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Respiratory diseases cause a high incidence and mortality worldwide. As a natural
immunobiotic, Lactobacillus has excellent immunomodulatory ability. Administration of
some Lactobacillus species can alleviate the symptoms of respiratory diseases such as
respiratory tract infections, asthma, lung cancer and cystic fibrosis in animal studies and
clinical trials. The beneficial effect of Lactobacillus on the respiratory tract is strain
dependent. Moreover, the efficacy of Lactobacillus may be affected by many factors,
such as bacteria dose, timing and host background. Here, we summarized the beneficial
effect of administered Lactobacillus on common respiratory diseases with a focus on the
mechanism and safety of Lactobacillus in regulating respiratory immunity.
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1 INTRODUCTION

Probiotics are defined as “live microorganisms” and confer a health benefit on the host when
properly administered (1). Many probiotics have been shown the beneficial properties, including
Lactobacillus spp., Bifidobacterium spp., Enterococcus spp., Streptococcus spp., Propionibacterium
spp., Bacillus cereus, Saccharomyces boulardii, and several specific strains of Escherichia coli (1, 2).
Among probiotics, the most widely used are microorganisms of the genus Lactobacillus, which
contains more than 200 species bacteria (3, 4). Lactobacillus spp. are gram-positive, facultative
anaerobic bacterium that ferments carbohydrates to produce lactic acid (5), and has a high
economic value due to the use in biotechnology, food as well as therapeutic application (4, 6, 7).
In human hosts, Lactobacillus spp. exist in the gastrointestinal tract, vagina, oral cavity, respiratory
tract and skin. They account for 6% and 95% of the total bacteria in the intestinal and vaginal tracts,
respectively (8).

As natural immunobiotics, Lactobacilli have excellent immunomodulatory function, and their
ability in improving gastrointestinal, oral and vaginal disorders is already well known (6, 9–12).
Meanwhile, emerging evidence shows that Lactobacillus can also modulate respiratory immunity
(13–16). Administration of Lactobacillus confer a beneficial role in respiratory diseases including
respiratory tract infections (RTIs), asthma, lung cancer, cystic fibrosis (CF) and chronic obstructive
pulmonary disease (COPD) (17–21). Administration of Lactobacillusmay be an alternative strategy
Abbreviations: RTIs, Respiratory infections; CF, Cystic fibrosis; COPD, Chronic obstructive pulmonary disease; RSV,
Respiratory Syncytial Virus; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus-2; SCFAs, Short-chain fatty acids;
DC, Dendritic cell; BALF, Bronchoalveolar lavage fluid; PRR, Pattern recognition receptor; TLRs, Toll-like receptors; NLRs,
NOD-like receptors; Tregs, Regulatory T cells.
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to alleviate respiratory diseases. In this review, we focus on the
beneficial effect of probiotic Lactobacillus in promoting
respiratory health and discuss its potential mechanism
and safety.
2 BENEFICIAL ROLE OF LACTOBACILLUS
IN RESPIRATORY DISEASES

2.1 Respiratory Tract Infections
RTIs are the major source of incidence and mortality in the
world (22). Although many RTIs are of mild and self-limited
nature, they caused 4 million deaths worldwide each year (23,
24). In 2017, influenza virus has infected 54.5 million people
worldwide, resulting in about 145,000 deaths (25). Severe Acute
Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is raging
globally. Effective vaccines are not available for many respiratory
pathogens, and the increase in drug-resistant microbe makes the
effective treatment of RTIs extremely challenging. Therefore, it is
important to find a safe and effective method to reduce the risk of
RTIs. Recently, the probiotic Lactobacillus has been used to fight
against a variety of RTIs, including virus and bacterial infection
(Table 1). Oral administration of Lactobacillus can improve
symptoms caused by poly(I:C) treatment (49). Many
Lactobacillus species can prevent influenza virus infection,
including L. rhamnosus GG, L. casei Shirota, L. plantarum
DK119, L. paracasei MCC1849, L. gasseri SBT2055, L.
fermentum CJl-112 and L. kunkeei YB38 (34, 50–55).
Moreover, Lactobacilli also have excellent role as a vaccine or
adjuvant in preventing influenza virus infection due to its safety
and biotechnological advantage (56–58). It is worth pointing out
that oral supplementation with L. johnsonii (strain not shown) in
pregnant BALB/c mice can reduce Th2 type cytokines and lung
inflammation in Respiratory Syncytial Virus (RSV)-infected
newborn mice (59). It means Lactobacillus may have
preventive effect for RTIs of offspring when administered to
the mother. Notably, supplementation with live and inactivated
bacteria of the same Lactobacillus strain (such as L. rhamnosus
CRL1505) generally have similar effect (39, 40), suggesting that
viability is not necessary for Lactobacillus achieve the protective
immunoregulatory effect. However, nasally administration of,
viable but not heat-killed L. rhamnosus CRL1506 can provide
complete protection against RSV infection in mice (28).
Although the reason needs further investigation, it shows that
Lactobacilli efficacy is strain-dependent. Therefore, the selection
of a Lactobacillus strain with potent immunomodulatory ability
is crucial.

