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ABSTRACT In the Anthropocene, plastic pollution is a worldwide concern that must
be tackled from different viewpoints, bringing together different areas of science.
Microbial transformation of polymers is a broad-spectrum research topic that has
become a keystone in the circular economy of fossil-based and biobased plastics. To
have an open discussion about these themes, experts in the synthesis of polymers
and biodegradation of lignocellulose and plastics convened within the framework of
The Transnational Network for Research and Innovation in Microbial Biodiversity,
Enzymes Technology and Polymer Science (MENZYPOL-NET), which was recently cre-
ated by early-stage scientists from Colombia and Germany. In this context, the inter-
national workshop “Microbial Synthesis and Degradation of Polymers: Toward a
Sustainable Bioeconomy” was held on 27 September 2021 via Zoom. The workshop
was divided into two sections, and questions were raised for discussion with panel-
ists and expert guests. Several key points and relevant perspectives were delivered,
mainly related to (i) the microbial evolution driven by plastic pollution; (ii) the relevance
of and interplay between polymer structure/composition, enzymatic mechanisms, and
assessment methods in plastic biodegradation; (iii) the recycling and valorization of plastic
waste; (iv) engineered plastic-degrading enzymes; (v) the impact of (micro)plastics on
environmental microbiomes; (vi) the isolation of plastic-degrading (PD) microbes and
design of PD microbial consortia; and (vii) the synthesis and applications of biobased
plastics. Finally, research priorities from these key points were identified within the micro-
bial, enzyme, and polymer sciences.

KEYWORDS biobased plastics, biodegradation, enzyme engineering, lignocellulose,
microbial evolution, microbial consortia, microbiomes, plastic recycling, polymer sci-
ence, polyethylene terephthalate

In 2020, around 400 million metric tons (MT) of synthetic plastics was globally produced,
and further increases are expected after the coronavirus disease 2019 (COVID-19) pan-

demic to almost 600 MT per year by 2050 (1). Currently, many ecosystems across the world
(e.g., oceans, freshwater, mangroves, coral reef, agricultural soils, forests, polar regions, and
the atmosphere) are threatened by plastic pollution. This can negatively affect biosphere
wildlife; for instance, marine animals (e.g., birds, mammals, and fish) can swallow plastic
debris or become entangled in plastic fishing nets, causing death due to starvation or suf-
focation (2). In nature, plastic debris can be turned into microplastics (MPs; defined as
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particles up to 5 mm in dimensions) by physical and chemical erosion. MPs and nanoplas-
tics (NPs; particles ,100 nm) could serve as a sink for toxic compounds, increasing their
negative impact on terrestrial and marine environments (3). These tiny particles can also
be released during the use of plastic products (e.g., fibers from textiles or tire wear) (4, 5)
and are widespread on our planet, including having been found in human blood (6).
While NPs have not been extensively measured in the environment, there is increasing
concern that they may be more hazardous than MPs, mainly because of their potential
capability of permeating biological membranes (7).

A large fraction of plastic pollution comes from excessive use of single-use products
(e.g., bottles, bags, food containers, cups, and face masks) and the inadequate waste
management in urban and rural zones. It is widely reported that more than 90% of the
total global plastic production utilizes fossil-based materials, made of polyethylene (PE),
polypropylene (PP), polyvinyl chloride (PVC), polyurethanes (PUs), polystyrene (PS), and
polyethylene terephthalate (PET) (8). These plastics can persist in nature for tens to thou-
sands of years, depending on the material and environmental conditions, such as the
availability of oxygen and sunlight exposure (9). For instance, a plastic bottle made of
high-density PE with a wall thickness of ;500 mm will take 250 years to lose the first
50% of the polymer mass (half-life) when buried inland or 58 years to do the same in a
marine environment (10). Moreover, the production of these durable plastics can release
more than 850 MT/year of CO2 into the atmosphere (11). Currently, the production of
biodegradable and biobased plastics, for instance, polylactic acid (PLA), polyhydroxyalka-
noates (PHAs) and thermoplastic starch (TPS), could be an attractive option to reduce
the carbon footprint and for specific applications where a short life span is expected
(12). However, their market is still limited, and their biodegradability and recyclability in
various end-of-life scenarios need to be carefully evaluated (11). It is important to note
that biobased plastics (those derived from biological sources) are not always biodegrad-
able, and some biodegradable plastics are derived from fossil resources (e.g., polybuty-
lene adipate-co-terephthalate [PBAT]). Plastics that are biobased, biodegradable, or both
are known as bioplastics. However, the term “bioplastic” is very broad and sometimes is
erroneously used, causing misconception among the general public and academists.
Accurate definitions of “biobased plastics,” “bioplastics,” “biodegradable plastics,” and
“fossil-based plastics” are highly important within this field. Recently, Wei et al. (13) and
Rosenboom et al. (11) summarized accurate definitions of these terms in association
with distinct polymer types (Table 1).

