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Examining the Use of Real-World Evidence in 
the Regulatory Process
Brett K. Beaulieu-Jones1,* , Samuel G. Finlayson1, William Yuan1, Russ B. Altman2 , Isaac S. Kohane1, 
Vinay Prasad3 and Kun-Hsing Yu1,*

The 21st Century Cures Act passed by the United States Congress mandates the US Food and Drug Administration 
to develop guidance to evaluate the use of real-world evidence (RWE) to support the regulatory process. RWE has 
generated important medical discoveries, especially in areas where traditional clinical trials would be unethical or 
infeasible. However, RWE suffers from several issues that hinder its ability to provide proof of treatment efficacy 
at a level comparable to randomized controlled trials. In this review article, we summarized the advantages and 
limitations of RWE, identified the key opportunities for RWE, and pointed the way forward to maximize the potential 
of RWE for regulatory purposes.

Real-world data (RWD) and real-world evidence (RWE) have 
received substantial attention from medical researchers and reg-
ulators in recent years.1,2 The US Food and Drug Administration 
(FDA) defines data relating to patient health status and the de-
livery of healthcare (such as electronic health records (EHRs), 
claims and billing activities, product and disease registries, and  
patient-generated data) as real-world data (RWD), and the anal-
ysis of these data regarding usage and effectiveness are termed 
real-world evidence (RWE).3 The European Medicines Agency 
(EMA) similarly defines RWD as defined as “routinely collected 
data relating to a patient’s health status or the delivery of health care 
from a variety of sources other than traditional clinical trials” and 
expressed interest in using RWD for regulatory decision making.4 
RWE presents great potential to accelerate therapy development 
and to monitor the successes and failures or both newly approved 
and existing therapies.5 It is critical that stakeholders, including 
researchers, both academic and industry, providers, regulators, 
administrators, and patients understand the limitations of RWE. 
RWE is not generated with a particular study question in mind 
but are generated primarily for clinical care and billing purposes. 
As such, appropriate use of RWE must be driven by well-designed 
guidelines and regulations to ensure accurate, unbiased findings. 
If used correctly, RWE could supplement traditional clinical re-
search to aid therapeutic development, clinical decision making 
efficiency gains in healthcare, and improved access to therapeutics 
for underserved populations. Examples of promise in each of these 
areas can be seen in the results of the EMA’s adaptive pathways 
pilot.6 If used incorrectly, RWE could lead to spurious approvals, 
financial waste, and most importantly cause harm to patients.

To date, RWE has been used primarily to perform postmarketing 
surveillance to monitor drug safety and detect adverse events. RWE 
has also been particularly effective when the outcome of interest is 
rare, in cases where a very long follow-up period is required to assess 

the health outcomes, or when it is difficult to perform randomized 
controlled trials (RCTs), such as in pediatric or pregnant populations. 
An early example was the discovery of a link between the ingestion 
of diethylstilbestrol during pregnancy and vaginal adenocarcinoma of 
the offsprings using observational data.7 More recent studies linked 
the use of angiotensin-converting enzyme inhibitors while pregnant 
to congenital malformations8 and the exposure of selective serotonin 
reuptake inhibitors to persistent pulmonary hypertension in new-
borns.9,10 Most recently, RWE has shown postmarketing evidence 
that it may have an important role to play in understanding drug  
effectiveness and adverse events based on differences of metabolism  
in various racial and genetic groups.11–14

There is a growing interest in the usage of RWE by regulatory agen-
cies to evaluate the safety and efficacy of medical treatments.2,5,15–17 
In particular, Congress has mandated that the FDA increase focus 
on RWE for regulatory decision making both for new approvals and 
evaluating additional indications for approved therapies18 and the 
FDA has testified on progress toward implementing this focus.19 The 
EMA recently accepted an RWE-based control arm during their anal-
ysis of Alecensa effectiveness compared with the standard of care.20–22 
In addition, the FDA has established partnerships with private com-
panies whose goal is to use RWD in regulatory decision making, in-
cluding using synthetic control arms.20