Although vaccines for SARS-CoV-2 are available, the rapidly
SARS-CoV-2 mutating makes the effectiveness of these vaccines
challenging (60). Notably, in vitro experiment has demonstrated
that L. fermentum 90 TC-4 pretreatment increases the activity of
SARS-CoV-2-infected Vero E6 cells (grass monkey kidney cells)
(61). Pretreatment of L. plantarum MPL16 and CRL1506 can
also inhibit the proliferation of SARS-CoV-2 in human lung
epithelial cell line Calu-3 (62). In Central Europe, it has been
reported that low death rate of COVID-19 patients is associated
Frontiers in Immunology | www.frontiersin.org 2
with the consumption of fermented vegetables containing many
Lactobacilli species (63). Therefore, Lactobacilli may have the
potential to become an adjuvant for treating SARS-CoV-2.

However, there are some limitations in the therapeutic effect
of administering Lactobacillus. For example, neonatal C57BL/6
mice pre-treated with L. rhamnosus GG maintain 100% survival
rate post influenza virus infection; however, the survival rate is
only 10% when mice treated with L. rhamnosus GG at 48h post
influenza virus infection (29). Similarly, the survival rate of
BALB/c mice treated with L. plantarum at 24h post
Pneumonia virus infection is 100%, but all mice die when L.
plantarum administered at 72h post infection (3, 64). These
results show that Lactobacillus administration post infection
cannot exert an obvious protective immunoregulatory effect.

Lactobacilli can also provide resistance to respiratory bacterial
infections. Administration of Lactobacilli such as L. rhamnosus
CRL1505, L. casei CRL 431 and L. pentosus B240 increases
resistance of mice to Streptococcus pneumoniae infection (41–
43). Intranasal inoculation of L. rhamnosus CRL1505 is
beneficial in S. pneumoniae infected-immunodeficient mice
(39). Interestingly, peptidoglycan from L. rhamnosus CRL1505
shows a similar protective effect with the whole bacteria in
preventing S. pneumoniae infection (40). Moreover, nasal
administration of L. rhamnosus CRL1505 can also reduce
pathogen load and lung damage of infant mice with RSV
infection and secondary S. pneumoniae infection (65, 66).

In clinical trials, Lactobacilli are generally given in the form of
tablets, capsules, powders, fermented yogurt or dairy products,
and mainly used for preventive purposes (Table 2). For instance,
oral L. rhamnosus GG in adults can reduce rhinovirus infection
(83), and the combination of oral L. paracasei (strain not shown),
L. casei CRL 431 and L. fermentium PCC also reduces
rhinovirus-induced common and influenza-like infection (78).
In addition, oral mixed probiotic (mainly Lactobacilli) can
decrease the risk of respiratory failure in COVID-19 patients
by 8-fold and reduce the rate of transfer to Intensive Care Unit
and mortality (84). In patients with severe COVID-19, oral tablet
(live B. longum, live L. bulgaricus and live S. thermophilus, strains
not shown) also shortens the time to reach a negative nucleic acid
test of SARS-CoV-2 and decreases blood C-reactive protein and
procalcitonin (81). Moreover, clinically administration of many
Lactobacillus species such as L. rhamnosus GG, L. paracasei
N1115 and L. plantarum L-137 can decrease the total incidence
as well as shorten the duration of RTIs (26, 27, 81). Therefore, the
prospect of Lactobacillus clinical application in reducing the risk
of RTIs is promising.

2.2 Asthma
Asthma is a heterogeneous airway disease, which behaves as
complex symptoms, including cough, intermittent wheezing,
dyspnea, chest tightness, airway obstruction, and bronchial
hyperresponsiveness. Asthma patients generally have a Th1/Th2
imbalance and are polarized toward Th2 type immune response,
usually resulting in high level of allergen-specific IgE and
eosinophilic airway inflammation (85). Although asthma can be
treated by strategies include allergen avoidance and improvement
of signs and symptoms by inhaled corticosteroids, anti-leukotrienes
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TABLE 1 | Pre-clinical studies on the administration of the Lactobacillus for protection against bacterial and viral respiratory tract infections.

