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A portable mass spectrometer was coupled to a direct inlet membrane (DIM) probe and applied to the direct analysis of active
fragrant compounds (3-methylbutyl acetate, 2-methyl-3-furanthiol, methyl butanoate, and ethyl methyl sulfide) in real time.These
fragrant active compounds are commonly used in the formulation of flavours and fragrances. Results obtained show that the
portable mass spectrometer with a direct membrane inlet can be used to detect traces of the active fragrant compounds in complex
mixtures such as essential fragrant oils and this represents a novel in-situ analysis methodology. Limits of detection (LOD) in the
sub-ppb range (< 2.5 pg) are demonstrated. Standard samples in the gaseous phase presented very good linearity with RSD % at
5 to 7 for the selected active fragrant compounds (i.e., isoamyl acetate, 2-methyl-3-furanthiol, methyl butanoate, and methyl ethyl
sulphide). The rise and fall times of the DIM probe are in the ranges from 15 to 31 seconds and 23 to 41 seconds, respectively, for
the standard model compounds analysed. The identities of the fragrance active compounds in essential oil samples (i.e., banana,
tangerine, papaya, and blueberry muffin) were first identified by comparison with a standard fragrance compounds mixture using
their major fragment peaks, the NIST standard reference library, and gas chromatography mass spectrometry (GC-MS) analysis.
No sample preparation is required for analysis using a portable mass spectrometer coupled to a DIM probe, so the cycle time from
ambient air sampling to the acquisition of the results is at least 65 seconds.

1. Introduction

Fragrances and flavors are a key part of modern food, drinks,
cosmetics, aromatherapy, and many other personal hygiene
products. The most important activities in the flavor and
fragrance industry are quality control, the search for natural
sources for novel fragrant compounds, the development of
sampling, and analytical technologies [1]. Currently there is
no standard analytical method for the online direct analysis
and monitoring of the fragrance active components during
the processing and quality control stages. Traditional analyt-
ical techniques such as solid phase extraction (SPE) [2, 3]
and liquid/liquid extraction (LLE) [1, 4, 5] followed by gas or
liquid chromatography mass spectrometry (GC-MS or LC-
MS) [6] are routinely used in the analysis and quantifica-
tion of the active components of the fragrance and flavors
with exceptional sensitivity and specificity. However, sample

collection and transfer to an offsite laboratory is required
[7–9]. These steps are labor intensive and time consuming
and require skillful sample preparation personnel [7, 10].
There is a clear need for portable analytical technologies
that are field ready to allow in-situ analysis at the source
[11–17]. This is useful not only for quality control, but also
for the development of new fragrant products to satisfy the
increasing consumer demand [7]. As it will be shown in this
study, a portable mass spectrometer combined with a direct
inlet membrane (DIM) probe can meet such criteria.

Membrane introduction mass spectrometry (MIMS) has
often been utilized in gathering on-line diagnostic data from
complex mixtures present in air or water such as those found
in reacting chemical streams [18], environmental monitoring
[19], and security and pharmaceutical intermediates [20–
22]. Exposure of the sample stream to a semipermeable
membrane can be used to selectively introduce compounds
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present in the fluid matrix into the mass spectrometer by
pervaporation [18, 23, 24]. The rate of sample transfer across
the membrane depends on its solubility, diffusivity and the
membrane material [18]. Compounds that are highly soluble
on a polydimethylsiloxane (PDMS) membrane, such as the
trihalomethanes, can be measured at high parts-per-trillion
(ppt) to low parts per billion (ppb) levels [23]. Once the
analyte(s) are introduced into the vacuum system, neutral
molecules in vapor phase can be ionized by an electron
impact ionization source (EI) or glow discharge source
(GDEI) [25]. MIMS is thus characterized by its simplicity,
speed and sensitivity. However, it has in the past been limited
to laboratory settings due to the cost, size, high vacuum, and
power requirement required of mass spectrometers [26, 27].

The development of small footprint portable mass spec-
trometers is analogous to that of portable computing devices.
Miniaturized, light weight, low cost mass spectrometers
combined with a membrane sampling system could expand
applicability. Possible deployments range from space explo-
ration, food safety monitoring [28], forensics [29–33], and
environmental monitoring to personal usage [34–38]. Minia-
turization of mass spectrometers is a systematic exercise
[39], which involves customized and optimized designs of
mass analyzers, ion transfer devices, electronics, and vacuum
systems [29, 40–42].