Among other strategies to reduce the negative impacts of fossil-based plastics in
the biosphere, the exploration of microbial diversity for plastic transforming activities
is a timely and highly relevant topic worldwide (14, 15). Thus, several studies have
been carried out to decipher the biofilm-forming microbial communities associated
with plastic particles (the so-called “plastisphere”) (16–18). These communities could
be different from those found in the environmental matrix (e.g., soil or water) that con-
tains the plastic particles (known as the surrounding plastisphere) (19), probably
because of distinct positive/negative interactions, selective pressure, and niche prefer-
ences. It has been suggested that some plastics can be depolymerized in natural eco-
systems by microbial action. However, a holistic ecoevolutionary and mechanistic
understanding of plastic transformation by microbial communities (Bacteria, Archaea,

TABLE 1 Terms, definitions, and examples of polymers associated with different types of plastics

Term Biodegradable polymersa

Polymers that are
nonbiodegradable, resistant to
degradation, or durableb Definition

Biobased (biorefinery) PHAs, PLA, polysaccharide-based,
plastics (e.g., TPS), bio-
polybutylene succinate

Bio-PE, bio-PP, bio-PET, bio-PUs,
polyethylene furanoate

Derived from renewable resources
(e.g., lignocellulose)

Fossil-based (traditional refinery) PBAT, polyvinyl alcohol PET, PP, PE, PS, PVC, PUs Derived from fossil resources (e.g., oil)
aPolymers with enzymatically accessible backbones that can be cleaved into their respective oligomers/monomers.
bPolymers with saturated C-C backbones or with other chemical bonds highly resistant to biocatalytic depolymerization.
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and Fungi), and their enzymes, is still in its infancy (20–22). Moreover, the catabolism of
certain biodegradable plastics is supposed to follow principles similar to those of the
transformation of plant-derived polymers (e.g., lignocellulose and cutin). For plant bio-
mass and plastic biodegradation, enzymes secreted by microorganisms can catalyze
the depolymerization reactions (e.g., by hydrolysis or oxidation of the polymer back-
bones), releasing (in some cases) monomers or oligomers that are small enough to be
translocated to the cytosol, where they can be assimilated and used a carbon source
to produce biomass and carbon dioxide or methane (23, 24). In this article, the term
“biodegradation” is used as a synonym for modification, depolymerization, and/or min-
eralization of polymers by microorganisms and their enzymes.

The microbial transformation of polymers (e.g., fossil-based plastics, biodegradable
plastics and natural polymers) is broadly discussed by the scientific community.
However, there are still open questions that must be tackled in an international sphere
and by intertwining different branches of science. The Transnational Network for
Research and Innovation in Microbial Biodiversity, Enzymes Technology and Polymer
Science (MENZYPOL-NET) was created in 2021 by early-career scientists from Helmholtz-
Zentrum Hereon (Germany), The Andes University, and The Colombian Corporation of
Agricultural Research (Agrosavia) (Colombia) to address challenges in the development
of sustainable polymer materials within the scope of a circular bioeconomy. Within the
framework of MENZYPOL-NET and its first international workshop (“Microbial Synthesis
and Degradation of Polymers: Toward a Sustainable Bioeconomy,” held on 27 September
2021 via Zoom) (Fig. 1), we invited external researchers (a complete list of panelists, guest
experts, and organizers is found in Table 2) to have an open discussion in two parallel
topic sessions: (i) microbial/enzymatic degradation of plant-derived polymers and plastics
and (ii) synthesis and applications of biobased polymers. To deepen these topics, four
main questions were brought to the discussion. (i) how can the biodegradation and/or
recycling of fossil-based and biobased plastics be improved? (ii) Which strategies can be
useful to discover novel microbes/enzymes involved in the biodegradation and/or recy-
cling of durable plastics? (iii) How can we extrapolate the understanding of lignocellulose
transformation in plastic biodegradation? (iv) What are the constraints for biobased and
biodegradable plastic production, use, commercialization and recycling? From the experts’
input, the following eight key points were highlighted, also depicted in Fig. 2. Based on
them, several research priorities were identified to better understand the transformation
of durable plastics, including their biodegradation, their recycling, and the consequences
of their presence in the biosphere. We have divided them into three main fields: polymer,
enzyme, and microbial science (Table 3).

ARE DURABLE PLASTICS SUITABLE SUBSTRATES TO DRIVE MICROBIAL EVOLUTION?