Lactobacillus
strain

Pathogen Dose androute
ofadministration

Experimentalmodel Benefits References

L. rhamnosus
CRL1505 and
L. johnsonii

Respiratory syncytial virus 1 ×108 CFU viable L.
rhamnosus CRL1505, via
oral
1 ×107 CFU viable L.
johnsonii, via intranasal

Infant BALB/c mice Pulmonary viral load and injury are reduced (26, 27)

L. rhamnosus
CRL1505 and
L. rhamnosus
CRL1506

Viral pathogen molecular
pattern poly(I:C) +
Respiratory syncytial virus

1 ×108 CFU L.
rhamnosus CRL1505 or
L. rhamnosus CRL1506,
via intranasal

Female 3-week-old
BALB/c mice

Pulmonary viral load and injury are reduced (28)

L. plantarum
NCIMB 8826
or L. reuteri
F275

Pneumonia virus 1 ×109 CFU viable L.
plantarum NCIMB 8826
or L. reuteri F275, via
intranasal

Wild-type BALB/c and
C57BL/6 mice

Improvement in survival rate and reduction in lung
viral load, pulmonary inflammation was reduced

(3)

L. rhamnosus
GG (LGG)

Influenza virus H1N1 strain
PR8

1 ×108 CFU viable LGG
or 200 µg heat-killed
LGG, via intranasal

Infant C57BL/6 mice or
seven-week-old female
BALB/c mice

Improvement in survival rate and reduction in lung
Inflammation

(29, 30)

L. casei
Shirota

Influenza A/PR/8/34 (PR8,
H1N1) virus

200 µg heat-killed L. casei
Shirota, via intranasal

BALB/c female mice Improvement in survival rate and reduction in lung
viral load

(31)

L. plantarum
06CC2 and
L. gasseri
TMC0356

IFV A/PR/8/34(H1N1) 20 mg Lyophilized L.
plantarum 06CC2
powder, via oral
10 mg lyophilized L.
gasseri TMC0356, via oral

SPF female BALB/c mice
(4 or 6-week-old)

Weight loss is suppressed, a survival rate is
raised, pulmonary viral load is reduced

(32, 33)

L. fermentum
CJL-112 and
L. kunkeei
YB38

Influenza A/NWS/33
(H1N1) virus

1 ×108 CFU viable L.
fermentum CJL-112, via
intranasal
100 mg/kg heat-killed L.
kunkeei YB38, via oral

Female, specific
pathogen-free (SPF)
BALB/c mice

Significant up-regulation of Th1cytokine and IgA
and specific anti-influenza IgA levels
Improvement in survival rate and reduction in
pulmonary inflammation

(34)

L. plantarum
nF1

Influenza A (H1N1 and
H3N2 subtypes) and
influenza B (Yamagata
lineage) viruses

110 mg heat-killed L.
plantarum nF1, via oral

BALB/c mice(5-week-old
females)

Weight loss is suppressed and pulmonary viral
load is reduced

(35)

L. paracasei
CNCM I-1518

Influenza A(H3N2) 2 ×108 CFU viable L.
paracasei CNCM I-1518,
via oral

Six-week-old female
BALB/c mice

Weight loss is suppressed, pulmonary viral load
and inflammation are reduced

(36)

L. fermentum
CJL-112

Influenza A(H9N2) virus 1.5 ×109 CFU viable L.
fermentum CJL-112, via
intranasal

Chicken Improvement in survival rate (37)

L. paracasei
ST11

Vaccinia virus 1 ×108 CFU viable L.
paracasei ST11, via oral

Seven-weeks male Balb/
c mice

Reduction in viral spread with a significant
decrease of VACV titer on lung, liver and brain,
lung inflammation is attenuated and survival rate is
increased

(38)

L. rhamnosus
CRL1505

Streptococcus pneumoniae 1 ×108 CFU viable or
non-viable L. rhamnosus
CRL1505, via intranasa
8 µg peptidoglycan of L.
rhamnosus CRL1505, via
intranasal

Immunodeficient Swiss-
albino mice

Lung load of pathogens and injury are reduced
Improvement in survival rate

(39–41)

L. pentosus
b240

S. pneumoniae 500 mg kg-1 heat-killed L.
pentosus b240, via oral

Five-week-old male mice Prolonged survival time, less body weight loss and
lung viral load

(42)

L. casei CRL
431

Sd pneumoniae 1 ×109 CFU viable L.
casei CRL 431, via oral or
via intranasal

Adult 8-week-old Swiss
albino mice and
immunodeficient Swiss-
albino mice

Lung bacterial load is decreased and lung
inflammation is reduced, accelerated weight
recovery

(43, 44)

L. casei CRL
431 and LGG

Pseudomonas aeruginosa 1 ×109 CFU viable L.
casei CRL 431, via oral
1 ×109 CFU viable LGG,
via oral

Three-week-old mice
(young mice)

Bacterial clearance of lung tissue is increased
Improvement in survival rate and reduction in lung
Inflammation

(45, 46)

L. plantarum
CIRM653

Klebsiella pneumoniae 1 ×108 CFU viable L.
plantarum CIRM653, via
oral

6-8-week-old C57/BL6J
mice

The pulmonary inflammation response is reduced (47)

L. murinus
CNCM I-5314

Mycobacterium
tuberculosis (H37Rv)

1 ×107 CFU viable L.
murinus, via oral

Six-eight-week-old
female SPF C57BL/6
mice

reduction in pulmonary inflammation (48)
Frontiers in Immu
nology | www.frontiersin.org
 3
 May 2022 | Volume 13 | A
rticle 908010

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Du et al. Probiotic Lactobacillus
and b2 agonists, there is still no specific treatment for asthma and
healthcare is expensive during exacerbation (86).