Although some have been enthusiastic about the ability for ob-
servational RWD to substitute for RCTs, others have expressed 
caution. Booth et al.23 contend that RWD should not be used as a 
replacement for clinical trials due to the inability to compare out-
comes of nonrandomized groups. A recent comprehensive empir-
ical analysis of treatments in oncology confirms this finding. The 
results on replicating clinical trials in observational data are highly 
mixed, Concato et al.24 concluded that well-designed observational 
trials closely estimated the effects of treatment when compared 
with RCTs on the same subject. On the other hand, Soni et al.25 
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found a poor correlation between the hazard ratio seen in obser-
vational studies vs. randomized trials on the same topic. There is 
limited evidence that some RCTs may be difficult to replicate.26–28 
This could be due to population and effect sizes, population demo-
graphics, or other factors.

RWE may provide valuable insight into the effectiveness and 
generalizability of interventions in practice, even as RCTs are 
unlikely to be supplanted as the gold standard for measuring in-
tervention efficacy. It is important to consider the higher level 
of evidence RCTs provide than RWE when making a regulatory 
decision.29 We should aim to use the highest standard possible 
while acknowledging it is not feasible for RCTs to answer all clin-
ical questions related to drug effectiveness. The reasons where 
RCT might not be feasible include (i) prohibitive cost,30,31 (ii) 
when the standard of care is effective and/or administering a 
placebo is unethical,32 and (iii) in rare diseases where patient 
recruitment is challenging.33–35 In addition, RCTs are typically 
performed in a relatively homogenous cohort that is less diverse 
than the real-world population in terms of age, race, socioeco-
nomic status, geography, clinical setting, disease severity, patient 
history, and patient willingness to seek treatment.36–40 Finally, 
over time, indications for therapeutics often expand to indica-
tions and population groups they were not originally tested in. 
Pragmatic and other modern trial designs may mitigate some 
of these challenges, for example, by improving generalizability, 
but fundamental issues of cost, time, and difficult recruitment 
remain.41 Pharmaceuticals have been approved without RCTs 
but should be limited to cases where the potential burden of an 
incorrect treatment estimation is outweighed by the burden of 
conducting an RCT.42 It is critical to utilize alternatives to sup-
plement but not supplant RCTs both in the form of pragmatic 
trials and RWE-based analyses.

The FDA has taken action in an attempt to reduce the burden 
in both time and cost of bringing a new therapy to market, through 
the accelerated regulatory decision regulations initially put in place 
in 1992 and expanded in 2012.43 These regulations allow for sur-
rogate and intermediate end points when a therapy addressed a se-
rious condition without existing options. In the 5 years following 
final guidance from the FDA in May 2014, 71 therapies have been 
approved through the accelerated pathway.44 This is in comparison 
to 25 in the 5 years prior to this guidance. In addition, in 2012, the 
FDA established the “breakthrough therapy designation” for ther-
apies intended to treat serious or life-threatening conditions where 
the therapy may demonstrate substantial improvement.45 From 
April 2015 to March 2019, 24 drugs have received breakthrough 
therapy designation. Due to the fact that clinical end points (i.e., 
outcomes that show direct clinical benefits, such as increased 
overall survival) may take a long time to develop, many drug trials 
with breakthrough therapy designation use surrogate end points, 
which are measurements or signs predictive of clinical outcomes 
but do not directly measure clinical benefits.46,47 Examples of sur-
rogate end points include blood pressure for hypertension drugs 
and serum low-density lipoprotein cholesterol for hypercholes-
terolemia treatments.47 Shorter trials and the use of surrogate end 
points present a strong need for postapproval surveillance for both 
safety and effectiveness, especially in the context of traditional 

clinical end points. The use of shorter trials and surrogate end 
points to accelerate regulatory decisions may suggest that the tra-
ditional process is unnecessarily slow and wasteful. However, it is 
also possible that the extensive use of these shortcuts will lead to 
suboptimal decisions because there is no guarantee improvement 
as measured by surrogate end points will translate to traditional 
end points.

In this light, we ask the question: “What is the role of RWE in 
the regulatory process?” In this review, we first lay out some of the 
primary reasons RWE is not suited to replace RCTs. We then ex-
amine some areas RWE is well-suited to supplement and enhance 
the regulatory process as well as providing postapproval guidance.