Considering that mass production of plastic started in the 1950s, plastic littering is a
very recent perturbation in the biosphere. This could be one of the reasons behind the still
low efficiency of enzymatic-assisted of disassembly these polymers. However, microorgan-
isms have adapted to metabolize other anthropogenic pollutants used in agriculture (such
as pesticides), which have been found in nature since the 1960s (25). Microorganisms can
evolve very quickly after a highly selective pressure; this happens due to their high genome
plasticity, versatility, and capacity to exchange genetic material and to mix and match cata-
bolic pathways. It is suggested that the strategies to degrade unknown pollutants are usu-
ally based on the evolution and adaptation of microbial enzymes that naturally act on other
native substrates. Regarding the potential evolution of plastic-degrading microbes (PDM)
and enzymes (PDE), there are still more open questions than answers. Are durable plastics
(e.g., PET, PP, and PUs) suitable substrates to drive evolution? Could microbial life be at the
very early stages of evolution when dealing with these polymers? Is it possible for microbes
to have a fast adaptation to such fossil-based plastics in the coming decade?

Although there is so far no solid study that has verified the microbial and enzymatic
biodegradation of durable plastics in nature, apparently there are fewer plastics in
oceans than expected (the “missing plastic” paradox). This observation suggests that
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natural biodegradation processes could occur or that a substantial sink for plastic de-
bris could be found in marine sediments (10, 26). Interestingly, there are some prelimi-
nary bioinformatic clues about the evolution and adaptation of putative PETases (i.e.,
PET hydrolases, enzymes that could hydrolyze PET) in global oceans (27). It has been
reported that PET hydrolases occur at very low frequencies in marine and terrestrial
metagenomes (28). Another recent metagenomic survey reported that ocean and soil
microbiomes might already be adapting to current global plastic pollution trends (20).
These conclusions (raised in the above-mentioned three studies) must be taken with
caution because of the absence of biochemical analysis and because the native func-
tion of all identified/predicted PETases is still unknown. Moreover, plastic-degrading
activities could be the promiscuity of certain enzyme classes that have their main activ-
ity on antique natural polymers (e.g., suberin and cutin, waxy compounds coating
leaves) with chemical/physical features similar to those of plastics. However, the
debate persists regarding whether microbial enzymes used to deconstruct natural
plant polymers have had enough time to evolve and to adjust to equivalent functional
groups present in durable plastics (26). In this sense, Dr. Öztürk pointed out that the

FIG 1 Logos of MENZYPOL-NET partners and pie chart of participants (180 registered persons from industry and
academic institutions) in the workshop “Microbial Synthesis and Degradation of Polymers: Toward a Sustainable
Bioeconomy.” Names in red are those of non-Colombian institutions.
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natural evolution of environmental microorganisms to efficiently degrade plastic is
likely to be very slow due to the recalcitrant nature of these polymers. In addition,
Dr. Wei stated that as long as enough natural substrates (e.g., plant biomass) are avail-
able in the surrounding environment, there is no need for microbes to evolve to de-
grade plastics, as the energy required to break down the synthetic polymers should be
markedly higher.

FIG 2 Main topics of discussion, ideas, conclusions and perspectives (and the interplay between them) after the
MENZYPOL-NET 2021 workshop (“Microbial Synthesis and Degradation of Polymers: Toward a Sustainable Bioeconomy”).
Briefly, the relevance of studying the impact of microplastics (MPs) and nanoplastics (NPs) in different microbiomes (e.g.,
mangrove soil, agricultural soils, hot springs, compost, and cow rumen) is highlighted. These studies could give new
insights into (i) the functional and ecological understanding of the plastisphere and (ii) the microbial evolution driven by
plastic pollution. In addition, these ecosystems can be an excellent source of novel plastic-degrading microbes (PDM) or
consortia (PDC), which could play key roles in a prospective plastic bioconversion systems (e.g., biodegradation and bio-
upcycling of plastic-derived monomers). However, a comprehensive understanding of polymer features (e.g., type of
backbones, additives, molecular weight, and hydrophobicity), in addition to efficient engineering of plastic-degrading
enzymes (PDE), is required to improve these systems.