Cooks and Ouyang pioneered the on-site analysis of
condensed-phase and semivolatile organics in aqueous phase
using small footprint miniaturized quadrupole ion trap based
systems combined with a membrane inlet probe [40, 43–
48]. Other groups have developed portable MIMS systems
[49, 50] focusing on the development of portable quadrupole
mass filters coupled with membrane inlet sampling for the
direct in-situ analysis of a wide range of volatile organic
compounds (VOCs) and semi-VOCs in both gaseous and
aqueous phase [49, 51–55]. Most recently a series of VOCs
have been used to encapsulate and modulate data using a
portableMS coupledwith a direct inletmembrane probewith
high sensitivity [56].

In-situ analytical methods have several important appli-
cations in the food, fragrance industry, quality control and
personal hygiene [1, 57]. Here, a small footprint portable
mass spectrometer combined with a direct inlet membrane
(DIM) probe represents a novelmethod for on-site and online
monitoring of flavors and fragrances [6, 58].

2. Experimental Section

2.1. Chemicals and Reagents. Organic methanol solvent,
(HPLC grade, 99.8%), reference standard model compounds
were of analytical grade (3-methylbutyl acetate, 2-methyl-3-
furanthiol, methyl butoate, and ethyl methyl sulfide) with
similar chemical properties (i.e. aldehydes and esters) as the
active compounds used in most flavors and fragrance prod-
ucts, were purchased from Sigma-Aldrich Corporation, (UK)
and used without any further purification. All chemicals were
neat liquids and were stored at room temperatures prior to
their use. A reference artificial standardmixturewas prepared
using methanol as a solvent at a concentration of 100 𝜇g/mL
for each model standard compound. The essential fragrant

oils (i.e., tangerine, papaya, banana, and blue berry muffin)
samples were bought from Mystic Moments, Hampshire UK
(www.mysticmomentsuk.com), and used as supplied without
any purification.

2.2. Sample Preparation. Standard model compounds were
dissolved in methanol solvent (HPLC grade) to make a stock
solution at 1000 ppm. Working solutions were prepared by
serial dilution withmethanol. An artificial mixture consisting
of each of the model compounds at 100 ppb concentration
was prepared so that approximately the same ion abundances
might be recorded. From each solution, approx. 5 𝜇L was
deposited in a flask (1300 mL) obtained from Sigma-Aldrich
UK and then analyzed using a portable mass spectrometer
system combined with a DIM probe system as shown in
Figure 1. The essential fragrant oil mixtures (i.e., tangerine,
papaya, banana, and blue berrymuffin) were used as supplied
without any modification or pre-concentration. In this case,
the headspace vapors emitted from the bottles with the essen-
tial fragrant oils (10 mL) were exposed in close proximity to
the DIM probe for 2 minutes in the open air.

2.3. Portable Mass Spectrometer. Experiments were per-
formed using a portable quadrupole mass spectrometer
system (Q-Technologies Ltd., UK), tuned for the optimum
continuous detection of the analyte(s) of interest. The main
components of the portable mass spectrometer are as follows:
a triple filter quadrupole mass spectrometer (consisting of
an electron ionization (EI) ion source, mass analyzer, and
detector, a vacuum system, an electronics control unit (ECU),
and a laptop computer. The mass analyzer is made up of 25
mm rf only prefilter ((Q1) rf only) followed by 125 mmmain
dc/rf quadrupole mass filter (Q2) and a 25 mm small rf only
post filter (Q3) all arranged in series (Figure 1). The portable
mass spectrometer has a mass range of m/z 1–200 Da with
1 unit mass resolution. The used portable mass spectrometer
employs two different types of detectors: (a) a Faraday cup
and (b) a Channeltron type electron multiplier. The portable
mass spectrometry system is enclosed in a stainless steel
chamber pumped down by a TURBOLAB 80 vacuum system
obtained (Oerlikon LeyboldVacuum Ltd., Chessington, UK).
The TURBOLAB 80 consists of an Oerlikon dual-stage oil-
free DIVAC 0.8 T diaphragm pump and a TURBOVAC SL
80 H turbo molecular pump. The overall system pressure
was continuously monitored using a digital pressure gauge
(model MRT 100) from Pfeiffer Vacuum Ltd. (Newport
Pagnell, UK) that uses a Pirani-Cold cathode method of
measurement. Total base pressure of the system when the
sample inlet valve is fully closed is 2.5 × 10–8 Torr. Operating
pressure during experiments with the sample valve fully
open and the membrane sampling probe attached was stable
between 3.0× 10–6 Torr and 4.0× 10–6 Torr. All components of
the portable mass spectrometer are housed within a stainless
steel vacuum chamber weighing less than 20 kg. Data was
acquired using a laptop runningWindows 7 operating system
and data interpretation was performed using the NIST14
mass spectral library.Multiple ionmonitoringmodewas used
to continuously select characteristic mass fragments for the
chemical analyte(s) of interest.
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Figure 1: Experimental setup used in the detection of different fragrance formulations using a portable quadrupole mass spectrometer
coupled with the a direct membrane (DIM) probe; (a) shows the mass spectra obtained for ambient air background without any sample
in the flask and (b) the schematic of the portable mass spectrometer coupled to a DIM probe with a flask placed in front of the probe.