LIMITATIONS FOR RWE FOR REGULATORY DECISION 
MAKING
Here, we examine the limitations of commonly used methods 
for applying RWD to inform regulatory decision making. We 
focus on the limitations of RWE to be used in the comparative 
effectiveness analyses conducted in phase II and phase III RCTs. 
We, therefore, narrowly examine three types of studies that have 
been proposed as ways to perform these comparative effective-
ness analyses of therapies from RWD: (i) Virtual Comparative 
Effectiveness Studies ascertain outcomes in both an interven-
tion and control group from an RWD source.48,49 (ii) Studies 
using Historical Control Arms compare retrospective RWD-
derived controls against an uncontrolled treatment arm.50 (iii) 
Studies using Synthetic (Real-World) Control Arms pair an 
uncontrolled treatment arm with concurrent RWD controls.22

Each of the three study designs of RWE has significant issues 
that prevent the ability to achieve a level of evidence on par with 
RCTs. Because of challenges in drawing causal conclusions of 
treatment efficacy from RWE they are not suited to replace RCTs. 
Table  1 shows how the specific limitations discussed apply to 
each form of study design. Most of these mechanisms to use RWE 
are affected by multiple limitations. Below, we describe these con-
cerns and then link them to each of these three forms of evidence.

A. Unobserved confounders
Of the sources of RWD, the EHR is generally considered to pro-
vide the most granular view of patient care; although insurance 
claims may provide a higher level of completeness of care. Neither 
of these data sources is designed for secondary analysis: EHR is pri-
marily intended for patient care, whereas claims data is designed 
for financial billing and reimbursement. As a result, there are  
potentially unobserved factors influencing a physician’s decision 
to pursue a particular course of treatment in a systematic man-
ner, preventing the direct comparison of outcomes between treat-
ment arms or direct comparisons to RCT findings. Traditionally, 
these factors are addressed using randomization because random 
treatment assignment would not allow for systematic differences 
between exposed/nonexposed arms. This is not possible using ob-
servational data. Several examples of these factors include:

1. Physician opinion. A physician may have just read a paper 
or attended a seminar recommending a particular treatment, 
may have seen the treatment work well for a patient that they 
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deem similar, or they may simply have a gut feeling that a 
treatment is right for a patient. Pessimistically, pharmaceu-
tical companies may exert influence regarding the choice of 
treatment.51,52 This influence can often be associated with 
patient characteristics.

2. Patient request. A patient, through his or her own research or 
through advertisement, may request a specific course of treat-
ment.53,54 This bias is particularly evident in cases when the 
patient is attempting to optimize a different outcome from the 
trial (e.g., shared decision making).55

3. Knowledge of a trial. Patients who choose to enroll in a trial 
are likely to be distributed differently than the general dis-
ease population. Similarly, clinicians participating in a trial 
or prescribing an off-label drug are likely to make different 
choices regarding patient care. In particular, there is some evi-
dence that physicians are more likely to attempt experimental 
treatment37,40 in those who appear healthier. For this reason,  
unobserved confounders can affect all three considered uses of 
RWE.

4. Differential access to treatment. The availability or ease of offer-
ing a particular treatment may be dependent on administrative, 
logistical, or insurance coverage-based barriers.56 These dif-
ferences are magnified by the integration of multisite and geo-
graphically diverse data into observational studies. Consistent 
annotation or quantification of these factors is not a central theme 
within RWD datasets, nor are the magnitudes and directions of 
these effects on physician behavior completely understood.

B. Medicine changes over time
Historical control arms are by nature historical and as new treat-
ments and technologies, new guidelines, and environmental or  
socioeconomic changes are introduced medicine changes. This was 
demonstrated by Sacks et al.50 in 1982 when they showed that 80% 

(44 of 56) historical control trials found the treatment of interest 
better than the control, but only 20% of RCTs agreed. For six dif-
ferent clinical areas, they found the results of the trials were more 
dependent on the method of control groups than on the therapy 
being considered. In a similar vein, Zia et al.57 identified 43 phase III 
clinical trials that used identical therapeutic regimens to their cor-
responding phase II study. Only 28% of the phase III studies were 
“positive” and 81% had lower effect sizes than their corresponding 
phase II study. The effect of time trends in medicine is evident even 
over the course of a single outcome-adaptive trial.58,59 Outcome-
adaptive trials work by adjusting treatment assignment probabilities 
based on which treatment arm is doing better in order to subject 
as many participants as possible to the most promising treatment. 
When a treatment arm seems promising at the beginning of a trial, 
patients are disproportionately enrolled in the promising arm. This 
means that the average date of enrollment can be much later in some 
arms than others.