TABLE 2 Panelists, guest experts, and organizers of the MENZYPOL-NET workshop 2021

Name Affiliation (country) Role
Betty Lucy López Universidad de Antioquia (Colombia) Panelist/guest expert
Filomena Freitas Universidade Nova de Lisboa (Portugal) Panelist/guest expert
Molly Morse Mango Materials Company (USA) Panelist/guest expert
Maria José Fabra IATA-CSIC (Spain) Panelist/guest expert
Bas�ak Öztürk Leibniz Institute DSMZ (Germany) Panelist/guest expert
Tim Bugg University of Warwick (UK) Panelist/guest expert
Ren Wei University of Greifswald (Germany) Guest expert
Angela María Alvarado
Fernández

Pontificia Universidad Javeriana
(Colombia)

Panelist

Diego Javier Jiménez Universidad de los Andes (Colombia) Moderator/organizer
Felipe Salcedo Galán Universidad de los Andes (Colombia) Organizer
Juan Fernando Saldarriaga Universidad de los Andes (Colombia) Organizer
Jorge Medina Universidad de los Andes (Colombia) Guest expert
Carol Viviana Amaya Gomez Agrosavia (Colombia) Panelist/organizer
J. Lorena Castro Mayorga Agrosavia (Colombia) Organizer
Natalia A. Tarazona Helmholtz-Zentrum Hereon (Germany) Panelist/organizer
Hugo Pena-Cortes Helmholtz-Zentrum Hereon (Germany) Organizer
Judith Lehmann Helmholtz-Zentrum Hereon (Germany) Organizer
Rainhard Machatschek Helmholtz-Zentrum Hereon (Germany) Moderator/organizer
Andreas Lendlein Helmholtz-Zentrum Hereon (Germany) Organizer
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RELEVANCE OF AND INTERPLAY BETWEEN PLASTICS, ENZYMES, AND ASSESSMENT
METHODS

In-depth knowledge about the structural, physical, and chemical characteristics of
polymeric materials (e.g., presence of hydrolyzable bonds along the chain, morphol-
ogy, molecular weight, degree of crystallinity, glass transition temperature, and hydro-
phobicity) is highly relevant if efficient bioconversion systems (e.g., release and use of
plastic monomers for recycling) are to be developed. These intrinsic properties will
also define the enzymatic depolymerization mechanisms. The presence of additives,
such as plasticizers and other impurities, should also be taken into account. These
compounds could be easier to be broken down and catabolized by microbes than the
plastic polymer itself, yielding false-positive results for plastic biodegradation (29, 30).
The relevance of polymer chemistry in plastic biodegradation was also highlighted in a
recent perspective article (31). As mentioned, microorganisms that could degrade plas-
tics contain enzymes that work on natural substrates with structural similarities to
them. In other words, if the microbes can by chance depolymerize plastics and catabo-
lize their monomers, they do it through common known metabolic pathways used to
degrade other carbon sources (32).

In light of this, would it still be possible to isolate efficient PDE from nature? To an-
swer this question, it is highly relevant to understand (i) the “native” substrates of the
enzymes with plastic-degrading capabilities, (ii) the kind of structures they can recog-
nize, and (iii) the mechanisms of catalysis. Unfortunately, sometimes native substrates
for enzymatic studies are not commercially available, and reliable enzymatic assays are
difficult to set up. For example, in the case of cutinases, their activity has been tested
using synthetic substrates like p-nitrophenol (pNP) esters and, in fewer cases, using
cutin fibers (33, 34). Moreover, there is an urgent need to determine how to accurately
evaluate the biodegradation of plastics. These methods can be focused on the changes
in the physicochemical and mechanical properties after modification/disassembly of
polymers (e.g., gravimetric measurements, Fourier transform infrared spectroscopy,
atomic force microscopy, and/or thermogravimetric analysis), on the quantification of
oligomer/monomer generation, on the metabolic products of microbial respiration
(e.g., CO2), on the monitoring of oxygen consumption (e.g., using an OxiTop BOD
system) (35), or a combination of the above (36). The detection of products after a bio-
degradation process can easily be performed (e.g., using high-performance liquid
chromatography) for some hydrolyzable plastics, but in the case of polyolefins, specific
and advanced techniques are required (37). Thus, we emphasize the importance of
selecting and standardizing the techniques and methods that should be used to

TABLE 3 Research priorities in microbial biodegradation and recycling of plastics raised after the MENZYPOL-NET workshop 2021

Polymer science Enzyme science Microbial science
Unveiling the relationships between polymer
chains structures and physicochemical properties
of plastic materials and their biodegradability

Use and standardization of modern techniques to
accurately quantify plastic biodegradation at real-
world conditions

Development of novel biodegradable plastics
synthesized by using plant and waste plastic-
derived monomers

Exploring strategies for more efficiently recycling/
degrading both fossil-based and biobased plastics

Discovering the mode of action and natural
substrates of PDE

Engineering of novel PDE to enhance
degradation and improve the economic
feasibility of plastic biorecycling

Design of novel strategies for directed
enzyme evolution

Exploring key enzymes and metabolic
pathways involved in biodegradation of
different types of plastics (fossil-based and
biobased)

Designing high-throughput screening assays
directly addressing the plastic-degrading
activity rather than activity on other model
compounds

Exploring the evolution of PDE, PDM, and
microbiomes impacted by (micro)plastics
Understanding the impact of (micro)plastic
input in environmental and host-associated
microbiomes

Isolation/recovery of novel PDM (bacteria and
fungi) and design/characterization of PDC
from different ecosystems

Determining the actual degradative role of
microbes within the plastisphere
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evaluate and accurately quantify the depolymerization of plastics, which would allow
reproducibility between studies.