A DIM interface probe was used for preconcentrating
and introducing analyte(s) from vapor phase samples in real
time through pervaporation [22, 59]. The membrane used
was a thin fine non-sterile flat polydimethylsiloxane (PDMS)
(Technical Products, Inc. of Georgia, USA) with thickness
of 0.12 mm and sampling area of 33.2 mm2. The membrane
was supported by a 0.8 mm thick stainless steel porous frit
with 10 𝜇m porosity. The operation of the DIM probe is
shown in Figure 1(b). Exposure of sample to the membrane
was achieved by placing an open flask with 5 𝜇L of the
sample deposited ∼ 2 mm away from the DIM probe. The
headspace vapor of the analyte(s) molecules pervaporates
through the membrane into the quadrupole mass filter
(QMF) under ambient conditions in the open environment.
The pervaporated molecules are ionized by electron impact
ionization. The distance between the membrane and the
(EI) source is 50 mm. Ions are generated from an electron
filament biased at 1.6 mA electron emission current and
electron energy at 65 eV. The manifold remains closed at all
times to maintain a constant pressure. The total response
of characteristic ions from the analyte(s) of interest was
reconstructed from the total ion current of a full scan mass
spectrum in the chromatograph mode. Depending on the
analyte(s) being studied the duty cycle of the entire analysis
process ranged from 30 to 60 seconds.

The analytical performance of the portable mass spec-
trometer with a direct inlet membrane (DIM) probe com-
bined was carried out using a static dilution procedure [60,
61]. Liquid stock solutions of 10mL screw vials (Agilent Tech-
nologies LDA UK Ltd) of model standards were prepared
in methanol at varying concentrations (250, 500, 1000, and
5000 and 10000 ppb). Approximately 5 𝜇L of each standard
were pipetted in 1.3 mL narrow-neck glass flasks (Sigma
Aldrich Co. LLC., UK). The glass flasks were carefully lidded
with wrapping film (parafilm) to eliminate sample loss. A
3-hour phase of incubation at room temperature (∼23∘C)
was followed to allow complete evaporation of the sample
analyte(s) and generation of the gas standards. The glass
flasks were carefully cleaned prior to the above process with
water, soap, and then deionized water (ReAgent Chemical
Services Ltd, Cheshire, UK).The generated gaseous standards
were tested using the experiment setup in Figure 1. The mass
spectra of the analyte(s) were recorded from the lowest to the
highest concentration to avoid possible memory effects.