C. Trials may change participant and provider behavior—the 
“Hawthorne Effect”
Clinical trial protocols may result in different behavior than typ-
ical clinical practice. Although difficult to measure, there is weak 
evidence of a protocol or “Hawthorne effect” leading to partici-
pants of clinical trials having better outcomes than typical clinical 
practice.60 McCarney et al.61 performed a placebo-based ran-
domized trial in dementia, which found that participants receiv-
ing more frequent follow-up visits achieved better cognitive and 
 carer-rated quality-of-life outcomes. Similarly, behavioral changes, 
such as the more frequent follow-up of clinical trial partici-
pants, may result in better medication adherence than real-world 
 settings.62 In traditional RCTs, both arms of the trial may expe-
rience the Hawthorne effect. When using historic or synthetic 
controls only the traditional intervention arm would experience 
the Hawthorne effect.

Table 1 Examination of the issues pertinent to each purpose of RWE

 
Virtual comparative  
effectiveness studies Historical control arms Synthetic control arms

A. Unobserved confounders X X X

B. Medicine changes over time   X  

C. Trials may change participant and provider 
behavior

X X X

D. Closer monitoring of adverse effects in trials X X X

E. Lack of pretrial registration and the potential 
for multiple testing errors

X    

F. Weaknesses of propensity score matching X X X

G. Inability to compare RWD preapproval X    

H. Opportunities for conflicts of interest to affect 
results

X X X

I. Patterns of completeness of data and loss of 
follow-up differ

X X X

J. Measurement error in identifying patient status 
from RWD

X X X

RWD, real-world data; RWE, real-world evidence.



REVIEW

VOLUME 107 NUMBER 4 | April 2020 | www.cpt-journal.com846

D. Closer monitoring of adverse effects in trials
The combination of more frequent follow-up and specific atten-
tion paid to adverse drug events may lead to lower rates of adverse 
drug events in routine clinical practice compared with clinical tri-
als. In addition, relatively minor adverse effects may not be billed 
against or recorded in the context of more serious diagnoses (e.g., 
nausea on a chemotherapy protocol). Several studies have shown 
that harm in oncology RCTs is underreported and may not even 
follow protocols.63 RWE may underestimate important patient 
safety concerns.

E. Lack of pretrial registration and multiple testing
It is critical that clinical trials be registered prior to any analysis 
of results that occur to prevent unreported multiple testing.64,65 
Many statistical methods have been proposed to minimize 
false discovery in studies involving testing multiple hypotheses 
 simultaneously, and the need for correction is well recognized 
in biomedical research. However, some forms of multiple test-
ing are more difficult to identify. As an illustration, there are 
several widely distributed datasets (e.g., Truven MarketScan, 
Optum Claims data, etc.), and it is likely that multiple investi-
gators will ask similar questions using these datasets. The mul-
tiple testing nature of large and uncoordinated efforts may not 
be apparent to individual investigators involved nor to the scien-
tific community, and the likelihood of false positives would re-
main uncorrected.66 To highlight this issue, Silberzahn et al.67 
distributed the same dataset to 29 teams with a total of 61 data 
analysts and asked the question, “Are soccer referees more likely 
to give red cards to dark-skin-toned players than light skin-
toned-players?” Twenty of the 29 teams found a positive effect, 
the other 9 found no significant relationship and the estimated 
effect sizes ranged from 0.89–2.93. This study makes explicit a 
phenomenon that is largely hidden from view, multiple chances 
and analytical approaches to explore an observational hypoth-
esis may result in different point estimates. Given the financial 
stakes in regulatory outcomes, there are strong incentives for 
reporting of positive results. Because explorational analyses 
may be performed prior to registration or in the absence of reg-
istration, multiple hypothesis testing may plague RWE efforts. 
Preregistration of methods in RCT studies prevents this type of 
manipulation, both deliberate and inadvertent, and provides a 
measure of methodological transparency.