Other modern techniques, such as the Langmuir-Blodgett method, could also be
adapted and used to evaluate physicochemical changes in plastics and to determine
enzymatic kinetics in real-time measurements (38, 39). In the same way, the use of
labeling techniques with stable isotopes could be an excellent option to trace the ca-
tabolism of plastics and CO2 production, identifying active microbes involved in this
process, similar to what is reported for PBAT (an aromatic-aliphatic copolyester) biode-
gradation (40). Unfortunately, most of these labeled substrates are not yet commer-
cially available. Finally, yet importantly, the development of bioinformatics tools and
novel databases (e.g., PlasticDB, PMBD, and PAZy) (41–43) is crucial to identifying PDE
from global metagenome/proteome data sets (20).

BIODEGRADATION AND BIORECYCLING: KEY TOPICS IN THE CIRCULAR BIOECONOMY
OF PLASTICS

Most plastics are products made for long-term use, and they are not made to be
degraded; for instance, “we will not make PVC pipes biodegradable, because we
need to replace them every couple of years,” said Dr. Öztürk. However, few durable
plastics contain hydrolyzable bonds that could allow their biologically assisted de-
polymerization (biodegradation) into their respective oligomers/monomers (Table
1). Therefore, biodegradation of plastics could be partially achieved under lab-con-
trolled and well-optimized conditions, which can be optimized for plastic recycling
at an industrially related scale such as that demonstrated for PET (44). Although en-
zymatic degradation of other durable plastics such as PE, PP, and PS is so far not
confirmed by reproducible research (29), these polymers are under intensive investi-
gation to open new possibilities of biodegradation using engineered enzymes or
microbes. As for the biodegradation of plastics in the environment, it is important to
note that the end-of-life fate (e.g., landfills, composting facilities, or the open envi-
ronment) and abiotic factors (e.g., temperature, pH, salinity, UV radiation, oxygen,
and moisture) play important roles in the enzymatic-assisted depolymerization
(13, 15). The biodegradability of plastics is determined by international standard
methods (e.g., ISO 17556, ISO 14851, and ASTM D6991), which are different for industrial
composting, home composting, soil, and aquatic ecosystems (13, 45). Thus far, scientific
evidence has not supported the idea that durable plastics are biodegradable. When plas-
tics are being enzymatically disassembled under laboratory conditions, they should not
(yet) be categorized as fully biodegradable, until field studies under ISO conditions con-
firm this. For additional concepts and terminology about biodegradation of polymers,
please refer to IUPAC recommendations (46).

In general terms, plastic recycling can be divided into four main classes: mechanical,
chemical, thermolysis, and incineration (47, 48). Mechanical recycling refers to the use
of plastic waste to produce secondary raw materials by applying physical processes,
without (significantly) changing their chemical structure. All types of fossil-based plas-
tics can be mechanically recycled. This is by far the most common technique. However,
mainly due to the high costs involved in plastic collection and sorting, new biotechno-
logical options (known as chemical recycling) are now being intensively explored.
Chemical recycling can be divided into different categories (one of them is biorecy-
cling), but it mainly deals with the recovery of useful plastic-derived oligomers/mono-
mers, which will be reused to produce virgin polymers (recycling) or other high-value
products (upcycling) (e.g., biobased plastics, biosurfactant and/or organic acids),
offering end-of-life advantages (13, 48). Finally, biocatalytic recycling (or biorecy-
cling) has shown potential for upscaling waste in refineries (especially with PET) (49,
50), but it is still very challenging with polyolefins or other hydrolyzable polymers,
including PUs. In September 2021, Carbios (a French company) opened a demonstra-
tion plant to test the enzymatic recycling of PET. However, it is known that the eco-
nomic feasibility at an industrial scale could be a bottleneck, mostly due to the
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mechanical preprocessing, the high cost of enzymes, and difficulties in product
recovery. A comprehensive analysis of the process, technoeconomical viability, envi-
ronmental and socioeconomical impact of the enzymatic recycling of PET was pub-
lished by Singh et al. (51).