Emerging evidence suggests that respiratory asthma symptoms
can be ameliorated when probiotic Lactobacillus is administered.
Oral administration of many Lactobacillus species has shown an
effective preventive role for asthma in animal studies, including L.
rhamnosusGG, L. plantarumK37, L. reuteri (ATCCNo. 23272), L.
casei Shirota, L. paracasei HB89 and L. salivarius (strain not
shown) (18, 87–91). Some Lactobacillus species such as L.
rhamnosus GG, L. paracasei (strain not shown) and L.
fermentum (strain not shown) are orally used in the clinical and
have beneficial effect on asthma in children (92, 93). Interestingly,
the acute asthma is closely associated with RTIs, especially
rhinovirus infection (94). Consequently, the role of Lactobacillus
administration in preventing RTIs may be useful in relieving
exacerbation of acute asthma. Based on the “hygiene hypothesis,”
exposure to specific microbial components early in life can decrease
the susceptibility to asthma and allergic diseases (95). Therefore,
oral administration of probiotic Lactobacillus in the early life may
also play an important role in preventing asthma.

For the purpose of asthma prevention, the general route of
administration of Lactobacillus species is oral delivery. However,
a study indicates that although oral administration of L.
paracasei NCC2461 could provide effective protection for
female BALB/c mice with asthma, the efficacy of intranasal
delivery is better (96). Nevertheless, two studies show that oral
administration of L. rhamnosus GR-1 prevents the worsening of
Frontiers in Immunology | www.frontiersin.org 4
asthma in male BALB/c mice, but nasal administration has little
effect on the improvement of asthma symptoms in male BALB/c
mice (97, 98). This may be caused by the lower dose and duration
of nasal administration. Interestingly, oral administration of L.
paracasei NCC2461 in perinatal mice provides prevention for
allergic airway inflammation in the offspring (99). Similarly, in
clinical trials, oral L. rhamnosus GG has been shown to prevent
atopic diseases in children in both prenatal and postnatal (100).
Thus, Lactobacillusmay have a preventive effect against offspring
asthma when administered to the mother. Furthermore,
supplementation with Lactobacillus GG also has a therapeutic
rather than only a preventive effect on mice suffering from
asthma (101). Additionally, animal studies have found that
oral Lactobacillus can also reduce other airway allergic
reactions such as allergic rhinitis. For example, oral L.
rhamnosus GG, L. gasseri TMC0356, L. plantarum IM76, L.
plantarum CJLP133 and CJLP243 can effectively improve the
symptoms of allergic rhinitis (102–104). In clinical trials. L.
gasseri KS-13, L. casei Shirota and L. acidophilus L-92 have
been used to effectively prevent seasonal allergic rhinitis (105–
107). Thus, the administration of Lactobacillus may have
excellent preventive effect on airway allergic reaction.

2.3 Lung Cancer
Lung cancer is a malignant tumor with a high incidence and
mortality rate in the world (108). In recent years, immunotherapy
has sparked a new surge in tumor treatment. Although immune
TABLE 2 | Treatment effect of clinical trials regarding the application of Lactobacillus in improving symptoms of respiratory tract infections (RTIs).

Lactobacillus strain Subjects Efficacy References

L. rhamnosus GG Premature infants The reduction in the incidence of RTIs (67)
L. casei Shirota Healthy middle-aged

working people
Reducing the incidence and duration of upper respiratory tract infections (URTIs) (68)

L. casei DN 114001 Healthy school-age
children

The reduction in the incidence and duration of RTIs (69)

L. reuteri SD 112 Infants Reducing the rate and duration of RTIs (70)
L. plantarum L-137 Healthy subjects with

high psychological
stress

The reduction in the incidence of URTIs (71)

L. plantarum DR7 Adults Improving clinical symptoms of URTIs (14)
L. paracasei N1115 Older Adults Strengthening resistance of RTIs (72)
L. fermentum CECT5716 Infants Reducing the incidence of URTIs (73)
L. fermentum PCC Athletes The reduction in lower respiratory symptoms in men (74)
L. salivarius Athletes No effect on the frequency of URTIs (75)
L. helveticus Lafti L10 Athletes Shortening the duration of RTIs (76)
Combination of L. rhamnosus GG,
L. rhamnosus LC705, B. breve 99, P.
freudenreichii JS

Children Reducing the incidence of RTIs (77)

Combination of L. paracasei, L. casei 431,
L. fermentium PCC

Adults Strengthening resistance of common cold and flu-like respiratory infections (78)

Combination of L. acidophilus, B. lactis
UABLA-12

Children Do not reduce the incidence, but shorten the duration of acute respiratory infections (79)

Combination of L. gasseri PA16/8, B.
longum SP07/3

Adults Reducing the duration of RTI episodes and fevers (80)

Combination of B. longum, L. bulgaricus
and S. thermophilus

Patients with COVID-
19

The duration of diarrhea is shortened. Significantly shorter time to nucleic acid
negativity and significantly lower inflammatory markers such as calcitoninogen and
C-reactive protein

(81)

Combination of L. plantarum KABP022,
KABP023, KAPB033, and P. acidilactici
KABP021

Patients with COVID-
19

The reduction in nasopharyngeal viral load, pulmonary infiltration, and duration of
digestive and non-digestive symptoms.