F. Weaknesses of propensity score methods
Propensity score matching and adjustment are popular ap-
proaches to account for high-dimensional confounders in ob-
servational studies.68 In propensity score matching, researchers 
construct a matched population of treated and nontreated indi-
viduals based on their probabilities of receiving the treatment. 
By pairing every treated patient with one or more nontreated 
patients that were roughly equally likely to have received the 
treatment, propensity score matching seeks to balance the un-
derlying factors associated with treatment assignment. In pro-
pensity score adjustment, the high-dimensional confounders 
are summarized by a propensity score, which can then be ad-
justed in downstream analyses.68,69

In practice, propensity score methods are difficult to properly 
execute and evaluate.70 For instance, it is very difficult to determine 
if a given propensity score model has been correctly specified. The 
traditional method for evaluating predictive performance fails 
to properly evaluate the quality of a propensity score model be-
cause unmeasured confounding and the randomness in treatment  
assignment both contribute to the deviation of the model from the 
observed data. As such, it can be difficult for a reader to determine 
whether the model has sufficiently adjusted for confounding.70

The deployment of the propensity score is also not straightfor-
ward. Because propensity scores from two patients are rarely ex-
actly equal, defining “close enough” propensities for two patients 
to count as a match involves a delicate balance between excessively 
loose cutoffs (which risks undercutting the notion of matching 
itself ) and highly stringent cutoffs (which may exclude too many 
patients from the analysis). The process of propensity matching al-
most inevitably changes the population being studied in ways diffi-
cult to interpret by systematically excluding some subset of patients 
that fail to achieve a proper match in the other “arm” of the analysis. 
Ultimately, this means that propensity score matching may provide 
causal estimates about the effect of the intervention on a different 
population than the study originally sought to investigate.

G. Inability to compare RWD preapproval of the experimental 
treatment
The efficacy of a treatment cannot be evaluated from RWD until 
it is used widely enough for there to be a substantial body of data. 
In general, this means that treatment needs to already be approved 
for the indication of interest. In rare cases, there may be signifi-
cant off-label usage, but the reasoning behind this off-label usage 
should be carefully considered in terms of its impacts on patient 
selection.71,72 Significant differences between the patients receiving 
the off-label treatment vs. the existing standard of care could exist, 
resulting in issues of generalizability. The inability to compare ob-
servations  preapproval to observations in the general population is 
especially pertinent to the experimental arm, but there may also be 
subtle changes in the standard of care that can be difficult to identify 
from RWD (e.g., dosing, timing, and adherence).73,74 Finally, off-label 
prescription with the hope of generating RWD is an inefficient mech-
anism of hypothesis testing, which is often optimized by formal trials.

H. Opportunity for conflict of interest
Therapy approval decisions are binary outcomes with the po-
tential for profound impact on patients, employees, sharehold-
ers, and other stakeholders. Because of this, there represents an 
outsized incentive for a variety of parties to cheat the system, 
regardless of the study design. It was recently revealed that 
there was “data manipulation” in the data provided to the FDA 
during the approval process for Zolgensma.75,76 In RWE, this 
poses a potentially bigger issue given the retrospective nature of 
data. The bar for exploitation is lower than prospective studies 
and exploitation becomes less black and white. It is not possible 
to ensure that trial organizers have not already analyzed the data 
to ensure that the control arm is penalized. This could be done 
through manipulation of the inclusion and exclusion criteria, the 
method of propensity matching between the trial subjects and 
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the subjects derived from RWD or other intentional selections. 
For example, Sacks et al.50 found that historical control groups 
generally did significantly worse than RCT control groups 
across 50 reported clinical trials. The retrospective population 
selection task exhibits the opportunity for exploitation that is 
difficult to uncover, especially when considering potential fi-
nancial implications. Although there is the opportunity for bad 
actors to cheat the system regardless of study type, RWE-based 
studies can be performed by a smaller set of investigators where 
there are less exposure and transparency to the protocol.