Recently, a promising strategy for the bio-upcycling of PET using a strain of
Pseudomonas umsongensis that can catabolize PET-derived monomers to produce
PHAs was proposed (52). Here, lab-adaptative evolution experiments, metabolic engi-
neering, and flux balance analysis were essential to achieve those goals (50). More
research in this direction is foreseen to achieve a shift to a sustainable plastic biorecy-
cling industry. One promising strategy may be the use of plastic oligomers/monomers
as microbial substrates (or carbon sources) for upcycling of plastic waste (53). In this
regard, Dr. Jiménez stated (based on genomic clues obtained by his group) that
Pseudomonas protegens strains could have a hidden potential to catabolize terephtha-
late to produce PHAs.

ENGINEERING OF PLASTIC-DEGRADING ENZYMES

Frances Arnold (winner of the Nobel prize in chemistry, 2018) highlights in her
Nobel Lecture (“Innovation by Evolution: Bringing New Chemistry to Life”) that there
are a plethora of proteins out there just waiting to solve humankind’s problems, and
directed evolution could be a versatile tool for developing biocatalysts for new envi-
ronments and functional tasks. In this context, we would need to modify/adapt exist-
ing PDE to transform durable plastics more efficiently (comment from Dr. Tarazona),
using protein engineering approaches such as directed evolution and rational design
(54, 55). However, bigger efforts are needed to screen enzymes that show activity
against the most durable plastics. In 2016, a PET-degrading enzyme was isolated from
Ideonella sakaiensis (IsPETase), which showed relatively high activity under mesophilic
conditions (56). In recent years of protein engineering, the efficiency of this enzyme
has been improved considerably (more than 50-fold compared to the wild type in cer-
tain application scenarios) (57). The most successful strategy was to improve the ther-
mostability of this enzyme, although the most thermostable variant of IsPETase so far
is still less active in depolymerizing PET waste than other intrinsically thermophilic
homologs (comment from Dr. Wei), for example, the thermostable leaf compost cuti-
nase (LCC) found from a leaf-branch compost metagenome (33). Recently, Tournier et
al. (44) reported the highest PET degradation rate to date (approximately 90% at pH
8.0 and 72°C for 10 h) using a variant of LCC. In addition, the authors showed a produc-
tivity of 16.7 g of terephthalate per L per h (200 g per kg of PET solid loading, with an
enzyme concentration of 3 mg per g of PET). In this sense, the use of the LCC enzyme,
as a prospective approach to PET recycling, holds great potential compared to any
IsPETase mutant published so far. Therefore, different protein engineering approaches,
benefiting from computational predictions for specific mutation hot spots based on
known structure-function relationships, will be useful to further improve the enzymatic
degradation efficiency to work in industrial settings (55, 57, 58).

WHAT IS THE IMPACT OF (MICRO)PLASTICS ON ENVIRONMENTAL MICROBIOMES?

MPs and NPs are pollutants that could be harmful to many organisms (e.g., bacteria,
zooplankton, animals and humans). They can be found in soils, aquatic ecosystems
(e.g., rivers and oceans), wastewater treatment plants, air, and human blood (59). MPs
and NPs are small enough to be taken up by many organisms, raising concerns about
bioaccumulation and biomagnification (60). The negative impact of gut-internalized
plastics and MPs in animal species is widely reported (61, 62). However, there is a lack
of information on how the presence of MPs and NPs affects the structure, diversity,
and functions of environmental microbiomes, especially in tropical soil ecosystems
(stated Dr. Jiménez). The consequences of MP pollution in the microbiomes are (i) an
increase of carbon sources and providing extra niches; (ii) toxicity caused by plastic
additives (e.g., plastic leachates); (iii) microbial attachment to plastic surfaces, serving
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as a vector of microbial dispersal (e.g., pathogens and/or antibiotic-resistant genes);
and (iv) an impact on biochemical cycles and increase in gene exchange (21, 63–65). A
major problem with MPs is their high surface area/volume ratio and hydrophobicity,
which allow them to absorb other harmful pollutants (e.g., plasticizers, persistent or-
ganic pollutants and heavy metals) and carry them into environments. However, the
high surface area can be an advantage to improve microbial attachment and enzy-
matic attack (66). The use of plastic mulch films (e.g., PE or PLA) has been reported as
the principal source of MPs in agricultural soil systems. Interestingly, MPs can also be
formed by biodegradable plastics entering in the environment (67). The incorporation
of them into the soil may affect the microbiome due to changes in gas exchange,
increased temperature, and reduced light transmissivity. In addition, an input of MPs in
soil could have eco-evolutionary implications and a direct impact on soil structure,
water availability, enzymatic activities, and microbial biomass, diversity, and function
(68–70).