(82)
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check inhibitors (ICIs) such as anti-PD-1/PD-L1 and anti-
CTLA 4 antibodies has become the first-line clinical treatment
for tumors, the application of ICIs increases T-cell activity and
removes the “braking” of the immune system, and these drugs
are likely been associated with immune-related adverse events,
especially when used in combination (109). Therefore, the
search for natural immunobiotics with immunomodulatory
properties to assist in the treatment of cancer patients may be
a direction. It has been reported that probiotics show the same
degree of anti-tumor ability as PD-L1 inhibitors, while
simultaneous combination therapy with PD-L1 inhibitors
virtually eliminated tumor growth in mice (110). Moreover,
in clinical trials, oral administration of yogurt with probiotics
provides a potential protective effect against lung cancer (111).
Lactobacillus is one of the most widely studied probiotic
involved in the treatment of lung cancer. Administration of
Lactobacillus can inhibit the metastasis of tumor cells to the
lung. For example, nasal administration of L. rhamnosus GG
can inhibit the metastasis of melanoma B16 to the lung in
C57BL/6 mice (112). L. casei (strain not shown) has significant
inhibitory effect on the proliferation of A549 lung cancer cells
in vitro (113). Furthermore, intravenous and intradermal
injection of L. casei YIT 9018 can increase the anti-tumor
activity against Lewis lung carcinoma in C57BL/6 mice (114).
In addition, oral administration of L. casei CRL 431 also
reduces the side effects of chemotherapy (115), which may
improve the prognosis of lung cancer patients. These suggest
that some Lactobacillus species may have potential to become
an effective adjuvant to treat lung cancer.

2.4 CF
CF is an autosomal recessive, monogenic disease with lesions
affecting the lung, intestine, and other organ, but lung disease is
the leading cause of morbidity and mortality in people with CF
(116). CF is closely related to intestinal flora and significantly
reduces intestinal flora diversity (117, 118). A study indicates
that oral L. rhamnosus GG improves disorders of intestinal
flora in children with CF (119). Moreover, clinical trial shows
oral administration of L. rhamnosus GG reduces pulmonary
exacerbation and hospitalization rate in CF patients (120). This
suggests administration of L. rhamnosus GG may be able to
alleviate the symptoms of CF. In another clinical trial, however,
oral administration of L. rhamnosus GG did not promote
respiratory health in patients of CF (121). The main reason
may be due to different inclusion criteria for clinical trial
subjects . The cl inical efficacy of applying a single
Lactobacillus strain on CF is unstable, and the combined
administration of multiple probiotic Lactobacillus species may
be more effective. For example, intestinal supplementation with
probiotic capsules (consisting mainly of Lactobacillus species)
significantly reduces the incidence of lung deterioration and
improves the quality of life in patients with CF (19, 122).
However, these are single-center clinical trials. Multicenter
and expansion of the number of subjects are needed to
further clarify the efficacy of Lactobacillus administration on
CF in clinical trials.
Frontiers in Immunology | www.frontiersin.org 5
2.5 Other Respiratory Diseases
Several studies have reported the potential of Lactobacillus in
improving COPD. The commonly known causes of COPD are
cigarettes and air pollutants (123). In vitro experiment has
demonstrated that L. rhamnosus NutRes1 can reduce
inflammatory mediators produced by cigarette-activated
human macrophages (124). Moreover, oral feeding of L.
rhamnosus (strain not shown) increases levels of IL-10 as well
as SOCS3 and TIMP1/2, and attenuates lung injury of COPD
induced by cigarette in C57BL/6 mice (21). Additionally, the
development of COPD is associated with reduction of
Lactobacillus spp. in lung (125).

In addition, a study indicates that a decrease in intestinal
Lactobacillus may contribute to the development of pulmonary
arterial hypertension (126). In clinical trial, intestinal
supplementation with L. casei Shirota can reduce the incidence
of Ventilator-Associated Pneumonia in hospitalized patients
(127). Thus, Lactobacillus may also be beneficial in other
respiratory diseases and need more studies.
3 POTENTIAL MECHANISM OF
PROBIOTIC LACTOBACILLUS IN
IMPROVING RESPIRATORY DISEASES

As mentioned above, many members of the genus Lactobacillus
have immunomodulatory properties. Notably, not only the
whole bacteria, but also their components can exert
immunomodulatory function, including peptidoglycans,
extracellular polysaccharides, surface proteins and metabolites
(short-chain fatty acids, SCFAs) and inorganic polyphosphate
liquids (40, 128–131). The mechanism of health-promoting effect
of Lactobacillus on respiratory tract is complex. The same
bacteria, when administered orally or nasally, or even
administered live and inactivated bacteria, may not have the
same effect on promoting respiratory health (49, 50, 52). The
potential mechanisms include gut-lung axis and enhancement of
the local mucosal immunity of the respiratory tract.