I. Completeness of data and loss of follow-up
Of the three most commonly used sources of RWD, EHR and 
hospital-based administration both suffer from the fact that 
they do not record any care received outside of a particular hos-
pital system and oftentimes contain incomplete regard with re-
spect to a particular EHR (e.g., inpatient vs. ambulatory). This 
leads to challenges in ensuring completeness of care in RWD-
based studies using EHR data. In addition, over 50% of the 
United States receives healthcare insurance through their em-
ployment.77 The average tenure of employment is just 4.3 years 
for men and 4 years for women.78 This short tenure means even 
insurance claims datasets present challenges when considering 
the completeness of care and follow-up coverage. Record incom-
pleteness, defined as instances when fewer than 50% of enrollees 
have at least one claim in a given year, can be caused by admin-
istrative phenomena, such as company or record mergers, as well 
as subcontracting of service.79

J. Measurement error in identifying patient status from RWD
EHRs and administrative data were not initially intended 
for specific studies, thus, these records may not be sufficiently 
granular to ascertain the phenotypic status of the patients. 
Researchers need to make additional assumptions or resort to 
proxy measures to infer the disease status of the patients under 
study. Additionally, previous studies showed that different hos-
pitals have dissimilar approaches of disease and procedure cod-
ing, even when using the same standard lexicon of diagnostic 
and procedure codes. Data harmonization efforts and calibra-
tion studies are necessary to enhance the accuracy of inferring 
patient statuses using the limited, and sometimes inconsistent, 
descriptors in the RWD.

THE WAY FORWARD: HOW CAN WE CAPTURE VALUE FROM 
RWE TO EFFECTIVELY IMPROVE PATIENT TREATMENT?
Although RWD analyses are susceptible to the biases and issues 
summarized above, they hold promise in complementing trial anal-
yses and enable the evaluation of numerous biological hypotheses 
at a minimal cost. Below, we discuss the approaches that could  
maximize the value and potential of RWE with particular attention 
to the approval and postapproval surveillance processes (Table 2).

Integrate results from multiple designs of observational 
studies to triangulate effect estimates
As discussed in the previous section, RWE generated from dif-
ferent study designs suffers from different sources of biases, and 

causal inference based on RWD relies on strong assumptions 
rarely met in practice. Nonetheless, by combining the results 
generated by different study designs, we can better estimate 
the risks and benefits of treatment strategies.80 For example,  
cohort studies using RWD suffer from unmeasured confounding, 
whereas the use of instrumental variables relies on instrumental 
assumptions.81 Because these two study designs require different 
sets of assumptions, we can estimate the extent of assumption 
violation and its impact on the risk estimates. Similarly, we can 
further incorporate the results from natural experiments82 and 
negative control analyses83 to gauge the effects of treatments and 
unmeasured confounders. By comparing the results from differ-
ent approaches, we can determine the possible range of the true 
estimates with a greater level of confidence. Nonetheless, given 
the fact that different study designs and analytical methods pos-
sess distinct pros and cons, researchers need to be vigilant about 
the interpretation of their combined results.80 Effect triangula-
tion approaches have successfully estimated causal effects in set-
tings with strong confounding, such as the effects of lowering 
systolic blood pressure on the risk of coronary heart disease.80,84

Leverage new statistical approaches for causal analyses
Philosophers have attempted to understand causality since the 
age of enlightenment,85 and epidemiologists proposed several 
criteria to evaluate the linkage between causes and effects.86 
Recent developments of statistical methods allow causal infer-
ence from observational data while minimizing biases insur-
mountable by conventional approaches.70 As an illustration, in 
the presence of time-varying confounders, traditional variable 

