by endur-
ance training is currently unknown. However, it is clear 
from the present study that the changes in ACE2 and 
TMPRSS2  levels resulting from endurance training are 
quite different. Therefore, we suggest two possibilities 
for the adaptation of ACE2 and TMPRSS2 by endurance 
training: (Aubertin-Leheudre & Rolland, 2020) AR is 
not involved or (Barretti et al., 2012) AR is involved, but 
there are other, more influential, regulators. The regula-
tory mechanisms of FURIN gene expression, as well as 
those of ACE2 and TMPRSS2, are not fully understood. 
A study of myocardial development showed FURIN ex-
pression is negatively regulated by NKX2-5 (Dupays et al., 
2019). The regulatory mechanisms of Neuropilin-1 ex-
pression have been studied relatively frequently, and the 
gene is regulated at the transcriptional level by transcrip-
tion factors such as neuron restrictive silencer factor, and 
bromodomain-containing 4 (Jiang et al., 2007; Kurschat 
et al., 2006). The effects of endurance training on these 
candidate regulators have not been previously investi-
gated, and the exercise responsiveness/adaptability of 
the regulators is completely unknown. Therefore, it is es-
sential to first investigate the involvement of the above-
mentioned transcriptional regulators when exploring and 
defining the mechanisms in the future.

4.3  |  Limitation of this work and future 
perspectives on our understanding of the 
potential alternation of SARS-CoV-2 cell 
infectivity with endurance training

Throughout our study, we found that endurance train-
ing altered the expression of host proteins involved in 
SARS-CoV-2 infection, leading to a novel hypothesis 
that endurance training can change host susceptibility to 
SARS-CoV-2 infection, the pattern of symptom presenta-
tion, and the risk of severe disease. To further investigate 
this hypothesis, it is necessary to conduct experiments in 
which SARS-CoV-2 is transmitted to mice undergoing 
endurance training. This will allow us to develop more 
comprehensive conclusions on a broad range of factors, 
such as the adaptation of host factors involved in SARS-
CoV-2 cell entry and immune system remodeling with 
exercise. However, to perform such experiments, several 
issues need to be resolved. One critical issue hampering 
research into SARS-CoV-2 and COVID-19 in mice is that 
SARS-CoV-2 does not infect these mammals (Dinnon 
et al., 2020). This is due to the difference in the amino 
acid sequence of ACE2 between mouse and human. Mice 
have been useful as experimental animals in research on 
COVID-19, and experimental models involving mice have 

been actively developed. As a solution, scientists have pro-
posed the use of CRISPR/Cas9  genome-editing technol-
ogy to substitute the mouse ACE2 gene with the human 
ACE2  gene (Gurumurthy et al., 2020). Alternatively, it 
may be conceivable to use the recently identified mouse-
adapted mutant SARS-CoV-2, which can infect mice 
(Dinnon et al., 2020). Using mouse-adapted SARS-CoV-2, 
research on the pathogenesis of COVID-19 and vaccines 
are being developed (Gu et al., 2020). The development of 
experimental systems using such techniques will help to 
answer the questions raised by the findings of this study.

The present study is limited to testing in a single endur-
ance training protocol in young male mice. Differences in 
the characteristics of the subjects under study (e.g., age, 
sex, and presence of disease) may alter the baseline pro-
tein expression levels and may modify adaptability. As for 
exercise, whether differences in the target exercise style 
and parameters (e.g., intensity, duration, and frequency) 
lead to different adaptations needs to be tested in the 
future.

5   |   SUMMARY

We aimed to elucidate the effects of endurance training on 
key host factors involved in SARS-CoV-2 infection (ACE2, 
TMPRSS2, FURIN, and Neuropilin-1) in mice. Our data 
demonstrated that endurance training altered the levels of 
host proteins involved in cell entry by SARS-CoV-2 in an 
organ-dependent manner.
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