3.1 The Gut-Lung Axis
In recent years, many studies have reported that there is a
crosstalk between gut and lung, and this connection described
as gut-lung axis seems to be bidirectional (132, 133). Oral
administration of some probiotics, especially Lactobacilli, could
promote respiratory health via gut-lung axis (17, 30, 134).
Although the exact mechanisms by which Lactobacillus
enterica affects the lung immunity via gut-lung axis are not
fully understood, there are three main aspects (Figure 1).

3.1.1 Direct Immigration of Immune Cells and
Cytokines From the Intestine to the Respiratory Tract
Through the Circulation
Recognition of Lactobacillus species or their components by
pattern recognition receptors (PRRs, such as TLRs or NLRs,
etc.) on immune cells in the intestinal mucosa can result in the
May 2022 | Volume 13 | Article 908010
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activation of innate immune cells which could migrate to lung
tissue via circulation. For instance, innate lymphoid group 3 cells
(ILC3s) can migrate from the gut to the lung where IL-22+ILC3
exhibits resistance to pneumonia (135). Oral delivery of L.
paracasei CNCM I-1518 also significantly increases ILC3 in
lung tissue and enhances resistance to influenza virus (36).
Intestinal supplements with L. paracasei MCC1849 can provide
protection against influenza virus, which may be associated with
an increased proportion of IgA+ B cells and follicular helper
T cells in Peyer’s patches and significantly increases IgA
secretion in lung (53). Villena suggests that Oral delivery of L.
rhamnosus CRL1505 induces Th1 response in the gut-associated
lymphoid tissue and promotes the migration of Th1 cell to the
lung tissue where Th1 cells produces IFN-g which induces
activation of alveolar macrophages, natural killer cells, CD103+

and CD11bhigh dendritic cell (DC) (49). Additionally, a study
indicates that intestinal supplementation with L. rhamnosus GG
can inhibit pulmonary inflammation, which is associated with an
increase in Tregs of the intestinal tract (136). Moreover, oral
administration of L. murinus (strain not shown) to antibiotic-
treated mice can also increase Tregs in lung (137). Tregs not only
inhibit inflammation, but also inhibit Th2 type immune response
(138). As controlling airway inflammation is crucial in
preventing asthma progression (94), migration of Tregs to lung
tissue may alleviate asthma symptoms.

Cytokines secreted in the mucosa of the gastrointestinal tract
by Lactobacillus can reach the circulation and interact with other
mucosal tissues, such as lung (139). Intestinal supplementation
with L. rhamnosus CRL1505 can increase TNF-a, IFN-a, IFN-b,
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IFN-g in bronchoalveolar lavage fluid which exert a significant
antiviral effect in the respiratory tract, and these cytokines show a
similar increased trend in the intestinal fluid (49).

3.1.2 Influence of Lactobacillus Metabolites on
Pulmonary Immunity via the Circulation
In parallel to promoting the migration of intestinal immune cells
and cytokines, members of Lactobacillus genus produce
metabolites that can modulate host respiratory immunity. The
most important intestinal bacteria metabolites affecting
pulmonary immunity is SCFAs, such as propionate, butyrate
and acetate (140). Studies show that intestinal supplementation
with many Lactobacillus species can increase SCFAs in the
intestine and blood (141–145). The unmetabolized SCFAs
enter the circulation and may affect pulmonary immunity in
two ways. The first way is that SCFAs enter the bone marrow
through the circulation enhancing generation of macrophage
and DC progenitors (MDPs) (146), and meanwhile SCFAs can
increase the conversion of MDPs into Ly6C– monocytes (147,
148); then bone marrow Ly6C– monocytes migrate into lung
tissue where they differentiate into alternatively activated
macrophages (149). The second way is that SCFAs directly
enter into the lung tissue where they may activate G protein-
coupled receptors (GPCRs) or inhibit histone deacetylase (150–
152). For example, butyrate can not only promote the generation
of Tregs and IL-10 production by activating GPR109A (153), but
also restore IL-10 in the lung by inhibiting histone deacetylase in
mice (154). Another metabolite of Lactobacillus enterica,
lithocholic acid, can also enhance Tregs function while inhibit
FIGURE 1 | Potential mechanisms of Lactobacilli to modulate respiratory immunity via the gut-lung axis (1). Migration of activated immune cells and cytokines from
mesenteric lymph nodes (MLNs) and intestinal lamina propria to the lung through the circulation (2). Some endocrine cytokines (such as TNF-a, IL-6) may migrate to the
lung tissue through the circulation, and then alter immune environment of the lung (3). SCFAs affect bone marrow hematopoiesis and promote the conversion of
macrophage and DC progenitors (MDPs) into Ly6C-monocytes, which reaches lung tissue and differentiates into anti-inflammatory alternatively activated macrophages
(AAMs); AAMs inhibit chemokine CXCL1 production thus leading to reduced neutrophils recruitment in lung tissue (4). In the intestinal lumen, Lactobacilli or their
components and production of metabolites (such as SCFAs) are taken up by intestinal epithelial cells and then enter to the lung via the circulation (5). Lactobacilli or their
components from the intestinal lumen reach lung directly via microbreathing or esophageal reflux.
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Th17 response (155). Other Lactobacillus intestinal metabolites
(such as lactic acids, polyamines and indole derivatives) with
immunomodulatory properties are involved in intestinal
homeostasis (156–158). Nevertheless, it remains to be studied
whether these metabolites can impact respiratory health via the
gut-lung axis. In summary, Lactobacillus metabolites, such as
SCFAs (especially butyrate) and lithocholic acid have excellent
anti-inflammatory capacity, which may contribute to alleviate the
development of RTIs, asthma, COPD. In addition to anti-
inflammatory effect, butyrate and propionate can induce
apoptosis of lung cancer cells and inhibit proliferation of lung
cancer cells in vitro (159–161). Therefore, oral administration of
some lactobacilli may provide benefit for the treatment of lung
cancer by producing butyrate and propionate.