Some physicochemical and biological methods have been proposed to remove and
treat MPs from the environment (71). However, an efficient microbial or enzymatic
technology to dispose of MPs still needs to be developed (72). From an applied micro-
bial ecological perspective, it will be highly relevant to understand what would happen
with different microbiomes facing MP disturbance. We can probably learn from micro-
bial eco-enzymology (defined here as the study of enzymes and their role in microbial
interactions and the modification of surrounding environments) and eco-evolution to
improve biodegradation or biorecycling in industrial settings (73). Additionally, such
knowledge would likely increase our ability to understand and predict the environ-
mental consequences of plastic pollution based on the perturbation of microbiomes
and their changes (21). From our point of view, the transformation of MPs and NPs by
microbes is an area of research that needs to be intensified in coming years, in particu-
lar, to develop methods to accurately characterize and evaluate their biodegradation
in field studies.

PLASTIC-DEGRADINGMICROBES ANDWHERE TO FIND THEM

Based on the postulated principle in microbial ecology “everything is everywhere,”
microorganisms with the potential to degrade plastics could be found in several envi-
ronments, and one should not need to hunt for PDM in special places like the plasti-
sphere. However, it is also proposed that the environment selects for better-adapted
microorganisms (74, 75). It is then likely that PDM could be found more frequently in
places with a high abundance of plastics or other chemical compounds with similar
structures. With this premise, it was agreed that environments enriched with plastic
residues (e.g., landfills, garbage dumps, and polluted soil/freshwater/ocean), plant
polymers (e.g., forest soils), beeswax, long-chain hydrocarbons, oil, and other xenobiot-
ics could be excellent places to isolate PDM. With the recent finding on the capability
of different insect species (particularly the larvae of darkling beetles, wax moths, and
meal moths) to consume and degrade different plastic polymers (76, 77), their gut
microbiome has become a huge target for finding PDE. Similarly, it has been reported
that cow rumen fluid can hydrolyze different synthetic aromatic polyesters, turning its
associated microbial communities into a source of PDE (78). Moreover, it is known that
higher temperatures can increase the flexibility of plastics, allowing accessibility to en-
zymatic attack. In this regard, thermophile microbiomes (e.g., hot springs or compost)
could be a promising source of thermostable PDE (79). Other blue-carbon environ-
ments that are highly polluted with MPs or oil spills like mangrove soil and seagrasses
are still underexplored and could contain novel PDM and PDE (e.g., a/b-hydrolases)
(80, 81). In 2017, Auta et al. (82) recovered two isolates of Bacillus sp., from mangrove
soils, that grew in a synthetic medium containing UV-treated MPs as the sole carbon
source. Currently, the assessment of MPs input in mangrove soils is a topic of interest
within the Mangrove Microbiome Initiative (83). Moreover, for the isolation and characteri-
zation of novel PDM from those environments, the design of novel high-throughput
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screening methods, including liquid-medium and agar plate assays with emulsified plastic
nanoparticles, are still needed.

CORRELATION BETWEEN PLASTIC BIODEGRADATION, LIGNOCELLULOSE, AND
MICROBIAL CONSORTIA

Lignin is a naturally occurring polymer that is relatively inert to degradation, being
attacked only by wood-rotting fungi and some soil bacteria that have developed enzy-
matic strategies for its depolymerization (84). These lignin-degrading enzymes (e.g.,
peroxidases, laccases, and monooxygenases) might be candidates for the rational
design of PDE (stated Dr. Bugg) (26). Lignin contains C-C and C-O bonds susceptible to
enzymatic cleavage. Similarly, C-C bonds and C-O bonds form the main backbone link-
age of some durable plastics, including PP, PS, PE, and PET. Thus, it is proposed that
enzymes acting on plant-derived compounds could transform different types of plas-
tics (85). As we state above, microbiomes with a high abundance of plant polymers
can be excellent places to hunt for PDM (78). In this sense, biodegradation of plastics
could follow principles similar to those of plant biomass, such as the presence of
specialists/generalists, enzymatic synergism, “division of labor,” or even cross-feeding
events.