3. Results and Discussion

Results obtained show that the DIM probe combined with a
portable experiment retains the advantages of high sensitivity
and specificity typical of traditional MS measurements, plus
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Figure 2: Representative EI mass spectra of fragrant model compounds recorded using a DIM probe combined with a portable mass
spectrometer.Accurate amounts of analyte were pitted into a flask and introduced into themanifold of the portableMS through a DIM probe,
5 𝜇L, viz 10 ppb. (a) 2-methylfuran-3-thiol (Mw 114), (b) methyl butanoate (Mw 102), (c) ethyl methyl sulfide (Mw 76), and (d) 3-methylbutyl
acetate (Mw 130).

short analysis time (< 1 minute) with no sample pretreat-
ment. Low limits of detection (LOD) of 2.5 pg (absolute
concentration) and acceptable reproducibility (RSD of <
10 %) in a variety of untreated, complex essential fragrant
oil (i.e., tangerine, papaya, banana, and blue berry muffin)
samples were achieved. The strength of the used portable
mass spectrometer lies not only in the small size and low
weight for in field analysis but also in its ability to be used
with a wide range of other mass spectrometry sample inlet
methods beyond the DIM probe used in this study [62].

We chose to study different fragrant compounds such
as 3-methylbutyl acetate (MW 130), methyl butanoate
(MW 102), ethyl methyl sulfide (MW 76), and 2-Methyl-
3-furanthiol (MW 114) because they are commonly used
as precursors or active ingredients on a large scale in
the composition of many flavors and fragrant commercial
products due to their intense and pleasant aromatic smell
with low toxicity [63, 64]. As such their detection and
quantification is vital to ensure high quality production of
consumer products in both food and cosmetic industries

[65] and aromatherapy treatment [66]. In addition, there is
the need to monitor the authenticity and level of additives
to combat fragrance product adulteration [67–69]. Before
any sample was analyzed, the direct membrane inlet probe
with a portable mass spectrometer was first characterized by
recording the background mass spectrum of an empty clean
flask (i.e., without any sample) as shown in Figure 1. The
recorded backgroundmass spectra show highly intense peaks
at m/z 18, 28, and 32 for water clusters, nitrogen, and oxygen
ions, respectively. The analyte(s) were introduced into the
vacuummanifold of the portable mass spectrometer through
pervaporation using a DIM probe (PDMS membrane) and
ionized by EI, producing spectra which show the main
features similar to those of the NIST mass spectra reference
library recorded using different instruments [70].

Representative electron impact (EI) mass spectra for
2-methyl-3-furanthiol are shown in Figure 2. An intense
molecular radical cation [M]+. peak at m/z 114 of 2-methyl-
3-furanthiol with a fragment peak atm/z 85 due to the subse-
quent neutral loss of -[CHO] or –[29 Da] was observed. The
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Figure 3: Calibration curve for the standard model compounds using various concentration (250 – 10000 ppb) samples of (a) 2-methyl-3-
furanthiol (Mw 114), (b) methyl butanoate (Mw 102), (c) ethyl methyl sulfide (Mw 76), and (d) 3-methylbutyl acetate (Mw 130 obtained from
the portable mass spectrometer with a DIM probe.

identity of 2-methyl-3-furanthiol was confirmed by compar-
ing the NIST mass spectrum for 2-methyl-3-furanthiol with
the mass spectrum obtained using the DIM probe coupled to
a portable mass spectrometer system [70]. Figure 2(b) shows
the recorded mass spectra obtained for methyl butanoate
(MW 102). A less intense fragment peak at m/z 87 due to
the methyl neutral loss -[CH

3
or -15 Da] followed by a major

intense peak at m/z 74 due to McLafferty rearrangement
[71] – [CO or 28 Da]. This is again followed by 𝛼-cleavage
at m/z 71 due to the loss of – [CH

2
OH or 31 Da] further

confirming the structure of methyl butanoate (Mw 102).
The McLafferty rearrangement observed is as a result of
the 𝛽-cleavage and the transfer of a 𝛾-hydrogen [72]. The
moderate fragment peak at m/z 87 is characteristic of methyl
esters which results from 𝛾-cleavage. As such the fragment
peaks at m/z 74 and 87 peaks provide definite confirmation
that methyl butanoate detected is a straight chain C

4
-C
26

methyl ester [72]. Figure 2(c) shows the mass spectrum of
ethyl methyl sulfide (MW 76) recorded using a potable mass
spectrometer with a direct inlet membrane probe system.
An intense molecular cation [M]+. at m/z 76 followed by an
intense fragment peak at m/z 61 due to the neutral loss of
methyl radical – [CH

3
or 15 Da] was observed. The mass

spectrum for 3-methylbutyl acetate (MW 130) (Figure 2(d))

shows no molecular ion with a less intense fragment peak at
m/z 87 due to the apparent neutral loss of -[43Da] followed by
a highly intense fragment peak at m/z 76 due to the apparent
neutral loss of [-54 Da]. The structure and identity of 3-
methylbutyl acetate was confirmed using the mass spectral
profile of the standard using the NIST online mass spectra
database. The presence of the fragment peak at m/z 87 peak
provides definite confirmation that 3-methylbutyl acetate is
a straight chain ester [73]. Esters with low molecular weight
are commonly used as precursors of different flavors and
fragrances due to their low toxicity [63], low polarity, and
lower boiling point [9, 69].