3.1.3 Migration of Lactobacillus and
Their Components to the Lung
There may be two main routes for transfer of intestinal bacteria
to the lung tissue: the first is intestinal bacteria or bacterial
components enter into the circulation through the mesenteric
lymphatic system and then reach the lung tissue (162–164); the
second is the migration of intestinal bacteria or bacterial
components to the lung tissue through microbreathing and
oropharyngeal reflux (165, 166). Therefore, Lactobacillus or
components of Lactobacillus in the intestine may be directly
transferred to lung tissue and thus modulate lung immunity.

3.2 Enhancement of the Mucosal Immunity
of the Respiratory Tract
Intestinal supplementation with Lactobacillus has been shown to
promote respiratory health, but direct action of immunobiotic
Lactobacillus on the respiratory mucosa may modulate local
immunity of the respiratory tract. It has been found that
intranasal administration of Lactobacillus can induce better
respiratory immune response than oral administration (3, 50,
167). Nasal administration of Lactobacillus does not generally
produce SCFAs due to the absence of substrate. The potential
mechanisms by which they regulate respiratory immunity
mainly have two aspects.

The first one is that some components of Lactobacillus can be
recognized by PRRs in the respiratory tract and then activate
downstream pathways. For example, nasal priming with
peptidoglycan from L. rhamnosus CRL1505 increases TNF-a
and IL-10 levels of lung and upregulates TLR2 and TLR9
expression in alveolar macrophages, which is similar to
intranasal administration of whole bacteria (40). Meanwhile,
other studies have shown that nasal priming with peptidoglycan
from L. rhamnosus CRL1505 can enhance the TLR3/RIG-I-
triggered antiviral immune response by increasing IFN-g and
NK cell activity, thus contributing to higher viral clearance and
reducing lung tissue damage (28, 65, 168). In addition, lung
peptidoglycan can also be recognized by peptidoglycan
recognition proteins (PGRPs), a type of PRRs, which mediates
bactericidal effect (169). For instance, activated PGRP2 could
promote neutrophil recruitment in lung tissue of S. pneumoniae
infected mice (170). Of note, not all peptidoglycan of Lactobacillus
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species has the same protective effect. Nasal administration the
peptidoglycan from L. rhamnosus CRL534 does not enhance
resistance to S. pneumoniae infection in immunodeficient mice
(41). This strongly suggests that the protective effect provided by
Lactobacillus is strain-specific. Importantly, nasal administration
of Lactobacillus may activate PRRs by multiple pathways. Even if
one PRR is blocked, another pathway can be activated to provide
protection in a compensatory manner. For example, studies have
shown that only when both NOD2 and TLR2 are knocked out can
L. plantarum BAA-793 lose its role in protecting against
pneumonia virus infection (3, 64, 171). Therefore, components
of Lactobacillus to activate the PRRs may be an important part of
the protective role performed by intranasal Lactobacillus delivery.