Comparable to lignocellulose, plastics could be seen as complex substrates that
would require synergy between microbial populations to achieve their biodegradation.
Recently, the degradation of PBAT by a marine microbial consortium showed that syn-
ergism and division of labor could be key mechanisms (86), similar to what is reported
for lignin catabolism (87). Thus, the use of microcosms or enrichment liquid cultures
could be excellent “top-down” strategies to select plastic-degrading microbial consor-
tia (PDC) from environmental microbiomes (88). A proposed strategy to select PDC is
the “dilution-to-stimulation” approach (89), where plastics (or their derived monomers)
are used by the microbes as the sole carbon source. Here, supplementation with vita-
mins, trace elements, and Casamino Acids at the beginning of the enrichment cultures
could increase the microbial growth and the possibility of cometabolizing the sub-
strate, facilitating the selection of PDM. Recently, methods and protocols to set up the
selection and cultivation of aerobic and anaerobic PDC were reported (90). Other strat-
egies for the design of microbial consortia with plastic-degrading capacities have been
proposed using “bottom-up” approaches (91, 92). There are still many challenges to
developing, using, preserving, and commercializing these types of consortia, and more
research is needed in this field (31). Fortunately, some international projects are tack-
ling this topic right now (e.g., Enzycle, Enzyclic, BioICEP, and MIX-UP) (93).

BIOBASED PLASTICS: ALTERNATIVES, CHALLENGES, AND PERSPECTIVES

Biodegradation and recycling could aid in solving the plastic crisis. However, the
synthesis and use of biodegradable polymers (e.g., PLA, PHAs, and/or PBAT), for appli-
cations in which plastics could have a high risk of reaching the biosphere, could mini-
mize the negative impact of fossil-based plastics in natural environments. Nonetheless,
the rate of biodegradation of these polymers in the environment varies considerably
depending on the ecosystem where they end up (45, 94), and biodegradation might
not be achieved in the short periods estimated by their manufacturers. The biobased-
plastic industry is an emerging solution to a transition toward a more sustainable and
circular plastic economy (11). This is a fast-growth market, predicted to reach 2.62 MT
by 2023 (95). However, biobased plastics represent only less than 1% of the total plas-
tic production. Their inferior mechanical properties compared to traditional plastics
and the difficulties in integrating bioplastic waste into existing recycling chains are the
primary reasons for their current limited utilization (96).

A comprehensive review of the advantages and challenges in the transformation
(i.e., synthesis, biodegradation, and recycling) of bioplastics in the context of an effi-
cient circular economy was recently published (11). According to a relevant study (95), the
most promising biobased polymers, based on market share value, are PLA, polyglycolic
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acid (PGA), PHAs, and biobased versions of fossil-based plastics (such as bio-PET and bio-
PE). PHAs are biobased polymers that can be produced in a “tailored” manner, since their
monomers are highly diverse, varying the final polymer properties (97). Although PHAs
make up only a small percentage of the bioplastic market (;1.4%), their production is set
to quadruple by 2024. According to Molly Morse (CEO and cofounder of Mango Materials
Company), potential strategies such as the use of methanotrophic bacteria that convert
methane to produce PHAs (specifically poly-3-hydroxybutyrate [PHB]) are emerging. The
renewed interest in this topic is due to the abundance of methane and the implications of
using a less expensive and nonfood feedstock (e.g., lignocellulose). Indeed, it has been cal-
culated that the production of PHB from methane would use less energy than comparable
products obtained from sugar (98). Furthermore, given the high degradability of PHAs and
the effect of monomer composition on their biodegradation (39, 99), modeling the struc-
ture-degradation relationships in these polymers could reveal important insights into the
degradable potential of structurally similar polymers.

Moreover, other biobased polymers such as starch are also promising alternatives
for producing biodegradable plastic materials. Starch is the most common plant-based
polysaccharide for the development of bioplastic films due to its cost-effectiveness,
abundance, and film-forming properties (100). Thermoplastic starch (TPS) stands the
highest in terms of production capacity, as these materials are already replacing plas-
tics, particularly in the flexible film packaging sector (101). TPS is both biobased and
biodegradable. However, high hydrophilicity and poor mechanical properties are the
main drawbacks, which can be addressed by blending this material with other poly-
mers, thus complicating the recycling and degradation after its end of life (102).
Composite blends of different fossil-based polymers with other natural additives, such
as starch, lignin, or other natural fibers, are continuously being developed. They have
shown potential for major uses in sustainable packaging, with the promise of being
able to expand to a wide range of potential industrial applications (103). However, spe-
cial care and characterization must be performed, since blending could also reduce the
biodegradability of polymers in specific end-of-life environments (45). Furthermore, as
briefly mentioned, it has been suggested that the synthesis of biobased polymers
could aid the upcycling of plastics, by using the plastic-derived monomers as carbon
sources for bioplastic-producing microorganisms, for instance, using engineered
PETases to release terephthalate (TPA) and ethylene glycol (EG) monomers, which are
later transformed by recombinant bacteria encoding the enzymes for the biosynthesis
of PHAs (50), or cocultivating two microbes, one that is responsible for the degradation
of PET to TPA and EG and the one that is responsible for the synthesis of PHB (104).
These strategies could be considerably more efficient and must be improved in future
research.
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