The analytical performance was evaluated for all the stan-
dard fragrantmodel compounds studied Figure 3. Figure 3(a)
shows the calibration curve for 2-methyl-3-furanthiol, and
the system was linear over 4 orders of magnitude (250
to 1000 ppb) with r2 value of 0.9985, for 60 seconds
sample exposure time. The LOD for the standard fragrant
model compounds was determined as the concentration that
produces a signal more than three times greater than the
standard deviation plus the mean value of the blank, in full
MS mode. For 2-methyl-3-furanthiol a limit of detection
(LOD) of 2.5 pg (Table 1) was obtained when analyzed using
DIM probe coupled to a portable mass spectrometer. The
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Table 1: Limit of detection and rise and fall times for the fragrant compounds analyzed.

Compound Vapor Pressure Exposure Ions xLOD Rise Fall
(mm Hg at 25∘C) Time (s) Monitored (m/z) (ppb) Time (s) Time (s)

2-methyl-3-furanthiol 5.78 60 114 8.38 31 46
Methyl butanoate 32 65 74 15.06 23 38
ethyl methyl sulfide 60 60 76 1.68 16 41
3-methylbutyl acetate 5.6 50 70 16.23 15 23
xxLimit of detection (LOD) was calculated as = 3.3(standard error/slope), taken from a calibration curve of five points in the range 250-1000 ppb with three
repetitions for each point.
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Figure 4: In-situ analysis of standard model compounds in an artificial; (a) mixture of equal volumes of 10 ppm of methylbutyl acetate,
2-mehtyl-3-furanthiol, methyl butanoate, and ethyl methyl sulfide 10 ppm (v/v) using a direct membrane probe coupled to a portable mass
spectrometer. Approx. 5 𝜇L of the mixture was deposited in the flask and left for 2 hours. The headspace vapor of the mixture was detected
using a portablemass spectrometer coupled to a direct membrane probe and (b) shows themass spectrumof the real banana headspace vapor
measured using DIM probe with a portable mass spectrometer.

signal intensity ratios of the most abundant fragment peaks
were found to be linear in the range from 250-10000 ppb
(Figure 3).

Limits of detection (LOD) for the standard fragrant
model compounds were also established. Table 1 shows the
LOD (S/N = 3 in the full scan mass spectrum) and the
rise and fall times for fragrant model standards (2-methyl-
3-furanthiol, methyl butanoate, ethyl methyl sulfide, and
3-methylbutyl acetate). All the detected model standards
gave limits of detection in sub ppb range. The rise and fall
time for each compound was also measured, and it was
observed that the rise times varied from 15 seconds (3-
methylbutyl acetate), 16 seconds (ethyl methyl sulfide), and
23 seconds (methyl butanoate) to 31 seconds (2-methyl-3-
furanthiol), and also the fall times varied from 23 s seconds
(3-methylbutyl acetate), 38 seconds (methyl butanoate), and
41 seconds (ethyl methyl sulfide) to 46 seconds (2-methyl-
3-furanthiol). The duration of the rise and fall times varied
depending on the analyte(s) and the difference in the physical
properties (vapor pressure at 25∘C) at which the analyte(s)
pervaporates from the membrane, which is attributed to the
difference in volatility and solubility of the analyte(s) through
the membrane [27].