The second one is that Lactobacillus can bind to host cells to
antagonize adhesion or binding of pathogen. For the bacteria,
experiments have demonstrated the ability of Lactobacillus to
directly inhibit the adhesion of bacteria to respiratory epithelial
cells. L. rhamnosus Kx151A1, L. reuteri PTA-5289, and L.
salivarius LMG9477 can inhibit the adhesion of S. pyogenes to
pharyngeal epithelial cells (172). Moreover, intranasal
administration of L. murinus CNCM I-5314, a eubacterium of
the murine lung, can provide a barrier function against the
colonization of S. pneumoniae in the lung tissue (173). In the
case of viruses, Lactobacillus binds competitively to viral receptor
molecule to prevent viral entry into the host cell. For instance,
lipopeptides released by L. curvatus, L. sakei and L. lactis (strains
not shown) can bind to the receptor molecule (angiotensin-
converting enzyme 2) of SARS-CoV-2 spike glycoprotein, and
may prevent virus entry into host cells (174, 175). In addition to
inhibiting the adhesion and binding of pathogenic bacteria,
Lactobacillus directly displays antibacterial activity. Some
Lactobacillus spp. exhibit antibacterial effect against group A
Streptococcus in vitro (176). Similarly, L. rhamnosus Kx151A1
and L. reuteri PTA-5289 significantly inhibit hemolytic activity of
S. pyogenes in vitro (172). Additionally, some proteins secreted by
Lactobacillus have antimicrobial activity. For example, reuterin
secreted by L. reuteri has broad-spectrum antibacterial effect (2).
However, whether it will alter lung microbial composition and
affect lung homeostasis remains further investigation.
4 SAFETY

As normal members of the human intestinal, vaginal, skin, oral
and respiratory flora, Lactobacilli are low-toxicity commensal
organisms and are mostly considered safe when taken as
probiotics. In animal studies, long-term oral administration of
L. plantarum PS128 had no bad side on the health in mice (177).
In addition, nasal inoculation of L. reuteri F275 and L.
rhamnosus GG, which are generally colonized in the intestinal
tract. L. reuteri F275 is cleared in lung tissue less than 24 hours
(178); live L. rhamnosusGG is detected on the nasal mucosa at 24
hours after intranasal administration, but not after 72 hours, and
does not affect body weight or behavior in mice (97). In clinical
trials, oral administration of some common Lactobacillus species
such as L. reuteri DSM17938, L. casei Shirota and L. salivarius
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CECT5713 is safe in infants or children (2, 179–181). Moreover,
with a long history of safe use, Lactobacilli are classified as GRAS
(Generally Recognized as Safe) and QPS (Qualified Presumption
of Safety) by the US Food and Drug Administration (FDA) and
the European Food Safety Authority (EFSA, 2021), respectively
(182). Therefore, administration of some Lactobacillus species is
generally safe.

However, when Lactobacillus is given intranasally, it can
colonize the respiratory tract for long periods of time, and
whether this could interfere lung microbial homeostasis or
induce more severe inflammation or even lead to bacteremia is
not clear. Although Lactobacillus bacteremia is a rare disease, it
has been found in the clinical that L. rhamnosus GG and L. casei
(strain not shown), which are generally considered safe, can also
cause bacteremia when in a state of immunosuppression,
prolonged hospitalization or surgical intervention (183). Even
non-pathogenic bacteria of L. salivarius (strain not shown) in the
oral cavity have been found to cause bacteremia, septic chest and
diabetic ketoacidosis due to respiratory failure in the clinical
(184). Moreover, it has been reported that pneumonia and
pleural abscess are caused by mixed Lactobacillus infection in
elderly people with esophageal cancer (185). Although it occurs
being rare and almost exclusively in infants, children and
immune-compromised populations, this also suggests that live
Lactobacillus is not absolutely safe, especially when administered
intranasally. Further, the presence of antibiotic resistance genes
and virulence genes in Lactobacillus and their possible transfer to
other microorganisms is also a concern.
5 CONCLUDING REMARKS

The use of Lactobacillus is a promising strategy for the
prevention and treatment of respiratory diseases and is
generally safe. The mechanism of Lactobacillus in regulating
respiratory immunity includes the gut-lung axis and activation of
mucosal immunity. The beneficial role of Lactobacillus on the
respiratory tract is strain-dependent, and may change in different
species of Lactobacillus and even subspecies of each Lactobacillus
Frontiers in Immunology | www.frontiersin.org 8
(32). Therefore, for clinical applications, the selection of effective
Lactobacillus strains is crucial. Additionally, a single
Lactobacillus is not always effective for all respiratory diseases
and efficacy may be inconsistent even if the same Lactobacillus is
administered due to many factors such as subject, dose and time
of administration in clinical trials. The uncertainty of the
effectiveness of Lactobacilli is one of the main reasons limiting
their application in the clinic. For this problem, co-
administration of multiple probiotic Lactobacillus or co-
administration of probiotic Lactobacillus and other probiotics
such as Bifidobacterium can provide more stable and better
efficacy, which is also the trend of probiotic application.
Furthermore, clinical application of the main active ingredients
of Lactobacillus or inactivated bacteria can provide more safer
effect and stable efficacy relative to live bacteria. Besides,
Lactobacillus has preventive effect for offspring respiratory
disease when administered to the mother, and it can greatly
reduce the occurrence and alleviate the symptoms of respiratory
diseases in infants and children if the stability and safety of
Lactobacillus efficacy is fully established. Additionally, the
economic burden of clinical application of Lactobacillus is low
(186). Overall, administration of Lactobacillus is beneficial in
improving pulmonary health and its application in treating
respiratory diseases needs more clinical studies.
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