Table 2 Key needs and opportunities for RWE

Key areas Examples and approaches

1. Measuring post-
approval safety and 
effectiveness

Integrate multiple RWD study designs 
and leverage modern statistical 

approaches to better estimate the 
effects of treatments

Compare differences between  
effectiveness and efficacy

Establish best practices, guidelines, and 
reporting standards

Follow accelerated approval and surrogate 
end-point trials to understand the long-term 

effects on traditional end points

2. Development of 
future therapies

Identify populations underserved by current 
therapies and clinical trials

Discover disease subtypes or potential  
patient subpopulation that might benefit 

from novel treatment modalities

Facilitate trial recruitment at diverse clinical 
sites and the inclusion of diverse  

populations in future studies

3. Measuring health-
care value and quality

Determine the value-based reimbursement 
of drugs

Evaluate how closely clinical guidelines 
are followed and whether guidelines lead 

to positive outcomes

RWD, real-world data; RWE, real-world evidence.
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adjustment approaches will inevitably result in biases, due to the 
fact that subsequent measurements after the baseline are likely 
affected by the treatments. The g-methods, a group of statisti-
cal approaches, can account for the time-varying confounders 
and treatment-confounder feedback that commonly reside in 
observational data.87–89 In addition, recently developed mul-
tiple robust statistical approaches can reduce the risk of model 
misspecification by relaxing the assumptions needed to achieve 
unbiased estimates.90,91 For example, doubly robust methods 
can consistently estimate the effects of treatments if either the 
confounder-treatment relation or the confounder/treatment- 
outcome relation is correctly modeled,90 which would be helpful 
in settings where model misspecification raises significant con-
cern. It is worth noting that the causal identification conditions 
(i.e., exchangeability, positivity, and consistency) still need to 
hold in order to get accurate effect estimates. In high-dimen-
sional settings, machine-learning approaches can model the 
high-level interactions among the variables and facilitate dimen-
sion reduction.92 These methods can accommodate the large 
number of variables extracted from EHRs and other RWDs.

Establish a robust infrastructure for randomized registry 
trials
Integration of EHRs into a large-scale data registry would allow 
for real-time matching against clinical trials and for physicians 
to be immediately notified if a patient was a potential fit.93 
After patients were enrolled in the trial, the treatment could 
be randomized and follow-up could occur at their normal point 
of care.94 This would have the potential to massively reduce 
enrollment and follow-up costs while increasing the diversity 
of populations included in clinical trials. This cost reduction 
could enable randomized trials to answer a wider scope of ques-
tions. In particular, it may allow randomized registry trials to 
be performed postapproval for comparative effectiveness analy-
sis and additional trials sponsored by government and nonprofit 
organizations.

Perform postapproval surveillance and validate that efficacy 
translates to effectiveness
Although clinical trials measure drug efficacy, it is important to 
perform postapproval surveillance to determine whether efficacy 
is generalizable to a broader population. Postapproval surveillance 
would allow drug pricing to take into account the real-world value 
delivered. In addition, due to size restrictions, clinical trials may 
not capture rare adverse effects95 or drug–drug interactions96 that 
could be discovered through RWD analysis.

Use RWD to measure how closely trial populations resemble 
real-world populations
This would enable trial organizers to plan representative trials 
and regulators to determine where additional trials may be nec-
essary. In addition, if there is truly a heterogeneity of effects, 
it is unlikely to be detected in a homogenous trial population. 
It is, therefore, important to monitor both effectiveness and 
safety in the larger heterogeneous population that the therapy 
is given to.

Preregistration of RWD analyses
Establishing a preregistration requirement for RWD analyses is an 
effective approach to reduce the risk of multiple hypotheses testing 
and p-hacking.97,98 However, many observational datasets, such 
as Medicare,99 Medicaid,100 and Marketscan,101 are available and 
fully accessible to the researchers before the conception of specific 
RWD studies, which makes adequate preregistration a significant 
challenge. Combining a preregistration mechanism with a require-
ment to validate the identified effects on prospective patient co-
horts could mitigate the risk of false discovery due to p-hacking.97

Complement RCTs and pragmatic trials with RWD
Although RCTs and pragmatic trials generate high-quality ev-
idence for establishing causality24,102 and inform real-world 
practice,41,103 respectively, it is infeasible to answer all clinically 
important research questions by setting up a series of trials. In ad-
dition to using multiple sources of RWE to arrive at better risk esti-
mates (“Integrate Results From Multiple Designs of Observational 
Studies to Triangulate Effect Estimates” section), researchers could 
further leverage the hypotheses generated by RWD to inform trial 
design, or when the subgroup analyses of trials are underpowered, 
conduct RWD studies to further identify the participants who 
would likely benefit from the treatments under study.104