3.1. In-SituAnalysis of FragrantCompounds in aMixtureAnal-
ysis. Analysis of fragrant components in complex mixtures
was also investigated. For these experiments, an artificial
mixture was prepared by mixing equal volumes of the model
compounds at 10 ppm v/v (i.e., 3-methylbutyl acetate (Mw
130), methyl butanoate (102), ethyl methyl sulfide MW 76),
and 2-methyl-3-furanthiol (114)) and analyzed without any
further pretreatment. Approximately 5 𝜇L of the artificial
mixture was deposited into the vacuum flask and analyzed
directly. Figures 4(a) and 4(b) shows the recorded mass
spectrum for the artificial mixture and the real banana,
respectively. An intense radical molecular cation [M]+. peak
at m/z 114 of 2-methyl-3-furanthiol and a moderate radical
molecular cation [M]+. peak atm/z 76 for ethyl methyl sulfide
were observed, while for methylbutyl acetate (Mw 130), two
intense fragments at m/z 55 and 76 and methyl butanoate
(102) and 55, 71, and 74 fragments observed were similar to
those in Figures 2(b) and 2(c).

The ability to detect the individual standard compounds
in artificial mixtures encouraged us to apply this experiment
to the analysis of the commercial fragrant mixtures using a
portablemass spectrometer coupledwithDIMprobe. For this
experiment, 4 essential fragrant oils (i.e., tangerine, papaya,
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Figure 5: Electron impact ionization mass spectrum for essential fragrant oils analyzed using a direct membrane probe coupled to portable
mass spectrometer. (a) banana, (b) tangerine, (c) papaya, and (d) blueberry muffin. Approx. 5 𝜇L of each was deposited in the flask and left
for 2 hours forming a headspace vapor and analyzed for 2 minutes with 70 eV EI energy.

banana, and blue berry muffin) in their pure form were
analyzed with DIM probe combined with a portable mass
spectrometer. Figure 5 shows the recorded mass spectra for
the fragrant essential oils samples analyzed. A summary of
the detected compounds in the essential oil samples (i.e.,
banana, tangerine, papaya, and blue berry muffin) is shown
in Table 2. Again the mass spectra recorded showed typical
characteristic fragment peaks atm/z 43, 76, and 87 indicating
the presence of esters in the mixture that corresponds to
the loss of -[CHO] or –[29 Da] methyl neutral loss – [CH

3

or 15 Da] as observed with the single model compounds
(Figure 2).

To confirm the molecular structure of the compounds
identified, GC-MS analysis for the essential fragrant oil in
question was undertaken (for experimental procedure see
supporting information). Representative GC-MS total ion
chromatograms for the different compounds analyzed (tan-
gerine, papaya, banana, and blueberry muffin) are shown in
Figures S1–S4 (supporting information). The chromatogram
reports the ion current corresponding to the mass spectra

of compounds that were later confirmed using the NIST
reffernce library matching (Figures S1–S4). Table 2 summa-
rizes the list of compounds identified using the DIM probe
with a portable mass spectrometer and confirmed using GC-
MS experiments (supporting information). The GC-MS data
acquired for complex essential fragrant oil samples provides
definite confirmation for the different compounds in the
essential fragrant oil samples identified using a DIM coupled
to portable mass spectrometer experiment. It is important to
note that the portable mass spectrometer has a lower mass
range (1-200 Da) than the GC-MS limiting its capacity to
analyze high molecular weight compounds (see supporting
information for more details). For instance, diethyl phthalate
(Mw 222) a well-known lower molecular weight endocrine
disruptor was found in all the essential fragrant samples
studied but was not detected using the DIM probe with a
portable mass spectrometer owing to its lower mass range.
However, this was detected in all the tangerine, papaya, and
blueberry muffin essential oil samples when analyzed with
GC-MS (see supporting information for more details).
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Table 2: Compounds detected in the essential oil fragrant samples using a DIM probe coupled to a portable mass spectrometer.