Establish reporting guidelines of RWE
Many reporting guidelines have been established for obser-
vational studies, but the specific requirements for using RWE 
for regulatory approval remains unclear. Widely accepted 
guidelines for academic publication include the REporting of 
studies Conducted using Observational Routinely collected 
health Data (RECORD)105 and STrengthening the Reporting 
of OBservational studies in Epidemiology (STROBE) guide-
lines.106 However, researchers have called for more stringent 
and specific approaches for subfields of epidemiology, such as 
the RECORD-PE statement for pharmacoepidemiological re-
search.107 Similar efforts are needed to enhance the validity and 
reproducibility of RWE for regulatory purposes. In particular, 
regulatory agencies need to set specific requirements for the 
study participants, variables, measurement methods, data cura-
tion procedures, analytical approaches, and accessibility of the 
data and codes used in demonstrating the effectiveness of treat-
ments using RWD.

Establish a structure for the postapproval evaluation of 
clinical practice guidelines and predictive algorithms
Historically, postapproval marketing of drugs involved a wide net-
work of pharmaceutical sales representatives attempting to visit 
physicians to provide samples and detailing.51,108 In the 21st cen-
tury, there has been an increased interest in establishing standard-
ized clinical practice guidelines, for example, Choosing Wisely,109 
and in providing predictive drug recommendations as a part of 
personalized,110 and precision medicine,111 Standardizing care is 
a core component of improving the process with which care is de-
livered in the structure, process, and outcome framework for eval-
uating healthcare quality.112 Personalized drug recommendations 
offer the promise to provide patients with the drugs they are most 
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likely to benefit from. This transition from individualized decision 
making presents a great potential to improve care and to deliver 
evidence-based medicine. However, it also presents the potential 
for postapproval marketing to shift from one-on-one encounters 
to influence at the system level through guidelines and algorithms. 
It is critical for RWE-based guidelines and recommendation sys-
tems to be thoroughly evaluated by independent third parties in 
the form of regulatory agencies and physician societies.

Determine value-based reimbursement of drugs
Value-based drug pricing has been discussed for over a de-
cade.113–115 RWD analyses can reveal the actual effectiveness of 
the drugs in real-world use cases, and, hence, inform the value 
created for the patients.116 Tracking the longitudinal health out-
comes of patients receiving the treatments under the usual circum-
stances of healthcare practice is crucial for determining the true 
value of therapies. If it is to succeed, how value is attributed must 
be carefully regulated and monitored.

CONCLUSIONS
RWE presents a unique opportunity to accelerate the devel-
opment of new therapies and to evaluate both the efficacy and 
the effectiveness of these treatments. However, researchers and 
regulators should take heed of the limitations of RWE and the 
potential biases lurking in RWD. Although there is significant 
value in utilizing RWE preregulatory approval (e.g., identifying 
subpopulations of need) and postregulatory approval (e.g., safety 
and surveillance), there are significant barriers to reliably using 
observational data as a key component of the regulatory process. 
Conflicting studies on attempts to replicate clinical trials using 
RWE show the potential risks and brittleness of RWE-based com-
parative effectiveness.24,25 This view is further supported by the 
discrepancies between trial results and those from RWD,117–120 
including a recent failed attempt at Facebook121 to replicate RCTs 
with large-scale RWD analyses in a nonmedical context.

The appropriate use of RWE must be driven by forward-think-
ing best practices, guidelines, and regulations to avoid spurious or 
biased findings. Increased data availability presents many oppor-
tunities but also brings with it the potential for biases in a system 
with outsized financial incentives. Traditional approaches, includ-
ing preregistration, may not be sufficient when it is not possible to 
know which analyses have already been performed. It is critical to 
acknowledge the history and strengths of traditional RCTs espe-
cially in regard to initial approvals. RCTs should not be replaced 
for approval but can be supplemented to better understand treat-
ment effectiveness in the real world. Prospective follow-up studies 
driven by unconflicted parties will be critical to decision making 
around postapproval therapy surveillance and reimbursement. The 
appropriate use of RWE offers promise to accelerate the develop-
ment of therapies while making their delivery safer, more targeted, 
and more efficient in real-world settings.
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