Essential
Fragrant Oil

Identified
compounds Chemical Structure Molecular

Weight
Ions

Detected
Major Product Ions

(m/z)

Tangerine

𝛽-Myrcene

CH2

CH2

CH3H3C

136 [M].+ 93,79, 69,41

D-Limonene CH2

CH3

H3C

136 [M].+ 121.107,93,79,68

𝛾-Terpinene

CH3

CH3

H3C 136 [M].+ 121, 105, 93, 77

Terpinolene
CH3

CH3

H3C 136 [M].+ 121,105,93,91,79,77

Papaya

D-Limonene

CH3

H3C

CH2 136 [M].+ 121, 107, 93, 79 68

Acetic acid,
phenylmethyl ester

CH3

OO 150 [M].+ 108, 91, 79

4-tert-
Butylcyclohexyl

acetate CH3

CH3
O

O
H3C

H3C 198 n/a 138,123,82,67,57,43

2(3H)-Furanone,
5-heptyldihydro O OH3C 184 n/a 85

Octanal, 2-
(phenylmethylene) CH2 CH2( )2 4CH3

O

H 216 n/a 145,129, 115, 91

Banana

Isoamyl acetate
CH3

CH3

O

OH3C 130 n/a 87, 70, 55, 43

Propanoic acid,
2-methyl-,

3-methylbutyl ester

CH3

CH3
CH3

O

O
H3C 158 n/a 89, 71, 55, 43

Butanoic acid,
2-methylbutyl ester CH3 CH3

CH3O

O

H3C 172 n/a 71, 55, 43

Blueberry Muffin

Acetic acid,
phenylmethyl ester CH3

O

O 150 n/a 108, 91, 79, 65, 51

4-tert-
Butylcyclohexyl

acetate

CH3

CH3

O

O
H3C

H3C 198 n/a 138,123,82,67,57,43

Isopropyl myristate
CH3

CH3O

O

CH3 CH2( )2 11CH2
270 n/a 129, 102,60,57,43

[M].+= Molecular radical cation, n/a = Not available (not detected) using DIM probe with a portable mass spectrometer.

The results obtained show the capability of the portable
mass spectrometer for online high-throughput rapid screen-
ing of different analyses with no sample preparation. How-
ever, the use of electron impact (EI) ionisation complicated
the mass spectra of the analyte(s) studied. EI ionisation can
generate ions with high internal energies (70 eV), hence in-
source fragmentation is common and can complicate the
interpretation and identification of the fragrant components
in the mixture. To overcome this problem softer ionisa-
tion techniques (e.g., chemical ionisation (CI)) or atmo-
spheric pressure chemical ionisation (APCI) or other ambient

ionisation sources forming ions with low internal energies
suppressing fragmentation can be used in unison with the
portable mass spectrometer [34, 39, 74].

In this study the direct analysis of different fragrant
active in complex mixtures has been demonstrated using a
DIM probe coupled with a portable mass spectrometer. The
results demonstrate rapid analysis allowing high throughput
of different essential oil fragrant compounds of importance
in the flavor and fragrance industry. The results reported
that a DIM probe coupled to a portable mass spectrometer
can be incorporated during in the production and the post
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production stages of in different flavors in the fragrance
industry for quality control.

Quality control in the flavour and fragrance industry has
become a global problem. Being a useful analytical tool for in-
situ analysis at the source with minimal sample preparation,
a DIM probe coupled with a portable mass spectrometer
is proposed as the alternative analytical technique to the
analysis of flavours and fragrant samples in complex matrixes
such as fragrant essential oils. As demonstrated, DIM probe
combined with small footprint mass spectrometer is able to
detect the active components of different food flavours and
fragrant essential oil with high throughput. Linear signal
responses with a dynamic range of 5 orders of magnitude
were obtained. The limits of detection (LOD) were 2.5 pg
(absolute concentration) with good reproducibility (RSD <
10 %). The rise times of 16 to 31 seconds and fall times of 23
to 41 seconds are noteworthy providing a timely and direct
analysis of different flavours and fragrants. Future work will
involve optimising the membrane parameters to enhanced
performance. Because no sample preparation is needed for
the analysis, the duty cycle time from ambient air sampling
to acquisition of results is 65 seconds or less.

The simplicity and the ability to analyze different flavors
and fragrant samples using a direct membrane probe further
enhance the potential of using a portable or miniaturized
mass spectrometer for onlinemonitoring, during the produc-
tion and formulation of the flavors and fragrances, and for
forensics investigation. Such a system in operation would be
of great value in the flavor and fragrant industry for online
monitoring and quality control. The data obtained can also
be used in aromatherapy or olfactory experiments in a range
of environments. Future work will involve the coupling of
softer ionisation source operating at atmospheric pressure
such as desorption atmospheric pressure chemical ionisation
(DAPCI) for a wide range of food flavours.
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